Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-16T15:14:07.316Z Has data issue: false hasContentIssue false

20 - Derandomization

from PART THREE - ADVANCED TOPICS

Published online by Cambridge University Press:  05 June 2012

Sanjeev Arora
Affiliation:
Princeton University, New Jersey
Boaz Barak
Affiliation:
Princeton University, New Jersey
Get access

Summary

God does not play dice with the universe.

–Albert Einstein

Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.

–John von Neumann, quoted by Knuth, 1981

Randomization is an exciting and powerful paradigm in computer science and, as we saw in Chapter 7, often provides the simplest or most efficient algorithms for many computational problems. In fact, in some areas of computer science, such as distributed algorithms and cryptography, randomization is proven to be necessary to achieve certain tasks or achieve them efficiently. Thus it's natural to conjecture (as many scientists initially did) that at least for some problems, randomization is inherently necessary: One cannot replace the probabilistic algorithm with a deterministic one without a significant loss of efficiency. One concrete version of this conjecture would be that BPPP (see Chapter 7 for definition of BPP). Surprisingly, recent research has provided more and more evidence that this is likely to be false. As we will see in this chapter, under very reasonable complexity assumptions, there is in fact a way to derandomize (i.e., transform into a deterministic algorithm) every probabilistic algorithm of the BPP type with only a polynomial loss of efficiency. Thus today most researchers believe that BPP = P. We note that this need not imply that randomness is useless in every setting–we already saw in Chapter 8 its crucial role in the definition of interactive proofs.

Type
Chapter
Information
Computational Complexity
A Modern Approach
, pp. 402 - 420
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Derandomization
  • Sanjeev Arora, Princeton University, New Jersey, Boaz Barak, Princeton University, New Jersey
  • Book: Computational Complexity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804090.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Derandomization
  • Sanjeev Arora, Princeton University, New Jersey, Boaz Barak, Princeton University, New Jersey
  • Book: Computational Complexity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804090.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Derandomization
  • Sanjeev Arora, Princeton University, New Jersey, Boaz Barak, Princeton University, New Jersey
  • Book: Computational Complexity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804090.023
Available formats
×