Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-15T21:39:19.365Z Has data issue: false hasContentIssue false

4 - Univariate DEB models

Published online by Cambridge University Press:  05 June 2012

Bas Kooijman
Affiliation:
Vrije Universiteit, Amsterdam
Get access

Summary

This chapter discusses the fluxes of compounds in univariate deb models (one type of substrate, one reserve and one structure). Univariate deb models follow directly from the assumptions of Table 2.4 for the standard deb model, but the assumption of isomorphy is no longer used.

Figure 4.16 shows the example of Klebsiella which lives on glycerol. It must have many, rather than a single reserve. Multiple reserve systems, which are discussed in the next chapter, can behave as single reserve systems in the context of deb theory, if growth is limited by a single nutrient and all rejected reserve fluxes are excreted.

I start with a more detailed discussion of phenomena at varying food densities, followed by effects of changes in shape during growth. The rest of the chapter discusses mass and energy aspects that are implied by the assumptions of Table 2.4 and show, for instance, why the fluxes of essential compounds, as well as the dissipating heat, are weighted sums of the three basic powers assimilation, dissipation and growth. Therefore, dissipating heat can also be written as a weighted sum of three mineral fluxes: carbon dioxide, dioxygen and nitrogenous waste. This relationship is the basis of the method of indirect calorimetry. After half a century of wide application, this empirical method has finally been underpinned theoretically. Simple extensions of univariate deb models can deal with drinking by terrestrial organisms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Univariate DEB models
  • Bas Kooijman, Vrije Universiteit, Amsterdam
  • Book: Dynamic Energy Budget Theory for Metabolic Organisation
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511805400.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Univariate DEB models
  • Bas Kooijman, Vrije Universiteit, Amsterdam
  • Book: Dynamic Energy Budget Theory for Metabolic Organisation
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511805400.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Univariate DEB models
  • Bas Kooijman, Vrije Universiteit, Amsterdam
  • Book: Dynamic Energy Budget Theory for Metabolic Organisation
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511805400.005
Available formats
×