Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-04T02:09:44.228Z Has data issue: false hasContentIssue false

2 - Isolated Spherically Symmetric Droplet Vaporization and Heating

Published online by Cambridge University Press:  05 June 2012

William A. Sirignano
Affiliation:
University of California, Irvine
Get access

Summary

There is interest in the droplet-vaporization problem from two different aspects. First, we wish to understand the fluid-dynamic and -transport phenomena associated with the transient heating and vaporization of a droplet. Second, but just as important, we must develop models for droplet heating, vaporization, and acceleration that are sufficiently accurate and simple to use in a spray analysis involving so many droplets that each droplet's behavior cannot be distinguished; rather, an average behavior of droplets in a vicinity is described. We can meet the first goal by examining both approximate analyses and finite-difference analyses of the governing Navier–Stokes equations. The second goal can be addressed at this time with only approximate analyses because the Navier–Stokes resolution for the detailed flow field around each droplet is too costly in a practical spray problem. However, correlations from Navier–Stokes solutions provide useful inputs into approximate analyses. The models discussed herein apply to droplet vaporization, heating, and acceleration and to droplet condensation, cooling, and deceleration for a droplet isolated from other droplets. The governing partial differential equations reflecting the conservation laws are presented in Appendix A. Several coordinate systems are considered. Formulations with primitive velocity variables and formulations with stream functions are discussed. Appendix B discusses some conserved scalar variables whose analytical use can be very convenient and powerful under certain ideal conditions.

Introductory descriptions of vaporizing droplet behavior can be found in the works of Chigier (1981), Clift et al. (1978), Glassman (1987), Kanury (1975), Kuo (1986), Lefebvre (1989), and Williams (1985).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×