Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-29T03:20:26.111Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2013

Frank D. Stacey
Affiliation:
CSIRO Division of Exploration and Mining, Australia
Paul M. Davis
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Physics of the Earth , pp. 496 - 513
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, R. E. and Brune, J. N., 1994, Evidence for a constant b-value above magnitude 0 in the southern San Andreas, San Jacinto and San Miguel fault zones, and the Long Valley caldera, California. Geophys. Res. Lett. 21: 1647–1650.Google Scholar
Abercrombie, R. and Leary, P., 1993, Source parameters of small earthquakes recorded at 2.5 km depth, Cajon Pass, southern California: implications for earthquake scaling. Geophys. Res. Lett. 20: 1511–1514.Google Scholar
Abercrombie, R. E. and Rice, J. R., 2005, Can observations of earthquake scaling constrain slip weakening? Geophys. J. Int. 162: 406–426.Google Scholar
Acton, G., Yin, Q. -Z., Verosub, K. L., Jovane, L., Roth, A., Jacobsen, B. and Ebel, D. S., 2007, Micromagnetic coercivity distributions and interactions in chondrules with implications for paleointensities of the early Solar System. J. Geophys. Res. 112: B03S90. doi: 10.1029/2006JB004655.Google Scholar
Aharonson, O., Zuber, M. T. and Solomon, S. C., 2004, Crustal remanence in an internally magnetized non uniform shell: a possible source for Mercury's magnetic field. Earth Planet. Sci. Lett. 218: 261–268.Google Scholar
Ahrens, T. J., ed., 1995a, A Handbook of Physical Constants, 1: Global Earth Physics. Washington: AGU.
Ahrens, T. J., ed., 1995b, A Handbook of Physical Constants, 2: Mineral Physics and Crystallography. Washington: AGU.
Ahrens, T. J., ed., 1995c, A Handbook of Physical Constants, 3: Rock Physics and Phase Relations. Washington: AGU.
Aki, K., 1969, Analysis of the seismic coda of local earthquakes as scattered waves. J. Geophys. Res. 74: 615–631.Google Scholar
Aki, K. and Richards, P. G., 2002, Quantitative Seismology, second edn. Sausalito, CA: Science Books.
Alfè, D., Gillan, M. J. and Price, G. D., 2002, Composition and temperature of the Earth's core constrained by combining ab initio calculations and seismic data. Earth Plan. Sci. Lett. 195: 91–98.Google Scholar
Alfvén, H., 1954, The Origin of the Solar System. Oxford: Clarendon Press.
Allègre, C. J., Poirier, J.-P. Humber, E. and Hofmann, A. W., 1995, The chemical composition of the Earth. Earth Plan. Sci. Lett. 134: 515–526.Google Scholar
Allen, C. W., 1973, Astrophysical quantities, third edn. London: Athlone Press.
Alterman, Z., Jarosch, H., and Pekeris, C. L., 1959, Oscillations of the Earth. Proc. Roy. Soc. Lond. A 252: 80–95.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F. and Michel, F. V., 1980, Extraterrestrial cause of the Cretaceous–Tertiary extinction. Science 208: 1095–1108.Google Scholar
Anders, E., 1964, Origin, age and composition of meteorites. Space Sci. Rev. 3: 583–714.Google Scholar
Anderson, E. M., 1905, Dynamics of faulting. Trans. Edinburgh Geol. Soc. 8: 387–402.Google Scholar
Anderson, E. M., 1936, The dynamics of the formation of cone-sheets, ring-dykes, and caldron-subsidences, Proc. Roy. Soc. Edin. 56: 128–156.Google Scholar
Anderson, J. D., Laing, P. A., Lau, E. L., Liu, A. S., Nieto, M. M. and Turyshev, S. G., 1998, Indication, from Pioneer 10/11, Galileo, and Ulysses data of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 81: 2858–2861.Google Scholar
Anderson, O. L., 1995, Equations of State of Solids for Geophysics and Ceramic Science. New York: Oxford University Press.
Anderson, O. L. and Isaak, D. G., 1995, Elastic constants of minerals at high temperature. In Ahrens (1995b), pp. 64–97.
Anderson, O. L. and Zou, K., 1990, Thermodynamic functions and properties of MgO at high compression and high temperature. J. Phys. Chem. Ref. Data 19: 69–83.Google Scholar
Aoyama, Y. and Naito, I., 2001, Atmospheric excitation of the Chandler wobble, 1983–1998. J. Geophys. Res. 106: 8941–8954.Google Scholar
Archer, C. L. and Jacobson, M. Z., 2005, Evaluation of global wind power. J. Geophys. Res. 110: d12110, doi:10.1029/2004JD005462.Google Scholar
Atkinson, B. K., 1982, Subcritical crack propagation in rocks: theory, experimental results and applications. J. Struct. Geol. 4: 41–56.Google Scholar
Balling, R. C. and Cerveny, R. S., 1995, Impact of lunar phase on the timing of global and latitudinal tropospheric temperature maxima. Geophys. Res. Lett. 22(23): 3199–3201.Google Scholar
Bard, B., Hamelin, B., Fairbanks, R. G. and Zindler, A., 1990, Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345: 405–410.Google Scholar
Barton, C. E., 1989, Geomagnetic secular variation: direction and intensity. In James (1989), pp. 560–577.
Bass, J. D., 1995, Elasticity of minerals, glasses and melts. In Ahrens (1995b), pp. 45–63.
Benz, H. M. and Vidale, J. E., 1993, Sharpness of upper-mantle discontinuities determined from high-frequency reflections. Nature 365: 147–150.Google Scholar
Berger, A., 1988, Milankovitch theory and climate. Rev. Geophys. 26: 624–657.Google Scholar
Berger, A. and Loutre, M. F., 1992, Astronomical solutions for paleoclimate studies over the last 3 million years. Earth Plan. Sci. Lett. 111: 369–382.Google Scholar
Bernatowicz, T. J. and Walker, R. M., 1997, Ancient stardust in the laboratory. Physics Today December 1997: 26–32.Google Scholar
Bi, Y., Tan, H. and Jin, F., 2002, Electrical conductivity of iron under shock compression up to 200GPa. J. Phys. Condensed Matter 14; 10849–10854.Google Scholar
Bina, C. R. and Helffrich, G. R., 1994, Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res. 99: 15853–15860.Google Scholar
Birch, F., 1952, Elasticity and constitution of the Earth's interior. J. Geophys. Res. 57: 227–286.Google Scholar
Bird, P., 1978, Finite element modelling of lithosphere deformation: the Zagros collision orogeny. Tectonophysics 50: 307–336.Google Scholar
Bird, P., 1998, Testing hypotheses on plate driving mechanisms with global lithosphere models including topography, thermal structure and faults. J. Geophys. Res. 103(B5): 10115–10129.Google Scholar
Bird, P., 2003, An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems 4(3): 1027. doi: 10.1029/2002GLO16002.Google Scholar
Bird, P. and Kagan, Y. Y., 2004, Plate-tectonic analysis of shallow seismicity; apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bull. Seism. Soc. Am. 94: 2380–2399.Google Scholar
Blackett, P. M. S., 1952, A negative experiment relating to magnetism and the Earth's rotation. Phil. Trans. Roy. Soc. Lond. A245: 309–370.Google Scholar
Bloxham, J., 2002, Time-independent and time-dependent behaviour of high-latitude flux bundles at the core–mantle boundary. Geophys. Res. Lett. 29(18), doi:10.1029/2001GLO14543.Google Scholar
Bloxham, J., Gubbins, D. and Jackson, A., 1989, Geomagnetic secular variation. Phil. Trans. Roy. Soc. Lond. A329: 415–502.Google Scholar
Blyth, A. E., Burbank, D. W., Farley, K. A. and Fielding, E. J., 2000, Structural and topographic evolution of the central Transverse Ranges, California, from apatite fission track, (U-Th)/He and digital elevation model analyses. Basin Research 12: 97–114.Google Scholar
Boehler, R., 1993, Temperatures in the Earth's core from melting point measurements of iron at high static pressures. Nature 363: 534–536.Google Scholar
Boehler, R., 2000, High pressure experiments and the phase diagram of lower mantle and core materials. Rev. Geophys. 38: 221–245.Google Scholar
Boness, D. A., Brown, J. M. and McMahan, A. K., 1986, The electronic thermodynamics of iron under Earth's core conditions. Phys. Earth Planet. Inter. 42: 227–240.Google Scholar
Bonner, J. L., Blackwell, D. D. and Herrin, E. T., 2003, Thermal constraints on earthquake depths in California. Bull. Seism. Soc. Am. 93: 2333–2354.Google Scholar
Born, M. and Wolf, E., 1965, Principles of Optics. Oxford: Pergamon.
Boschi, L. and Dziewonski, A. M., 2000, Whole Earth tomography from delay times of P, PcP, PKP phases: lateral heterogeneities in the outer core, or radial anisotropy in the mantle? J. Geophys. Res. 105: 25567–25594.Google Scholar
Bottke, W. F., Vokrouhlický, D., Rubincam, D. P. and Nesvorný, D., 2005, The Yarkovsky and YORP effects: implications for asteroid dynamics. Ann. Rev. Earth Plan. Sci. 34: 157–191.Google Scholar
Bouhifd, M. A., Gautron, L., Bolfan-Casanova, N., Malavergne, V., Hammouda, T., Andrault, D. and Jephcoat, A. P., 2007, Potassium partitioning into molten iron alloys at high pressure: implications for Earth's core. Phys. Earth Planet. Inter. 160: 22–33.Google Scholar
Bowman, D. D. and King, G. C. P., 2001, Accelerating seismicity and stress accumulation before large earthquakes, Geophys. Res. Lett. 28: 4039–4042.Google Scholar
Boyet, M. and Carlson, R. W., 2005, Nd evidence for early (> 4.53 Ga) global differentiation of the silicate earth. Science 309: 5756–580.Google Scholar
Braginsky, S. I., 1991, Towards a realistic theory of the geodynamo. Geophys. Astrophys. Fluid Dyn. 60: 89–134.Google Scholar
Braginsky, S. I., 1993, MAC-oscillations of the hidden ocean of the core. J. Geomag. Geoelect. 45: 1517–1538.Google Scholar
Braginsky, S. I., 1999, Dynamics of the stably stratified ocean at the top of the core. Phys. Earth Plant. Inter. 111: 21–34.Google Scholar
Braginsky, S. I. and Roberts, P. H., 1995, Equations governing convection in the Earth's core and the geodynamo. Geophys. Astrophys. Fluid Dynam. 79: 1–97.Google Scholar
Brennan, B. J. and Smylie, D. E., 1981, Linear viscoelasticity and dispersion in seismic wave propagation. Rev. Geophys. Space Phys. 19: 233–246.Google Scholar
Bridgman, P. W., 1914, A complete collection of thermodynamic formulas. Phys. Rev. 3: 273–281.Google Scholar
Bridgman, P. W., 1957, Effects of pressure on binary alloys, V and VI. Proc. Am. Acad. Arts Sci. 84: 131–216.Google Scholar
Brown, M. E., Trujillo, C. and Rabinowitz, D., 2004, Discovery of a candidate inner Oort cloud planetoid. Astrophys. J. 617: 645–649.Google Scholar
Brown, M. E., Trujillo, C. and Rabinowitz, D., 2005, Discovery of a planetary-sized object in the scattered Kuiper belt. Astrophys. J. 635: L97–L100.Google Scholar
Brune, J. N., 1968, Seismic moment, seismicity, and rate of slip along major fault zones. J. Geophys. Res. 83: 777–784.Google Scholar
Brune, J. N., 1970, Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75: 4997–5009.Google Scholar
Budner, D. and Cole-Dai, J., 2003, The number and magnitude of large explosive volcanic eruptions between 904 and 1865AD: quantitative evidence from a new South Pole ice core. In Robock, C. and Oppenheimer, C. (eds.), 2003, Volcanism and the Earth's Atmosphere. Washington: American Geophysical Union, pp. 165–176.
Buffett, B. A., 1992, Constraints on magnetic energy and mantle conductivity from the forced nutations of the Earth. J. Geophy. Res. 97: 19581–19597.Google Scholar
Buffett, B. A., 1996, A mechanism for decade fluctuations in the length of day. Geophys. Res. Lett. 23: 3803–3806.Google Scholar
Buffett, B. A., 1997, Geodynamic estimates of the viscosity of the Earth's inner core. Nature 388: 571–573.Google Scholar
Bukowinsky, M. S. T. and Knopoff, L., 1977, Physics and chemistry of iron and potassium. In Manghnani, M. H. and Akimoto, S. (eds.), 1977, High Pressure Research: Applications in Geophysics. New York: Academic Press.
Bullard, E. C., Everett, J. E. and Smith, A. G., 1965, The fit of the continents around the Atlantic. Phil. Trans. Roy. Soc. Lond. A258: 41–51.Google Scholar
Bullard, E. C., Freedman, C., Gellman, H. and Nixon, J., 1950, The westward drift of the Earth's magnetic field. Phil. Trans. Roy. Soc. Lond. A243: 67–92.Google Scholar
Bullard, E. C. and Gellman, H, 1954, Homogeneous dynamos and geomagnetism. Phil. Trans. Roy. Soc. Lond. A247: 213–255.Google Scholar
Bullen, K. E., 1975, The Earth's Density. London: Chapman and Hall.
Bullen, K. E. and Bolt, B. A., 1985, An Introduction to the Theory of Seismology. Cambridge: Cambridge University Press.
Burchfield, J. D., 1975, Lord Kelvin and the Age of the Earth. New York: Science History Publications.
Busse, F. H., 2002, Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids 14: 1301–1314.Google Scholar
Byerlee, J. D., 1978, Friction in rocks. Pure Appl. Geophys. 116: 615–626.Google Scholar
Cagniard, L., 1939, Réflexion et réfraction des ondes séismique progressives. Paris: Gauthier-Villard.
Cagniard, L., 1962, Reflection and Refraction of Progressive Seismic Waves. Translation by E. A. Flinn and C. H. Dix. New York: McGraw-Hill.
Cain, J. C., Wang, Z., Schmitz, D. R. and Meyer, J., 1989, The geomagnetic model spectrum for 1980 and core–crustal separation. Geophys. J. Int. 97: 443–447.Google Scholar
Cande, S. and Kent, D. V., 1995, Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100: 6093–6095.Google Scholar
Canup, R. M. and Asphaug, E., 2001, Origin of the Moon in a giant impact near the end of the Earth's formation. Nature 412: 708–712.Google Scholar
Carlson, R. W., Hilde, T. W. C. and Uyeda, S., 1983, The driving mechanism of plate tectonics: relation to the age of the lithosphere at trenches. Geophys. Res. Lett. 10: 297–300.Google Scholar
Carter, W. E., 1989, Earth orientation. In James (1989), pp. 231–239.
Cazenave, A., 1995, Geoid, topography and distribution of landforms. In Ahrens (1995a), pp. 32–39.
Chambat, F. and Valette, B., 2005, Earth gravity up to second order in topography and density. Phys. Earth Planet. Inter. 151: 89–106.Google Scholar
Chao, B. F., 1995, Anthropogenic impact on global geodynamics due to reservoir water impoundment. Geophys. Res. Lett. 22: 3529–3532.Google Scholar
Chao, B. F., Au, A. Y., Boy, J.-P. and Cox, C. M., 2003, Time-variable gravity signal of an anomalous redistribution of water mass in the extratropic Pacific during 1998–2002. Geochem. Geophys. Geosyst. 4 (11):1096, doi:10.1029/2003GG000589.Google Scholar
Chao, B. F., Rodenburg, E., Sahagian, D. L., Jacobs, D. K. and Schwartz, F. W., 1994, Man made lakes and sea level rise. Nature 370: 258.Google Scholar
Chapman, S. and Bartels, J., 1940, Geomagnetism. London: Oxford University Press.
Chow, T. J. and Patterson, C. C., 1962, The occurrence and significance of lead isotopes in pelagic sediments. Geochim. Cosmochim. Acta 26: 263–308.Google Scholar
Christodoulidis, D. C., Smith, D. E., Williamson, R. G. and Klosko, S. M., 1988, Observed tidal braking in the Earth/Moon/Sun system. J. Geophys. Res. 93: 6216–6236.Google Scholar
Clark, S. P., 1957, Radiative transfer in the Earth's mantle. Trans. Am. Geophys. Un. 38: 931–938.Google Scholar
Clauser, C. and Huenges, E., 1995, Thermal conductivity of rocks and minerals. In Ahrens (1995c), pp. 105–126.
Clayton, R. N., 2002, Self-shielding in the solar nebula. Nature 415; 860–861.Google Scholar
Coblentz, D. D., Zhou, S., Hillis, R. R., Richardson, R. M. and Sandiford, M., 1998, Topography, boundary forces, and the Indo-Australian intraplate stress field. J. Geophys. Res. 103(B1): 919–931.Google Scholar
Cohen, B. A., Swindle, T. D. and Kring, D. A., 2000, Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290: 1754–1756.Google Scholar
Connerney, J. E. P. et al. (10 authors), 1999, Magnetic lineations in the ancient crust of Mars. Science 284; 794–798.Google Scholar
Constable, C. G. and Parker, R. L., 1988, Statistics of the secular variation for the past 5 my. J. Geophys. Res. 93: 11569–11581.Google Scholar
Courboulex, F., Singh, S. K., Pacheco, F. and Ammon, C. J., 1997, The 1995 Colima-Jalisco, Mexico, earthquake (Mw8): a study of the rupture process. Geophy. Res. Lett. 24(9): 1019–1022.Google Scholar
Courtillot, V., 1999, Evolutionary Catastrophes: the Science of Mass Extinction. Cambridge: Cambridge University Press.
Courtillot, V. and LeMouël, J. L., 1984, Geomagnetic secular variation impulses. Nature 311: 709–716.Google Scholar
Cox, A., 1973, Plate Tectonics and Geomagnetic Reversals. San Francisco: W. H. Freeman.
Cox, A., Doell, R. R. and Dalrymple, G. B., 1963, Geomagnetic polarity epochs and pleistocene geochronometry. Nature 198: 1049–1051.Google Scholar
Cox, A. and Hart, R. B., 1986, Plate Tectonics: How it Works. Palo Alto: Blackwell Scientific Publications.
Cox, C. M. and Chao, B. F., 2002, Detection of a large scale mass redistribution in the terrestrial system since 1998. Science 297: 831–833.Google Scholar
Crampin, S., 1977, A review of the effects of anisotropic layering on the propagation of seismic waves. Geophys. J. R. Astr. Soc. 49: 9–27.Google Scholar
Creager, K. C., 1997, Inner core rotation from small scale heterogeneity and time-varying travel times. Science 278: 1284–1288.Google Scholar
Creer, K. M. and Tucholka, P., 1982, Secular variation as recorded in lake sediments: a discussion of North American and European results. Phil. Trans. Roy. Soc. Lond A306: 87–102.Google Scholar
Curie, P., 1894, Sur la symétrie dans les phénomènes physiques, symétrie d'un champ electrique et d'un champ magnétique. J. de Phys. (Paris) 3: 393–415.Google Scholar
Dahlen, F. A., Hung, S.-H. and Nolet, G., 2000, Fréchet kernels for finite-frequency traveltimes – I. Theory. Geophys. J. Int. 141: 157–174.Google Scholar
Dahlen, F. A. and Tromp, J., 1998, Theoretical Seismology. Princeton: Princeton University Press.
Dainty, A. M., 1990, Studies of coda using array and three-component processing. Pure Appl. Geoph. 132: 221–244.Google Scholar
Dainty, A., 1995, The influence of seismic scattering on monitoring. In Husebye, E. S. and Dainty, A. (eds.), Monitoring a Comprehensive Test Ban Treaty. Dordrecht: Kluwer, pp. 663–688.
Dalrymple, G. B. and Ryder, G., 1993, 40Ar/39Ar age spectra of Apollo 15 impact melt rocks by laser step-heating and their bearing on the history of lunar basin formation. J. Geophys. Res. 98(E7): 13085–13096.Google Scholar
Dalrymple, G. B. and Ryder, G., 1996, Argon-40/argon-39 age spectra of Apollo 17 highlands breccia samples by laser step heating and the age of the Serenitatis basin. J. Geophys. Res. 101(E11): 26069–26084.Google Scholar
Das, S., 1981, Three-dimensional spontaneous rupture propagation and implications for the earthquake source mechanism. Geophys. J. Roy. Astr. Soc. 67: 375–393.Google Scholar
Davis, D., Suppe, J. and Dahlen, F. A., 1983, Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 88: 1153–1172.Google Scholar
Davis, P. M., 1983, Surface deformation associated with a dipping hydrofracture. J. Geophys. Res. 88: 5826–5833.Google Scholar
Davis, P. M., 1986, Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space with reference to Kilauea volcano, Hawaii. J. Geophys. Res. 91: 7429–7430.Google Scholar
Davis, P. M., 2003, Azimuthal variation in seismic anisotropy of the Southern California uppermost mantle. J. Geophys. Res. 108(B1): 2052. doi10.1029/2001JB000637,2003.Google Scholar
Davis, P. M., Rubenstein, J. L., Liu, K. H., Gao, S. S. and Knopoff, L., 2000, Northridge earthquake damage caused by geologic focusing of seismic waves. Science 289: 1746–1750.Google Scholar
Dearden, E. W., 1995, Expansion formulae for first order partial derivatives of thermal variables. Eur. J. Phys. 16: 76–79.Google Scholar
Degens, E. T. and Ross, D. A. (eds.), 1969, Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer.
Dehant, V., Creager, K. C., Karato, S. -I. and Zatman, S. (eds.), 2003, Earth's Core: Dynamics, Structure, Rotation. Geodynamics Series 31. Washington: American Geophysical Union.
DeHoop, A. T., 1960, Modification of Cagniard's method for solving seismic pulse problems. Appl. Sci. Res. B8: 349–356.Google Scholar
DeMets, C., Gordon, R. G., Argus, D. F. and Stein, S., 1990, Current plate motions. Geophys. J. Int. 101: 425–478.Google Scholar
DeMets, C., Gordon, R. G., Argus, D. F. and Stein, S., 1994, Effect of recent revisions of the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 21: 2191–2194.Google Scholar
DePaolo, D. J., 1981, Nd isotopic studies: some new perspectives on Earth structure and evolution. EOS (Trans. Am. Geophys. Un.) 62: 137–140 (April 7, 1981).Google Scholar
Deuss, A. and Woodhouse, J., 2001, Seismic observations of splitting of the mid-transition zone discontinuity in Earth's mantle. Science 294: 354–357.Google Scholar
Deuss, A., Woodhouse, J. H., Paulssen, H. and Trampert, J., 2000, The observation of inner core shear waves. Geophys. J. Int. 142: 67–73.Google Scholar
Dieterich, J. H., 1979a, Modeling of rock friction 1, experimental results and constitutive equations. J. Geophys. Res. 84: 2161–2168.Google Scholar
Dieterich, J. H., 1979b, Modeling of rock friction 2, simulation of preseismic slip. J. Geophys. Res. 84: 2169–2175.Google Scholar
Dieterich, J., 1994, A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99: 2601–2618.Google Scholar
Dobson, D. P., 2002, Self-diffusion in liquid Fe at high pressure. Phys. Earth Planet. Inter. 130: 271–284.Google Scholar
Dobson, D. P. and Brodholt, J. P., 2000, The electrical conductivity and thermal profile of the Earth's mid mantle. Geophys. Res. Lett. 27: 2325–2328.Google Scholar
Doornbos, D. J. 1974, The anelasticity of the inner core. Geophys. J. R. Astron. Soc. 38: 397–415.Google Scholar
Doornbos, D. J., 1992, Diffraction and seismic tomography. Geophys. J. Int. 108: 256–266.Google Scholar
Doornbos, D. J. and Hilton, T., 1989, Models of the core–mantle boundary and the travel times of internally reflected core phases. J. Geophys. Res. 94: 15741–15751.Google Scholar
Dragert, H. K., Wang, K. and James, T. S., 2001, A silent slip event on the deeper Cascadia subduction interface, Science 292: 1525–1528.Google Scholar
Duffield, W. A., 1972, A naturally occurring model of global plate tectonics. J. Geophys. Res. 77: 2543–2555.Google Scholar
Dugdale, J. S. and MacDonald, D. K. C., 1953, Thermal expansion of solids. Phys. Rev. 89: 832–834.Google Scholar
Dunlop, D. J. and Özdemir, Ö., 1997, Rock Magnetism: Fundamentals and Frontiers. Cambridge: Cambridge University Press.
Dwight, H. B., 1961, Tables of Integrals and Other Mathematical Data, fourth edn. New York: MacMillan.
Dziewonski, A. M., 1984, Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res. 89: 5929–5952.Google Scholar
Dziewonski, A. M. and Anderson, D. L., 1981, Preliminary reference Earth model. Phys. Earth Planet. Inter. 25: 297–356.Google Scholar
Dziewonski, A. M., Chou, T.-A. and Woodhouse, J. H., 1981, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 86: 2825–2852.Google Scholar
Earle, P. S. and Shearer, P. M., 2001, Observations of PKKP precursors used to estimate small scale topography on the core–mantle boundary. Science 277: 667–670.Google Scholar
Eaton, J. P., Richter, D. H. and Ault, W. U., 1961, The tsunami of May 3, 1960, on the island of Hawaii. Bull. Seism. Soc. Am. 51: 135–157.Google Scholar
Ekman, M., 1993, A concise history of the theories of tides, precession-nutation and polar motion (from antiquity to 1950). Surveys in Geophys. 14: 585–617.Google Scholar
Eldridge, J. S., O'Kelly, G. D. and Northcutt, K. J., 1974, Primordial radioelement concentrations in rocks from the Taurus-Littrow. Proc. Fifth Lunar Conference (Suppl. 5, Geochim. Cosmochim. Acta) 2: 1025–1031.Google Scholar
Elsasser, W. M., 1978, Memoirs of a Physicist in the Atomic Age. New York: Science History Publications and Bristol: Adam Hilger.
Eshelby, J. D., 1973, Dislocation theory for geophysical applications. Phil. Trans. Roy. Soc. Lond A274: 331–338.Google Scholar
Eymin, C. and Hulot, G., 2005, On core surface flows inferred from satellite magnetic data. Phys. Earth Planet. Inter. 152: 200–220.Google Scholar
Falzone, A. J. and Stacey, F. D., 1980, Second order elasticity theory: explanation for the high Poisson's ratio of the inner core. Phys. Earth Planet. Inter. 21: 371–377.Google Scholar
Farley, K. A., Vokrouhlický, D., Bottke, W. F. and Nesvorný, D., 2006, A late Miocene dust shower from the break-up of an asteroid in the main belt. Nature 439: 295–297.Google Scholar
Fearn, D. R. and Loper, D. E., 1981, Compositional convection and stratification of the Earth's core. Nature 289: 393–394.Google Scholar
Fegley, B., 1995, Properties and composition of the terrestrial oceans and of the atmospheres of the Earth and other planets. In Ahrens (1995a). pp. 320–345.
Felzer, K. R. and Brodsky, E. E., 2006, Decay of aftershock density with distance indicates triggering by dynamic stress. Nature 411: 735–738.Google Scholar
Fisher, D. E., 1975, Trapped helium and argon and the formation of the atmosphere by degassing. Nature 256: 113–114.Google Scholar
Fitzgerald, R., 2003, Isotope measurements firm up knowledge of Earth's formation. Physics Today January 2003: 16–18.Google Scholar
Flanagan, M. P. and Shearer, P. M, 1998, Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. J. Geophys. Res. 103: 2673–2692.Google Scholar
Fleischer, R. L., Naeser, C. W., Price, P. B., Walker, R. M. and Maurette, M., 1965, Cosmic ray exposure ages of tektites by the fission track technique. J. Geophys. Res. 70: 1491–1496.Google Scholar
Forsyth, D. W., 1975, The early structural evolution and anisotropy of the oceanic upper mantle. Geophys. J. R. Astr. Soc. 43: 103–162.Google Scholar
Forte, A. M. and Mitrovica, J. X., 2001, Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 410: 1049–1056.Google Scholar
Fowler, W. A., 1961, Rutherford and nuclear cosmo-chronology. Proc. Rutherford Jubilee Intern. Conf., ed. Birks, J. B., pp. 640–676. London: Heywood.
Furumura, T. and Kennett, B. L. N., 2005, Subduction zone guided waves and the heterogeneity structure of the subducted plate. J. Geophys. Res. 110: B10302, doi:10.1029/2004JB003486.Google Scholar
Gessman, C. K. and Wood, B. J., 2002, Potassium in the Earth's core? Earth Plan. Sci. Lett. 200: 63–78.Google Scholar
Gillet, P., Richet, P., Guyot, F. and Fiquet, G., 1991, High temperature thermodynamic properties of forsterite. J. Geophys. Res. 96: 11805–11816.Google Scholar
Gilvarry, J. J., 1956, The Lindemann and Grüneisen laws. Phys. Rev. 102: 308–316.Google Scholar
Glatzmaier, G. A. and Roberts, P. H., 1995a, A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter. 91: 63–75.Google Scholar
Glatzmaier, G. A. and Roberts, P. H., 1995b, A three-dimensional self consistent computer simulation of a geomagnetic field reversal. Nature 377: 203–209.Google Scholar
Glatzmaier, G. A. and Roberts, P. H., 1996, Rotation and magnetism of the Earth's inner core. Science 274: 1887–1891.Google Scholar
Goldstein, J. I. and Ogilvie, R. E., 1965, A re-evaluation of the iron-rich portion of the Fe-Ni system. Trans. Metall. Soc. AIME 233: 2083–2087.Google Scholar
Goncharov, A. F., Struzhkin, V. V. and Jacobsen, S. D., 2006, Reduced radiative conductivity of low-spin (Mg, Fe)O in the lower mantle. Science 312: 1205–1208.Google Scholar
Gordon, A. H., 1994, Weekdays warmer than weekends. Nature 367: 325–326.Google Scholar
Gough, D. I. and Gough, W. I., 1970, Stress and deflection in the lithosphere near Lake Kariba. Geophys. J. Roy. Astron. Soc. 21: 65–78.Google Scholar
Gradstein, F. M. et al. (40 authors), 2005, A Geologic Time Scale 2004. Cambridge: Cambridge University Press. (www.stratigraphy.org/gts.htm).
Grand, S. P. 2001, The implications for mantle flow from global seismic tomography. In Integrated models of Earth structure and evolution, AGU Virtual Spring Meeting, 20 June 2001. (www.agu.org/meetings/umeeting/.)
Grand, S. P., Hilst, R. D. and Widiyantoro, S., 1997, Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7: 1–7.Google Scholar
Gray, C. M., Papanastassiou, D. A. and Wasserburg, G. J., 1973, The identification of early condensates from the solar nebula. Icarus 20: 213–239.Google Scholar
Gross, R. S., 2000, The excitation of the Chandler wobble. Geophys. Res. Lett. 27: 2329–2332.Google Scholar
Gross, R. S., 2001, A combined length-of-day series spanning 1832–1997: LUNAR97. Phys. Earth Planet. Inter. 123: 65–76.Google Scholar
Gubbins, D., 1977, Energetics of the Earth's core. J. Geophys. 43: 453–464.Google Scholar
Gubbins, D., 1994, Geomagnetic polarity reversals: a connection with secular variation and core–mantle interaction? Rev. Geophys. 32: 61–83.Google Scholar
Gubbins, D., 2003, Thermal core–mantle interactions: theory and observations. In Dehant et al. (2003), pp. 163–179.
Gung, Y. C. and Romanowicz, B., 2004, Q tomography of the upper mantle using three component long period waveforms. Geophys. J. Int. 157: 813–830.Google Scholar
Gutenberg, B. and Richter, C. F., 1941, Seismicity of the Earth. Geol. Soc. Am. Spec. Pap. 34: 1–131.Google Scholar
Haak, V. and Jones, A. G., 1997, Introduction to special section: the KTB deep drill hole. J. Geophys. Res. 102(B8): 18175–18177.Google Scholar
Haddon, R. A. W., 1972, Corrugations on the CMB or transition layers between inner and outer cores? Trans. Am. Geophys. Un. 53: 600.Google Scholar
Haddon, R. A. W. and Cleary, J. R., 1974, Evidence for scattering of seismic PKP waves near the mantle–core boundary, Phys. Earth Planet. Int. 8: 211–234.Google Scholar
Haddon, R. A. W., Husebye, E. S. and King, D. W., 1977, Origins of precursors to PP. Phys. Earth Planet. Int. 14: 41–70.Google Scholar
Hager, B. H., 1984, Subducted slabs and the geoid: constraints on mantle rheology and flow. J. Geophys. Res. 89: 6003–6015.Google Scholar
Hager, B. H. and Richards, M. A., 1989, Long wavelength variations in the Earth's geoid: physical models and dynamical implications. Phil. Trans. Roy. Soc. Lond. A328: 309–327.Google Scholar
Hale, C. J., 1987, The intensity of the geomagnetic field at 3.5 Ga: paleointensity results from the Komati Formation, Barberton Mountain Land, South Africa. Earth Plan. Sci. Lett. 86: 354–364.Google Scholar
Halls, H. C., McArdle, N. J., Gratton, M. H. and Shaw, J., 2004, Microwave paleointensities from dyke chilled margins: a way to obtain long-term variations in geodynamo intensity for the last three billion years. Phys. Earth Planet. Inter. 147: 183–195.Google Scholar
Han, D. and Wahr, J., 1995, The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound. Geophys. J. Int. 120: 287–311.Google Scholar
Harrison, T. M., Blichert-Toft, J., Müller, W., Albarede, F., Holden, P. and Mojzsis, S. J., 2005, Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310: 1947–1950.Google Scholar
Hart, R., Hogan, L. and Dymond, J., 1985, The closed system approximation for evolution of argon and helium in the mantle, crust and atmosphere. Chem. Geol. (Isotope Geoscience Section) 52: 45–73.Google Scholar
Hartman, W. K., 2003, Megaregolith evolution and cratering cataclysm models – lunar cataclysm as a misconception (28 years later). Meteoritics and Planetary Science 38: 579–593.Google Scholar
Hasegawa, A., 1989, Seismicity: subduction zone. In James (1989), pp. 1054–1061.
Hasegawa, A., Zhao, D., Shuichiro, H., Yamamoto, A. and Horiuchi, S., 1991, Deep structure of the northeastern Japan arc and its relationship to seismic and volcanic activity. Nature 352: 683–689.Google Scholar
Hashin, Z. and Shtrikman, S., 1963, A variational approach to the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11: 127–140.Google Scholar
Haskell, N. A., 1935, The motion of a fluid under a surface load, 1, Physics 6: 265–269.Google Scholar
Haskell, N. A., 1969, Elastic displacements in the near-field of a propagating fault, Bull. Seism. Soc. Am. 59: 865–908.Google Scholar
Hayatsu, A. and Waboso, C. E., 1985, The solubility of rare gases in silicate melts and implications for K-Ar dating. Chem. Geology (Isotope Geoscience Section) 52: 97–102.Google Scholar
Hearn, E. H., 2003, What can GPS data tell us about the dynamics of post-seismic deformation? Geophys. J. Int. 155: 753–777.Google Scholar
Hedlin, M. A. H. and Shearer, P. M., 2000, An analysis of large-scale variations in small-scale mantle heterogeneity using global seismographic network recordings of precursors to PKP. J. Geophys. Res. 105: 13655–13673.Google Scholar
Heirtzler, J. R., LePichon, X. and Baron, J. G., 1966, Magnetic anomalies over the Reykjannes Ridge. Deep Sea Res. 13: 427–443.Google Scholar
Hellings, R. W., Adams, P. J., Anderson, J. D., Keesey, M. S., Lau, E. L. and Standish, E. M., 1983, Experimental test of the variability of G using Viking Lander ranging data. Phys. Rev. Lett. 51: 1609–1612.Google Scholar
Helmholtz, H., 1856, On the interaction of natural forces. Phil. Mag. 11: 489–578.Google Scholar
Henry, C. and Das, S., 2001, Aftershock zones of large shallow earthquakes: fault dimensions, aftershock area expansion and scaling relations. Geophys. J. Int. 147: 272–293.Google Scholar
Hess, H. H, 1964, Seismic anisotropy of the upper mantle under oceans. Nature 203: 629–631.Google Scholar
Hide, R., 1966, Free hydromagnetic oscillations of the Earth's core and the theory of the geomagnetic secular variation. Phil. Trans. Roy. Soc. Lond. A259: 615–650.Google Scholar
Hill, R., 1952, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A65: 349–354.Google Scholar
Hillgren, V. J. J., Schwager, B. and Boehler, R., 2005, Potassium as a heat source in the core? Metal–silicate partitioning of K and other metals. Eos (Trans. Am. Geophys. Un.) 86(52), Fall meeting abstract MR13A-0086.Google Scholar
Hirao, N., Ohtani, E., Kondo, T., Endo, N., Kuba, T., Suzuki, T. and Kikegawa, T., 2006, Partitioning of potassium between iron and silicate at the core-mantle boundary. Geophys. Res. Lett. 33: L08303. doi: 10:1029/2005GLO025324,2006.Google Scholar
Hollerbach, R. and Jones, C. A., 1995, On the magnetically stabilizing role of the Earth's inner core. Phys. Earth Planet. Inter. 87: 171–181.Google Scholar
Holme, R. and deViron, O., 2005, Geomagnetic jerks and a high resolution length-of-day profile. Geophys. J. Int. 160: 435–439.Google Scholar
Holmes, A., 1965, Principles of Physical Geology. London: Nelson.
Horton, B. K., 1999, Erosional control on the geometry and kinematics of the thrust belt development in the central Andes. Tectonics 18(6): 1292–1304.Google Scholar
Hsu, W., Wasserburg, G. J. and Huss, G. R., 2000, High time resolution by use of the 26Al chronometer in the multistage formation of a CAI. Earth Plan. Sci. Lett. 182: 15–29.Google Scholar
Hurley, P. M., Hughes, H., Faure, G., Fairbairn, H. W. and Pinson, W. H., 1962, Radiogenic strontium-87 model of continent formation, J. Geophys. Res. 67: 5315–5334.Google Scholar
Ide, S., Beroza, G. C., Prejean, S. G. and Ellsworth, W., 2003, Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. J. Geophys. Res. 108(B5): doi:10.1029/2001JB001617.Google Scholar
Isaak, D. G. and Masuda, K., 1995, Elastic and viscoelastic properties of α iron at high temperatures. J. Geophys. Res. 100: 17689–17698.Google Scholar
Ishii, M., Shearer, P. M., Houston, H. and Vidale, J. E., 2005, Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature 435: 933–936.Google Scholar
Ishikawa, Y. and Syono, Y., 1963, Order-disorder transformation and reverse thermoremanent magnetism in the FeTiO3–Fe2O3 system. J. Phys. Chem. Solids 24: 517–528.Google Scholar
Ita, J. and Stixrude, L., 1992, Petrology, elasticity, and composition of the mantle transition zone. J. Geophys. Res. 97: 6849–6866.Google Scholar
Jackson, D. D., Shen, Z.-K., Potter, D., Ge, X.-B. and Sung, L., 1997, Southern California deformation. Science 277: 1621–1622.Google Scholar
Jackson, I., Webb, S., Weston, L. and Boness, D., 2005, Frequency dependence of elastic wave speeds at high temperature: a direct experimental demonstration. Phys. Earth Planet. Inter. 148: 85–96.Google Scholar
Jackson, J. A. and White, N. J., 1989, Normal faulting in the upper continental crust: observations from regions of active extension. J. Struct. Geol. 11: 15–36.Google Scholar
Jaeger, J. C. and Cook, N. G., 1984, Fundamentals of Rock Mechanics, second edn. New York: Chapman and Hall.
James, D. E. (ed.), 1989, The Encyclopedia of Solid Earth Geophysics. New York: Van Nostrand-Reinhold.
Jeffreys, H., 1959, The Earth, its Origin, History and Physical Constitution, fourth edn. Cambridge: Cambridge University Press.
Johnston, M. J. S., Borcherdt, R. D., Linde, A. T. and Gladwin, M. T., 2006, Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M6.0 Parkfield, California, earthquake: implications for nucleation, fault response, earthquake prediction and tremor. Bull. Seism. Soc. Am. 96(4B): S56–S72.Google Scholar
Johnston, M. J. S. and Linde, A. T., 2002, Implications of crustal strain during conventional slow and silent earthquakes. In Lee, W., Kanamori, H., Jennings, P. and Kisslinger, C, International Handbook of Earthquake and Engineering Seismology, 81A: 589–605. London: Academic Press.
Jones, L. E., Mori, J. and Helmberger, D. V., 1992, Short-period constraints on the upper mantle discontinuities J. Geophys. Res. 97: 8765–8774.Google Scholar
Jones, G. M., 1977, Thermal interaction of the core and mantle and long term behaviour of the geomagnetic field. J. Geophys. Res. 82: 1703–1709.Google Scholar
Kagan, Y. Y., 1991, Seismic moment distribution. Geophys. J. Int. 106: 123–134.Google Scholar
Kagan, Y. Y. 2002a, Seismic moment distribution revisited: I. Statistical results. Geophys. J. Int. 148: 520–541.Google Scholar
Kagan, Y. Y. 2002b, Seismic moment distribution revisited: II. Moment conservation principle. Geophys. J. Int. 149: 731–754.Google Scholar
Kagan, Y. Y. and Jackson, D. D., 1994, Long-term probabilistic forecasting of earthquakes. J. Geophys. Res. 99: 13685–13700.Google Scholar
Kagan, Y. Y. and Jackson, D. D., 2000, Probabilistic forecasting of earthquakes. Int. J. Geophys. 143: 438–453.Google Scholar
Kagan, Y. Y. and Knopoff, L., 1987, Statistical short-term earthquake prediction. Science 236: 1563–1567.Google Scholar
Kamo, S. L., Czamanske, G. K., Amelin, Y., Fedorenko, V. A., Davis, D. W. and Trofimov, V. R., 2003, Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251Ma. Earth Plan. Sci. Lett. 214: 75–91.Google Scholar
Kanamori, H., 1977, The energy release in great earthquakes. J. Geophys. Res. 82: 2981–2987.Google Scholar
Kanamori, H. and Anderson, D. L., 1975, Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am. 65: 1073–1095.Google Scholar
Kanamori, H. and Brodsky, E. E., 2004, The physics of earthquakes. Rep. Prog. Phys. 67: 1429–1496.Google Scholar
Kaneshima, S. and Helffrich, G., 1999, Dipping low-velocity layer in the mid-lower mantle: evidence for geochemical heterogeneity. Science 283: 1888–1892.Google Scholar
Karato, S., 1993, Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20: 1623–1626.Google Scholar
Kaufmann, G. and Lambeck, K., 2000, Mantle dynamics, postglacial rebound and the radial viscosity profile. Phys. Earth Planet. Inter. 121: 301–324.Google Scholar
Kaula, W. M., 1968, An Introduction to Planetary Physics: the Terrestrial Planets. New York: Wiley.
Kawakatsu, H., 2006, Sharp and seismically transparent inner core boundary region revealed by an entire network observation of near vertical PKiKP. Earth Planets Space 58(7): 855–863.Google Scholar
Keane, A., 1954, An investigation of finite strain in an isotropic material subjected to hydrostatic pressure and its seismological applications. Australian J. Phys. 7: 322–333.Google Scholar
Keating, P. N., 1966, Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145: 637–645.Google Scholar
Keen, C. E. and Barrett, D. L., 1971, A measurement of seismic anisotropy in the Northeast Pacific. Can. J. Earth Sci. 8: 1056–1064.Google Scholar
Keilis-Borok, V., 2002, Earthquake prediction: state-of-the-art and emerging possibilities, Ann. Rev. Earth Planet. Sci. 30: 1–33.Google Scholar
Keldysh, M. V., 1977, Venus exploration with Venera 9 and Venera 10 spacecraft. Icarus 30: 605–625.Google Scholar
Kelvin, Lord (Thomson, William), 1862, On the age of the Sun's heat. Macmillan Mag. March 5, 1862, 349–368.Google Scholar
Kelvin, Lord (Thomson, William), 1863, On the secular cooling of the Earth. Phil. Mag. 25: 1–14.Google Scholar
Kennett, B. L. N., 1983, Seismic Wave Propagation in Stratified Media. Cambridge: Cambridge University Press.
Kennett, B. L. N. and Engdahl, E. R., 1991, Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 105: 429–465.Google Scholar
Kennett, B. L. N., Engdahl, E. R. and Buland, A., 1995, Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 122: 108–124.Google Scholar
Kennett, B. L. N., Widiyantoro, S. and Hilst, R. D., 1998, Joint seismic tomography for bulk-sound and shear wavespeed in the Earth's mantle. J. Geophys. Res. 103: 12469–12493.Google Scholar
Kent, D. V. and Smethurst, M. A., 1998, Shallow bias of magnetic inclinations in the Paleozoic and Precambrian. Earth Plan. Sci. Lett. 160: 391–402.Google Scholar
Kesson, S. E. and Fitzgerald, J. D., 1992, Partitioning of MgO, FeO, NiO, MnO and Cr2O3 between magnesian silicate perovskite and magnesiowustite; implications for the origin of inclusions in diamonds and the composition of the lower mantle. Earth Plan. Sci. Lett. 111: 229–240.Google Scholar
Kieffer, S. W., Getting, I. C. and Kennedy, G. C., 1976, Experimental determination of the thermal diffusivity of teflon, sodium chloride, quartz and silica. J. Geophys. Res. 81: 3018–3024.Google Scholar
King, C., 1893, The age of the Earth. Am. J. Science 45: 1–20.Google Scholar
King, S. D., 2002, Geoid and topography over subduction zones: the effect of phase transformations. J. Gephys. Res. 107 (B1). doi:10.1029/2000JB000141.Google Scholar
Kittel, C., 1949, Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21: 541–583.Google Scholar
Kittel, C., 1971, Introduction to Solid State Physics, fourth edn. New York: Wiley.
Kivelson, M. J. K., Khurana, K., Russell, C., Volwerk, M., Walker, R. J. and Zimmer, C., 2000, Galileo magnetometer measurements; a stronger case for a subsurface ocean at Europa. Science 289: 1340–1343.Google Scholar
Knopoff, L., 1958, Energy release in earthquakes. Geophys. J. Roy. Astr. Soc. 1: 44–52.Google Scholar
Knopoff, L., 1964, Q. Revs. Geophys. 2: 625–660.
Knopoff, L., 2001, Rayleigh waves without cubic equations. Computational Seismology 32: 31–37.Google Scholar
Kombayashi, T., Omori, S. and Maruyama, S., 2005, Experimental and theoretical study of dense hydrous magnesium silicates in the deep mantle. Phys. Earth Planet. Inter. 153: 191–209.Google Scholar
Kong, X. and Bird, P., 1996, Neotectonics of Asia: thin shell finite-element with faults. In Yin, A. and Harrison, T. M. (eds.) The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, pp. 18–34.
Kono, M. and Roberts, P. H., 2002, Recent geodynamo simulations and observations of the geomagnetic field. Revs. Geophys. 40, doi: 10.1029/2000RG000102.Google Scholar
Konopliv, A. S. and Yoder, C. F., 1996, Venusian k 2 tidal Love number from Magellan and PVO tracking data. Geophys. Res. Lett. 23: 1857–1860.Google Scholar
Kreemer, C., Holt, W. E. and Haines, A. J., 2003, An integrated model of present-day plate motions and plate boundary deformation. Geophys. J. Int. 154: 8–34.Google Scholar
Kring, D. A. and Cohen, B. A., 2002, Cataclysmic bombardment throughout the inner Solar System 3.9–4.0 Ga. J. Geophys. Res. 107(E2). doi 10.1029/2001JE001529.Google Scholar
Kuang, W. and Bloxham, J., 1997, An Earth-like numerical dynamo model. Nature 389: 371–374.Google Scholar
Kyte, F. T., Smit, J. and Wasson, J. T., 1985, Siderophile interelement variations in the Cretaceous–Tertiary boundary sediments from Caravaca, Spain. Earth Plan. Sci. Lett. 73: 183–195.Google Scholar
Lachenbruch, A. H., 1970, Crustal temperature and heat production: implications of the linear heat flow relation. J. Geophys. Res. 75: 3291–3300.Google Scholar
Lachenbruch, A. H. and Sass, J. H., 1980, Heat flow and energetics of the San Andreas fault zone. J. Geophys. Res. 85: 6185–6222 and 86: 7171–7172.Google Scholar
Laj, C., Mazaud, A., Weeks, R., Fuller, M. and Herrero-Bervera, E., 1992, Statistical assessment of the preferred longitude bands for recent geomagnetic reversal records. Geophys. Res. Lett. 19: 2003–2006.Google Scholar
Lamb, H., 1904, On the propagation of tremors over the surface of an elastic solid. Phil. Trans. Roy. Soc. Lond. A203: 1–42.Google Scholar
Lamb, S. and Davis, P., 2003, Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425: 792–797.Google Scholar
Lambeck, K., 1980, The Earth's Variable Rotation. Cambridge: Cambridge University Press.
Lambeck, K., 1990, Glacial rebound, sea level change and mantle viscosity. Q. J. Roy. Astron. Soc. 31: 1–30.Google Scholar
Lambeck, K., Johnston, P., Smither, C. and Nakada, M., 1996, Glacial rebound of the British Isles – III. Constraints on mantle viscosity. Geophys. J. Int. 125: 340–354.Google Scholar
Landau, L. D. and Lifshitz, E. M., 1975, Theory of Elasticity. Oxford: Pergamon Press.
Langel, R. A. and Estes, R. H., 1982, A geomagnetic field spectrum. Geophys. Res. Lett. 9: 250–253.Google Scholar
Lapwood, E. R., 1949, The disturbance due to a line source in a semi-infinite elastic medium. Phil. Trans. Roy. Soc., Lond. A242: 63–100.Google Scholar
Larmor, J., 1919, How could a rotating body such as the Sun become a magnet? Report of the 87th (1919) meeting of the British Association for the Advancement of Science, pp. 159–160.Google Scholar
Laske, G. and Masters, G., 1998, Surface-wave polarization data and global anisotropic structure. Geophys. J. Int. 132: 508–520.Google Scholar
Laske, G. and Masters, G., 2003, The Earth's free oscillations and the differential rotation of the inner core. In Dehant et al. (2003), pp. 5–21.
Lay, T. et al. (14 authors), 2005, The great Sumatra–Andaman earthquake of 26 December 2004. Science 308: 1127–1133.Google Scholar
Lebedev, S., Chevrot, S. and Hilst, R. D., 2002, Seismic evidence for olivine phase changes at the 410- and 660-kilometer discontinuities. Science 296: 1300–1302.Google Scholar
Lee, D. C., Halliday, A. N., Snyder, G. A. and Taylor, L. A., 1997, Age and origin of the moon. Science 278: 1098–1103.Google Scholar
Lemoine, F. G. et al. (15 authors), 1998, The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM 96, NASA Technical Paper, no. 1998–206861.
Lerch, F. J. et al. (20 authors), 1994, A geopotential model from satellite tracking, altimeter and surface gravity data: GEM-T3. J. Geophys. Res. 99: 2815–2839.Google Scholar
Lin, J.-F., Jacobsen, S. D., Sturhahn, W., Jackson, J. M., Zhao, J. and Yoo, C.-S., 2006, Sound velocities of ferropericlase in the Earth's lower mantle. Geophys. Res. Lett. 33: L22304, doi:10.1029/2006GL028099,2006.Google Scholar
Lister, J. R. and Buffett, B. A., 1995, The strength and efficiency of thermal and compositional convection in the geodynamo. Phys. Earth Planet. Inter. 91: 17–30.Google Scholar
Liu, L.-G., 1976, Orthorhombic perovskite phase observed in olivine, pyroxene and garnet at high pressures and temperatures. Phys. Earth Planet. Inter. 11: 289–298.Google Scholar
Long, C. and Christensen, N. I., 2000, Seismic anisotropy of South African upper mantle xenoliths. Earth Plan. Sci. Lett. 179: 551–565.Google Scholar
Longuet-Higgins, M. S. and Ursell, F., 1948, Sea waves and microseisms. Nature 162: 700.Google Scholar
Loper, D. E., 1978a, The gravitationally powered dynamo. Geophys. J. R. Astron. Soc. 54: 389–404.Google Scholar
Loper, D. E., 1978b, Some thermal consequences of the gravitationally powered dynamo. J. Geophys. Res. 83: 5961–5970.Google Scholar
Loper, D. E., 1984, The dynamical structures of D″ and deep mantle plumes in a non-Newtonian mantle. Phys. Earth Planet. Inter. 33: 56–67.Google Scholar
Loper, D. E., 1985, A simple model of whole mantle convection. J. Geophys. Res. 90: 1809–1836.Google Scholar
Loper, D. E. and Stacey, F. D., 1983, The dynamical and thermal structure of deep mantle plumes. Phys. Earth Planet. Inter. 33: 304–317.Google Scholar
Love, A. E. H., 1927, A Treatise on the Mathematical Theory of Elasticity, fourth edn. Cambridge: Cambridge University Press.
Lovell, A. C. B., 1954, Meteor Astronomy. Oxford: Clarendon Press.
Lowes, F. J., 1966, Mean values on sphere of spherical harmonic vector fields. J. Geophys. Res. 71: 2179.Google Scholar
Lowes, F. J., and Wilkinson, I. 1963, Geomagnetic dynamo: a laboratory model. Nature 198: 1158–1160.Google Scholar
Lowes, F. J., and Wilkinson, I. 1968, Geomagnetic dynamo: an improved laboratory model. Nature 219: 717–718.Google Scholar
MacMillan, W. D., 1958, Theory of the Potential. New York: Dover (reprinted from 1930 edition).
Macouin, M., Valet, G. P. and Besse, J., 2004, Long-term evolution of the geomagnetic dipole moment. Phys. Earth Planet. Inter. 147: 239–246.Google Scholar
Madariaga, R., 1976, Dynamics of an expanding circular fault. Bull. Seism. Soc. Am. 66: 639–667.Google Scholar
Maggi, A., Debayle, E., Priestley, K. and Barruol, G., 2006, Multimode surface waveform tomography of the Pacific Ocean: a closer look at the lithospheric cooling signature. Geophys. J. Int. 166: 1384–1397.Google Scholar
Malkus, W. V. R., 1963, Precessional torques as the cause of geomagnetism. J. Geophys. Res. 68: 2871–2886.Google Scholar
Malkus, W. V. R., 1989, An experimental study of global instabilities due to tidal (elliptical) distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid. Dyn. 48: 123–134.Google Scholar
Manga, M. and Jeanloz, R., 1997, Thermal conductivity of corundum and periclase and implications for the lower mantle. J. Geophys. Res. 102: 2999–3008.Google Scholar
Mansinha, L. and Smylie, D. E., 1971, The displacement fields of inclined faults. Bull. Seism. Soc. Am. 61: 1433–1440.Google Scholar
Mao, W. L., Mao, H.-K., Sturhahn, W., Zhao, J., Prakapenka, V. B., Meng, Y., Shu, J., Fei, Y. and Hemley, R. J., 2006, Iron-rich postperovskite and the origin of ultralow-velocity zones. Science 312: 564–565.Google Scholar
Margot, J.-L., Peale, S. J., Jurgens, R. F., Slade, M. A. and Holin, I. V., 2007, Large longitude libration of Mercury reveals a molten core. Science 316: 710–714.Google Scholar
Marone, C. J., Scholz, C. H. and Bilham, R., 1991, On the mechanics of earthquake afterslip. J. Geophys. Res. 96(5): 8441–8452.Google Scholar
Marquering, H., Dahlen, F. A., and Nolet, G., 1999, Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana doughnut paradox. Geophys. J. Int. 137: 805–815.Google Scholar
Masters, G. and Gilbert, F., 1981, Structure of the inner core inferred from observations of its spheroidal shear modes. Geophys. Res. Lett. 8: 569–571.Google Scholar
Masters, G. and Gubbins, D., 2003, On the resolution of density within the Earth. Phys. Earth Planet. Inter. 140: 159–167.Google Scholar
Masters, G., Laske, G., Bolton, H. and Dziewonski, A. M., 2000, The relative behaviour of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In Karato, S.-I. et al, eds., Earth's deep interior: mineral physics and tomography from the atomic to the global scale. Geophysical Monograph Series 117: 63–87. Washington: American Geophysical Union.
Masters, T. G. and Widmer, R., 1995, Free oscillations: frequencies and attenuation. In Ahrens (1995a), pp. 104–125.
Mathews, P. M., Buffett, B. A. and Shapiro, I. I., 1995, Love numbers for diurnal tides: relation to wobble admittances and resonance expansions. J. Geophys. Res. 100: 9935–9948.Google Scholar
Mathews, P. M., Herring, T. A. and Buffett, B. A., 2002, Modeling nutation and precession: new nutation series for nonrigid Earth and insights into the Earth's interior. J. Geophys. Res. 107(B4). 10.1029/2001JB000390.2002.Google Scholar
Maxwell, A. E., Herzen, R. P., Hsü, K. J., Andrews, J. E., Saito, T., Percival, S., Milow, E. D. and Boyce, R. E., 1970, Deep sea drilling in the South Atlantic. Science 168: 1047–1059.Google Scholar
McArdle, N. J., Halls, H. C. and Shaw, J., 2004, Rock magnetic studies and a comparison between microwave and Thellier paleointensities for Canadian Precambrian dykes. Phys. Earth Planet. Inter. 147: 247–254.Google Scholar
McDonough, W. F. and Sun, S.-S., 1995, The composition of the Earth. Chem. Geology 120: 223–253.Google Scholar
McDougall, I., 1981, 40Ar/39Ar age spectra for the KBS tuff, Koobi Fora formation. Nature 294: 120–124.Google Scholar
McDougall, I. and Harrison, T. M., 1999, Geochronology and Thermochronology by the 40 Ar/ 39 Ar Method. New York: Oxford University Press.
McDougall, I., Maier, R., Sutherland-Hawkes, P. and Gleadow, A. J. W., 1980, K-Ar age estimate for the KBS tuff, East Turkana, Kenya. Nature 284: 230–234.Google Scholar
McDougall, I. and Tarling, D. H., 1963, Dating of polarity zones in the Hawaiian islands. Nature 200: 54–56.Google Scholar
McFadden, P. L. and Merrill, R. T., 1984, Lower mantle convection and geomagnetism. J. Geophys. Res. 89: 3354–3362.Google Scholar
McFadden, P. L. and Merrill, R. T., 1995, History of the Earth's magnetic field and possible connections to core–mantle boundary processes. J. Geophys. Res. 100: 307–316.Google Scholar
McFadden, P. L., Merrill, R. T. and McElhinny, M. W., 1988, Dipole/quadrupole modelling of paleosecular variation. J. Geophys. Res. 93: 11583–11588.Google Scholar
McFadden, P. L., Merrill, R. T., McElhinny, M. W. and Lee, S., 1991, Reversals of the Earth's magnetic field and temporal variations of the dynamo families. J. Geophys. Res. 96: 3923–3933.Google Scholar
McGarr, A., 1999, On relating apparent stress to the stress causing earthquake fault slip. J. Geophys. Res. 104(B2): 3003–3011.Google Scholar
McKenzie, D., Jackson, J. and Priestley, K., 2005, Thermal structure of oceanic and continental lithosphere. Earth Plan. Sci. Lett. 233: 337–349.Google Scholar
McLennan, S. M., 1995, Sediments and soils: chemistry and abundances. In Ahrens (1995c). pp. 8–19.
McNutt, M. K., 1998, Superswells. Revs. Geophys. 36: 211–244.Google Scholar
McQueen, R. G. and Marsh, S. P, 1966, Shock wave compression of iron-nickel alloys and the Earth's core. J. Geophys. Res. 71: 1751–1756.Google Scholar
McQueen, R. G., Marsh, S. P. and Fritz, J. N., 1967, Hugoniot equation of state of twelve rocks. J. Geophys. Res. 72: 4999–5036.Google Scholar
McSween, H. Y., 1999, Meteorites and their Parent Planets. Cambridge: Cambridge University Press.
Mei, S. and Kohlstedt, D. L., 2000a, Influence of water on plastic deformation of olivine aggregates 1: Diffusion creep regime. J. Geophys. Res. 105: 21457–21469.Google Scholar
Mei, S. and Kohlstedt, D. L., 2000b, Influence of water on plastic deformation of olivine aggregates 2: Dislocation creep regime. J. Geophys. Res. 105: 21471–21481.Google Scholar
Meredith, P. G. and Atkinson, B. K., 1983, Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocks. Geophys. J. Roy. Astr. Soc. 75: 1–21.Google Scholar
Merrill, R. T., McElhinny, M. W. and McFadden, P. L., 1996, The Magnetic Field of the Earth: Paleomagnetism, the Core and the Deep Mantle. San Diego: Academic Press.
Merrill, R. T. and McFadden, P. L., 1999, Geomagnetic polarity transitions. Rev. Geophys. 37: 201–226.Google Scholar
Mitrovica, J. X., 1996, Haskell [1935] revisited. J. Geophys. Res. 101: 555–569.Google Scholar
Mitrovica, J. X. and Forte, A. M., 1997, Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observable. J. Geophys. Res. 102: 2751–2769.Google Scholar
Mitrovica, J. X. and Peltier, W. R., 1993, Present day secular variations in the zonal harmonics of Earth's geopotential. J. Geophys. Res. 98: 4509–4526.Google Scholar
Mogi, K., 1958, Relations between the eruptions of various volcanoes and the deformation of the ground surface around them. Bull. Earthq. Res. Inst. Univ. Tokyo 36: 99–134.Google Scholar
Molnar, P. and Atwater, T., 1973, Relative motion of hotspots in the mantle. Nature 246: 288–291.Google Scholar
Montagner, J.-P., Griot-Pommera, D.-A. and Lave, J., 2000, How to relate body wave and surface wave anisotropy? J. Geophys. Res. 105: 19015–19027.Google Scholar
Montagner, J.-P. and Kennett, B. L. N., 1996, How to reconcile body wave and normal mode reference models. Geophys. J. Int. 125: 229–248.Google Scholar
Montagner, J.-P. and Tanimoto, T., 1991, Global upper mantle tomography of seismic velocities and anisotropies. J. Geophys. Res. 96: 20337–20351.Google Scholar
Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R. and Hung, S.-H., 2004, Finite-frequency tomography reveals a variety of plumes in the mantle. Science 30: 338–343.Google Scholar
Morgan, W. J., 1971, Convection plumes in the lower mantle. Nature 230: 42–43.Google Scholar
Morozov, I. B. and Smithson, S. B., 2000, Coda of long-range arrivals from nuclear explosions. Bull. Seism. Soc. Am. 90: 929–939.Google Scholar
Morris, J. D., Leeman, W. P. and Tera, F., 1990, The subducted component in island arc lavas: constraint from Be isotopes and B-Be systematics. Nature 344: 31–36.Google Scholar
Mukhopadhyay, S. and Nittler, L., 2004, Report in Yearbook 02/03, p. 69. Washington: Carnegie Institution.
Murakami, M., Hirose, K., Kawamura, K., Sata, N. and Ohishi, Y., 2004, Post-perovskite phase transition in MgSiO3 . Science 304: 855–858.Google Scholar
Murthy, V. R., Westrenen, W. and Fei, Y., 2003, Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature 423: 163–165.Google Scholar
Nadeau, R. M. and Dolenc, D., 2005, Nonvolcanic tremors deep beneath the San Andreas Fault. Science 307: 389–390.Google Scholar
Nagata, T., 1953, Rock Magnetism, first edn. Tokyo: Maruzen.
Nagata, T., 1979, Meteorite magnetism and the early solar system magnetic field. Phys. Earth Planet. Inter. 20: 324–341.Google Scholar
Nakiboglu, S. M., 1982, Hydrostatic theory of the Earth and its mechanical implications. Phys. Earth Planet. Inter. 28: 302–311.Google Scholar
Narayan, C. and Goldstein, J. I., 1985, A major revision of iron meteorite cooling rates – an experimental study of the growth of the Widmanstätten pattern. Geochim. Cosmochim. Acta 49: 397–410.Google Scholar
Navon, O. and Wasserburg, G. J., 1985, Self-shielding in O2 – a possible explanation of oxygen isotope anomalies in meteorites. Earth Plan. Sci. Lett. 73: 1–16.Google Scholar
Nawa, K., Sudo, N., Fukao, Y., Sato., T., Aoyama, Y. and Shibuya, K., 1998, Incessant excitation of the Earth's free oscillations. Earth Space Sci. 50: 3–8.Google Scholar
Néel, L. 1955, Some theoretical aspects of rock magnetism. Adv. Phys. 4: 191–243.Google Scholar
Ness, N. F., 1994, Intrinsic magnetic fields of the planets: Mercury to Neptune. Phil. Trans. Roy. Soc. Lond. A349: 249–260.Google Scholar
Newsom, H. E., 1995, Composition of the solar system, planets, meteorites and major terrestrial reservoirs. In Ahrens (1995a), pp. 159–189.
Nieto, M. M., 1972, The Titius–Bode Law of Interplanetary Distances: its History and Theory. Oxford: Pergamon.
Nimmo, F., Price, G. D., Brodholt, J. and Gubbins, D., 2004, The influence of potassium on core and geodynamo evolution. Geophys. J. Int. 156: 363–376.Google Scholar
Nishimura, C. E. and Forsyth, D. W., 1989, The anisotropic structure of the upper mantle in the Pacific. Geophys. J. 96: 203–229.Google Scholar
Nittler, L., 2003, Presolar stardust in meteorites: recent advances and scientific frontiers. Earth Plan. Sci. Lett. 209: 259–273.Google Scholar
Norton, I. O., 1995, Plate motions in the north Pacific: the 43 Ma nonevent. Tectonics 14(5): 1080–1094.Google Scholar
Nyblade, A. A. and Robinson, S. W., 1994, The African superswell. Geophys. Res. Lett. 21: 765–768.Google Scholar
Oganov, A. R., Brodholt, J. P. and Price, G. D., 2000, Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model applied to MgSiO3 perovskite. Phys. Earth Planet. Inter. 122: 277–288.Google Scholar
Ogata, Y., 1998, Space-time point process models for earthquake occurrences. Annals Inst. Statistical Mechanics 50: 379–402.Google Scholar
Ogino, K., Nishiwacki, A. and Hosotani, Y., 1984, Density of molten Fe-C alloys. J. Japan Inst. Metals 48: 1004–1010.Google Scholar
Ohtani, E., Litasov, K., Suzuki, A. and Kondo, T., 2001, Stability field of a new hydrous phase, δ-AlOOH, with implications for water transport in the deep mantle. Geophys. Res. Lett. 28: 3991–3993.Google Scholar
Okada, Y., 1985, Surface deformation due to shear and tensile faults in a half space. Bull. Seism. Soc. Am. 75: 1135–1154.Google Scholar
Okal, E. A., 2001, ‘Detached’ deep earthquakes: are they really? Phys. Earth Planet. Inter. 127: 109–143.Google Scholar
Okuchi, T., 1997, Hydrogen partitioning into molten iron at high pressure: implications for the Earth's core. Science 278: 1781–1784.Google Scholar
Okuchi, T., 1998, The melting temperature of iron hydride at high pressures and its implication for the temperature of the Earth's core. J. Phys. Condensed Matter 10: 11595–11598.Google Scholar
Oliver, J., 1962, A summary of observed seismic wave dispersion. Bull. Seism. Soc. Am. 52: 81–86.Google Scholar
Olsen, N., 2002, A model of the geomagnetic field and its secular variation for the epoch 2000 estimated from Ørsted data. Geophys. J. Int. 149: 454–462.Google Scholar
Olsen, P. E. et al. (10 authors), 2002, Ascent of dinosaurs linked to an iridium anomaly at the Triassic–Jurassic boundary. Science 296: 1305–1307.Google Scholar
Olson, P., 1983, Geomagnetic polarity reversals in a turbulent core. Phys. Earth Planet. Inter. 33: 260–274.Google Scholar
Olson, P. and Aurnou, J. 1999, A polar vortex in the Earth's core. Nature 402: 170–173.Google Scholar
Omori, F. J., 1894, On after-shocks of earthquakes. College of Science, Imperial University of Tokyo 7: 111–200.Google Scholar
Opdyke, N. D. and Channell, J. E. T., 1996, Magnetic Stratigraphy. San Diego: Academic Press.
Opdyke, N. D., Kent, D. V. and Lowrie, W., 1973, Details of magnetic polarity transitions recorded in a high deposition rate deep sea core. Earth Plan. Sci. Lett. 20: 315–324.Google Scholar
Oversby, V. M. and Ringwood, A. E., 1971, Time of formation of the Earth's core. Nature 234: 463–465.Google Scholar
Ozima, M. and Podosek, F. A., 1999, Formation age of Earth from 129I/127I and 244Pu/238U systematics and the missing Xe. J. Geophys. Res. 104: 25493–25499.Google Scholar
Padhy, S, 2005, A scattering model for seismic attenuation and its global applications. Phys. Earth Planet. Int. 148: 1–12.Google Scholar
Pagiatakis, S. D., Yin, H. and El-Gelil, M. A., 2007, Least squares self-coherency analysis of superconducting gravimeter records in search for the Slichter triplet. Phys. Earth Planet. Inter. 160: 108–123.Google Scholar
Panning, M. P. and Romanowicz, B. A., 2006, A three dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int. 167: 361–379.Google Scholar
Parkinson, W. D., 1983, Introduction to Geomagnetism. Edinburgh: Scottish Academic Press.
Paterson, M. S. and Weiss, L. E., 1961, Symmetry concepts in the structural analysis of deformed rocks. Geol. Soc. Am. Bull. 72: 841–882.Google Scholar
Peale, S. J., Cassen, P. and Reynolds, R. P., 1979, Melting of Io by tidal dissipation. Science 203: 892–894.Google Scholar
Pearce, S. J. and Russell, R. D., 1990, Inversion of cosmogenic nuclide data from iron meteorites. Canad. J. Earth Sci. 68: 1312–1321.Google Scholar
Peltier, W. R., 1982, Dynamics of the ice age Earth. Adv. Geophys. 24: 1–146.Google Scholar
Peltier, W. R., 1998, Postglacial variations in the level of the sea: implications for climate dynamics. Rev. Geophys. 36: 603–689.Google Scholar
Peltier, W. R., 2004, Global glacial isostasy and the surface of the ice age Earth: the Ice-5 g (Vm2) model and Grace. Ann. Rev. Earth Plan. Sci. 32: 111–149.Google Scholar
Peltzer, G., Crampé, F. and King, G., 1999, Evidence of nonlinear elasticity in the crust from the Mw7.6 Manyi (Tibet) earthquake. Science 286: 272–276.Google Scholar
Pesonen, L. J., Elming, S.-A., Mertanen, S., Pisarevsky, S., D'Agrella-Filho, M. S., Meert, J. G., Schmidt, P. W., Abrahamsen, N. and Bylund, G., 2003, Palaeomagnetic configuration of the continents during the Proterozoic. Tectonophysics 375: 289–324.Google Scholar
Plafker, G., 1965, Tectonic deformation associated with the 1964 Alaska earthquake. Science 148: 1675–1687.Google Scholar
Poirier, J. -P., 1988, Transport properties of liquid metals and viscosity of the Earth's core. Geophys. J. R. Astron. Soc. 92: 99–105.Google Scholar
Poirier, J. -P., 1994, Light elements in the Earth's core: a critical review. Phys. Earth Planet. Inter. 85: 319–337.Google Scholar
Poirier, J.-P., 2000, Introduction to the Physics of the Earth's Interior, second edn. Cambridge: Cambridge University Press.
Poirier, J.-P. and Tarantola, A., 1998, A logarithmic equation of state. Phys. Earth Planet. Inter. 109: 1–8.Google Scholar
Pollack, H. N. and Huang, S., 2000, Climate reconstruction from subsurface temperatures. Ann. Rev. Earth Plan. Sci. 28: 339–365.Google Scholar
Pollack, H. N., Hurter, S. J. and Johnson, J. R., 1993, Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys. 31: 267–280.Google Scholar
Poupinet, G. R., Pillet, R. and Souriau, A., 1983, Possible heterogeneity of the Earth's core deduced from PKIKP travel times. Nature 305: 204–206.Google Scholar
Prentice, A. J. R., 1986, Uranus: predicted origin and composition of its atmosphere, moons and rings. Phys. Lett. A114: 211–216.Google Scholar
Prentice, A. J. R., 1989, Neptune: predicted origin and composition of a regular satellite system. Phys. Lett. A140: 265–270.Google Scholar
Proudman, J., 1953, Dynamical Oceanography. London: Methuen.
Rabinowicz, E., 1965, Friction and Wear of Materials. New York: Wiley.
Rädler, K.-H. and Cēbers, A. (Eds.), 2002, MHD dynamo experiments. Magnetohydrodynamics 38: 3–217.Google Scholar
Raitt, R. W., Shor, G. G., Francis, T. G. J. and Morris, G. B., 1969, Anisotropy of the Pacific upper mantle. J. Geophys. Res. 74: 3095–3109.Google Scholar
Rapp, R. H. and Pavlis, N. K., 1990, The development and analysis of geopotential coefficient models to spherical harmonic degree 360. J. Geophys. Res. 95: 21885–21911.Google Scholar
Ray, R. D., Eanes, R. J. and LeMoine, F. G., 2001, Constraints on energy dissipation in the Earth's body tide from satellite tracking and altimetry. Geophys. J. Int. 144: 471–480.Google Scholar
Reasenberg, P. A., 1999, Foreshock occurrence before large earthquakes, J. Geophys. Res. 104(B3): 4755–4768.Google Scholar
Reid, H. F., 1910, The California Earthquake of April 18, 1906. II. The Mechanics of the Earthquake. Washington: Carnegie Institution.
Reinecker, J., Heidbach, O., Tingay, M., Connolly, P. and Müller, B., 2004, The 2004 release of The World Stress Map. (www.world-stress-map.org).
Rhie, J. and Romanowicz, B., 2004, Excitation of the Earth's free oscillations by atmosphere–ocean–seafloor coupling. Nature 431: 552–556.Google Scholar
Richards, M. A. and Engebretson, D. C., 1992, Large scale mantle convection and the history of subduction. Nature 355: 437–440.Google Scholar
Richardson, R. M., 1992, Ridge forces, absolute plate motions and the intraplate stress field. J. Geophys. Res. 97(8): 11739–11748.Google Scholar
Richter, C. F., 1958, Elementary Seismology. San Francisco: Freeman.
Rigden, S. M., Gwanmesia, G. D., Fitzgerald, J. D., Jackson, I. and Liebermann, R. C., 1991, Spinel elasticity and seismic structure of the transition zone of the mantle. Nature 34: 143–145.Google Scholar
Rikitake, T., 1966, Electromagnetism and the Earth's Interior. Amsterdam: Elsevier.
Ringwood, A. E., 1966, Chemical evolution of the terrestrial planets. Geochim. Cosmochim. Acta 30: 41–104.Google Scholar
Ringwood, A. E., 1989, Flaws in the giant impact hypothesis of lunar origin. Earth Plan. Sci. Lett. 95: 208–214.Google Scholar
Ritsema, J., Heijst, H. J. and Woodhouse, J. H., 1999, Complex shear velocity structure imaged beneath Africa and Iceland. Science 286: 1925–1928.Google Scholar
Roberts, P., 1987, Origin of the main field: dynamics. In Jacobs, J. A. (ed.), Geomagnetism Vol. 2. London: Academic Press, pp. 251–306.
Roberts, P. H. and Gubbins, D., 1987, Origin of the main field: dynamics. In Jacobs, J. A. (ed.), Geomagnetism Vol. 2. London: Academic Press, pp. 185–249.
Robertson, G. S. and Woodhouse, J. H., 1996a, Ratio of relative S to P heterogeneity in the lower mantle. J. Geophys. Res. 101: 20041–20052.Google Scholar
Robertson, G. S. and Woodhouse, J. H., 1996b, Constraints on lower mantle physical properties from seismology and mineral physics. Earth Planet. Sci. Lett. 143: 197–205.Google Scholar
Robock, A., 2000, Volcanic eruptions and climate. Rev. Geophys. 38: 191–219.Google Scholar
Robock, A., 2003, Introduction: Mount Pinatubo as a test of climate feedback mechanisms. In Robock, A. and Oppenheimer, C. (eds.) Volcanism and the Earth's Atmosphere. Washington: American Geophysical Union, pp. 1–8.
Rogers, G. and Dragert, H., 2003, Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300: 1942–1943.Google Scholar
Roth, M., Müller, G. and Snieder, R., 1993, Velocity shifts in random media. Geophys. J. Int. 115: 552–563.Google Scholar
Runnegar, B., 1982, The Cambrian explosion: animals or fossils? J. Geol. Soc. Australia 29: 395–411.Google Scholar
Rutherford, E. and Soddy, F., 1903, Radioactive change. Phil. Mag. (Series 6) 5: 1576–1591.Google Scholar
Ryder, G., 1990, Lunar samples, lunar accretion and the early bombardment of the Moon. EOS (Trans. AGU Spring Meeting Supplement) 71: 313 and 322–323 (March 6, 1990).Google Scholar
Ryder, G. and Mojzsis, S. J., 1998, Accretion to the Earth and Moon around 3.85 Ga: what is the evidence? EOS (Trans. AGU Fall Meeting Supplement) 79(45): F48 (Abstract U22B-10).Google Scholar
Sanloup, C., Guyot, F., Gillet, P., Fiquet, G., Hemley, R. J., Mezouar, M. and Martinez, I., 2000, Structural changes in liquid Fe at high pressures and high temperatures from synchrotron X-ray diffraction. Europhys. Lett. 52: 151–157.Google Scholar
Sasatani, T., 1989, Deep earthquakes. In James (1989), pp. 174–181.
Schneider, J. F. and Sacks, I. S., 1992 ubduction of the Nazca plate beneath central Peru from local earthquakes. Unpublished manuscript.
Scholz, C. H., 1990, The Mechanics of Earthquakes and Faulting. Cambridge: Cambridge University Press.
Schubert, G., Masters, G., Olson, P. and Tackley, P., 2004, Superplumes or plume clusters? Phys. Earth Planet. Int. 146: 147–162.Google Scholar
Secco, R. A., 1995, Viscosity of the outer core. In Ahrens (1995b), pp. 218–226.
Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazzotti, S. and Dokka, R. K., 2007, Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys. Res. Lett. 34: L02306. doi:10.1029/2006GL027081.Google Scholar
Shaw, B. E., 1993, Generalized Omori law for aftershocks and foreshocks from simple dynamics. Geophys. Res. Letters 20: 907–910.Google Scholar
Shaw, J., 1974, A new method of determining the magnitude of the palaeomagnetic field. Geophys. J. R. Astron. Soc. 39: 133–141.Google Scholar
Shaw, J. and Sherwood, G., 1991, Palaeointensity and reversal frequency – are they related? Geophy. Astrophy. Fluid Dyn. 60: 135–140.Google Scholar
Shearer, P. M., 1990, Seismic imaging of upper mantle structure with new evidence for a 520 km discontinuity. Nature 344: 121–126.Google Scholar
Sheriff, R. E., and Geldart, L. P., 1982, Exploration Seismology, Vol. 1: History, Theory and Data Acquisition. Cambridge: Cambridge University Press.
Sibson, R. H. and Xie, G., 1998, Dip range for intracontinental reverse fault ruptures: truth not stranger than friction. Bull. Seism. Soc. Am. 88: 1014–1022.Google Scholar
Silver, P. G., 1996, Seismic anisotropy beneath the continents: probing the depths of geology. Ann. Rev. Earth Planet. Sci. 24: 385–432.Google Scholar
Singh, S. K. and Ordaz, M., 1994, Seismic energy release in Mexican subduction zone earthquakes. Bull. Seism. Soc. Am. 84: 1533–1550.Google Scholar
Slater, J. C., 1939, Introduction to Chemical Physics. New York: McGraw-Hill.
Sleep, H. N., 1990, Hot spots and mantle plumes: some phenomenology. J. Geophys. Res. 95: 6715–6736.Google Scholar
Slichter, L. B., 1967, Spherical oscillations of the earth, Geophys. J. R. Astron. Soc. 14: 171–177.Google Scholar
Smith, S. W., 1967, Free vibrations of the Earth. In Runcorn, S. K. (ed.) International Dictionary of Geophysics (2 vols.) Oxford: Pergamon, pp. 344–346.
Smyth, J. R., and McCormick, T. C., 1995, Crystallographic data for minerals. In Ahrens, T. J. (1995b), pp. 1–17.
Sneddon, I. N., 1980, Special Functions of Mathematical Physics and Chemistry, third edn. Edinburgh: Oliver and Boyd.
Solheim, L. P. and Peltier, W. R., 1994, Phase boundary deflections at 660 km depth and episodically layered isochemical convection in the mantle. J. Geophys. Res. 99: 15861–15875.Google Scholar
Solomatov, V. S. and Stevenson, D. J., 1994, Can sharp seismic discontinuities be caused by non-equilibrium phase transitions? Earth Plan. Sci. Lett. 125: 267–279.Google Scholar
Song, X. and Richards, P. G., 1996, Seismological evidence for differential rotation of the Earth's inner core. Nature 382: 221–224.Google Scholar
Souriau, A., Roudil, P. and Moynot, B. 1997, Inner core differential rotation: facts and artifacts. Geophys. Res. Lett. 24: 2103–2106.Google Scholar
Spetzler, J. and Snieder, R., 2004, Tutorial, the Fresnel volume and transmitted waves. Geophysics 69: 653–663.Google Scholar
Stacey, F. D., 1973, The coupling of the core to the precession of the Earth. Geophys. J. R. Astron Soc. 33: 47–55.Google Scholar
Stacey, F. D., 2000, Kelvin's age of the Earth paradox revisited. J. Geophys. Res. 105: 13155–13158.Google Scholar
Stacey, F. D., 2005, High pressure equations of state and planetary interiors. Reps. Prog. Phys. 68: 341–383.Google Scholar
Stacey, F. D. and Anderson, O. L., 2001, Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions. Phys. Earth Planet. Inter. 124: 153–162.Google Scholar
Stacey, F. D. and Davis, P. M., 2004, High pressure equations of state with applications to the lower mantle and core. Phys. Earth Planet. Inter. 142: 137–184.Google Scholar
Stacey, F. D. and Irvine, R. D., 1977, A simple dislocation theory of melting. Australian J. Phys. 30: 641–646.Google Scholar
Stacey, F. D. and Isaak, D. G., 2003, Anharmonicity in mineral physics: a physical interpretation. J. Geophys. Res. 108(B9): 2440. doi:10.1029/2002JB002316,2003.Google Scholar
Stacey, F. D. and Loper, D. E., 1983, The thermal boundary layer interpretation of D″ and its role as a plume source. Phys. Earth Planet. Inter. 33: 45–55.Google Scholar
Stacey, F. D. and Loper, D. E., 1984, Thermal histories of the core and mantle. Phys. Earth Planet. Inter. 36: 99–115.Google Scholar
Stacey, F. D. and Loper, D. E., 2007, A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance. Phys. Earth Planet. Inter. 161: 13–18.Google Scholar
Stacey, F. D., Spiliopoulos, S. S. and Barton, M. A., 1989, a critical re-examination of the thermodynamic basis of Lindemann's melting law. Phys. Earth Planet. Inter. 55: 201–207.Google Scholar
Stacey, F. D. and Stacey, C. H. B., 1999, Gravitational energy of core evolution: implications for thermal history and geodynamo power. Phys. Earth Planet. Inter. 110: 83–93.Google Scholar
Stanley, S., Bloxham, J., Hutchison, W. E. and Zuber, M. T., 2005, Thin shell dynamo models consistent with Mercury's weak observed magnetic field. Earth Planet. Sci. Lett. 234: 27–38.Google Scholar
Stein, C. A., 1995, Heat flow from the Earth. In Ahrens (1995a), pp. 144–158.
Stein, C. A. and Stein, S., 1992, A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359: 123–129.Google Scholar
Stein, C. A. and Stein, S., 1994, Constraints on hydrothermal heat flux through oceanic lithosphere from global heat flux. J. Geophys. Res. 99: 3081–3095.Google Scholar
Stein, R. S., 1999, The role of stress transfer in earthquake occurrence. Nature 402: 605–609.Google Scholar
Stein, S. and Wysession, M., 2003, An Introduction to Seismology, Earthquakes and Earth Structure. Oxford: Blackwell.
Stephenson, F. R. and Morrison, L. V., 1995, Long-term fluctuations in the Earth's rotation. Phil. Trans. Roy. Soc. Lond. A351: 165–202.Google Scholar
Stevenson, D. J., 2003, Planetary magnetic fields. Earth Plan. Sci. Lett. 208: 1–11.Google Scholar
Stevenson, D., 2005, Earthquakes and tsunamis: what physics is interesting? Physics Today June 2005: 10–11.Google Scholar
Stoneley, R., 1924, Elastic waves at the surface of separation of two solids. Proc. Roy. Soc. Lond. A106: 416–420.Google Scholar
Strutt, R. J., 1906, On the distribution of radium in the Earth's crust and on the Earth's internal heat. Proc. Roy. Soc. Lond. A77: 472–485.Google Scholar
Sturhahn, W., Jackson, J. M. and Lin, J.-F., 2005, The spin state of iron in minerals of the Earth's lower mantle. Geophys. Res. Lett. 32: L12307, doi:10.1029/2005GL022802,2005.Google Scholar
Su, W. J. and Dziewonski, A. M., 1997, Simultaneous inversion for 3D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter. 100: 135–156.Google Scholar
Su, W. J., Dziewonski, A. M and Jeanloz, R., 1996, Planet within a planet: rotation of the inner core of the Earth. Science 274: 1883–1887.Google Scholar
Sumita, I. and Yoshida, S., 2003, Thermal interactions between the mantle, outer and inner cores, and the resulting structural evolution of the core. In Dehant et al. (2003), pp. 213–231.
Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. and Schubert, G., 1994, Effects of multiple phase transitions in a three-dimensional spherical model of convection in the Earth's mantle. J. Geophys. Res. 99: 15877–15901.Google Scholar
Takahashi, F., Matsushima, M. and Honkura, Y., 2005, Simulations of a quasi-Taylor state geomagnetic field including polarity reversals on the Earth simulator. Science 309: 459–461.Google Scholar
Tarling, D., 1971, Principles and Applications of Palaeomagnetism. London: Chapman and Hall.
Tarling, D. H., 1989, Archaeomagnetism. In James (1989), pp. 33–37.
Tatsumoto, M., 1966, Genetic relationships of ocean basalts as indicated by lead isotopes. Science 153: 1094–1101.Google Scholar
Tatsumoto, M., Knight, R. J. and Allègre, C. J., 1973, Time differences in the formation of meteorites as determined by the ratio of lead-207 to lead-206. Science 180: 1279–1283.Google Scholar
Tauxe, L., 2006, Long-term trends in paleointensity: the contribution of DSDP/ODP submarine basalt glass collections. Phys. Earth Planet. Inter. 156: 223–241.Google Scholar
Tera, F., 2003, A lead isotope method for the accurate dating of disturbed geological systems: numerical demonstrations, some applications and implications. Geochim. Cosmochim. Acta 67: 3687–3715.Google Scholar
Tera, F., Papanastassiou, D. A. and Wasserburg, G. J., 1974, Isotopic evidence for a terminal lunar cataclysm. Earth Plan. Sci. Lett. 22: 1–21.Google Scholar
Thatcher, W., 1983, Nonlinear strain buildup and the earthquake cycle on the San Andreas fault. J. Geophys. Res. 88: 5893–5902.Google Scholar
Thellier, E. and Thellier, O., 1959, Sur l′intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Geophys. 15: 285–376.Google Scholar
Tilton, G. R. and Steiger, R. H., 1965, Lead isotopes and the age of the Earth. Science 150: 1805–1808.Google Scholar
Toon, O. B., Zahnle, K., Morrison, D., Turco, R. P. and Covey, C., 1997, Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys. 35(1): 41–78.Google Scholar
Tozer, D. C., 1972, The present thermal state of the terrestrial planets. Phys. Earth Planet. Inter. 6: 182–197.Google Scholar
Tromp, J., 1993, Support for anisotropy of the Earth's inner core from splitting in free oscillation data. Nature 366: 678–681.Google Scholar
Turcotte, D. L. and Schubert, G., 2002, Geodynamics. Cambridge: Cambridge University Press.
Turner, G. M. and Thompson, R., 1981, Lake sediment record of the geomagnetic secular variation in Britain during Holocene times. Geophys. J. R. Astron. Soc. 65: 703–725.Google Scholar
Utsu, T., 1961, A statistical study of the occurrence of aftershocks. Geophys. Magazine 30: 521–605.Google Scholar
Utsu, T., 2002, Statistical features of seismicity. In International Handbook of Earthquake Engineering and Seismology, ed. Lee, W. H. K.. San Diego: Academic Press. Part A, pp. 719–732.
Voo, R, 1990, Phanerozoic poles from Europe and North America and comparisons with continental reconstruction. Rev. Geophys. 28: 167–206.Google Scholar
Voo, R., 1992, Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. Cambridge: Cambridge University Press.
Vanyo, J. D., 1991, A geodynamo powered by lunisolar precession. Geophys. Astrophys. Fluid Dyn. 59: 209–234.Google Scholar
Vashchenko, V. Ya., and Zubarev, V. N., 1963, Concerning the Grüneisen constant. Sov. Phys. Solid State 5: 653–655.Google Scholar
Veizer, J. and Jansen, S. L., 1979, Basement and sedimentary recycling and continental evolution. J. Geol. 87: 341–370.Google Scholar
Veizer, J. and Jansen, S. L., 1985, Basement and sedimentary recycling – 2: Time dimension to global tectonics. J. Geol. 93: 625–643.Google Scholar
Venkataraman, A. and Kanamori, H., 2004, Observational constraints on the fracture energy of subduction zone earthquakes. J. Geophys. Res. 109B:5302. doi:10.1029/2003JB002549.Google Scholar
Vidale, J. E., 2001, Peeling back the layers in Earth's mantle. Science 294: 313.Google Scholar
Vidale, J. E., Dodge, D. A. and Earle, P. S., 2000, Slow differential rotation of the Earth's inner core indicated by temporal changes in scattering, Nature 405: 445–448.Google Scholar
Vidale, J. E. and Earle, P. S., 2000, Fine-scale heterogeneity in the Earth's inner core, Nature 405: 273–275.Google Scholar
Vidale, J. E., and Hedlin, M. A. H., 2000, Evidence for partial melt at the core–mantle boundary north of Tonga from the strong scattering of seismic waves, Nature 391: 682–685.Google Scholar
Vine, F. J. and Matthews, D. H., 1963, Magnetic anomalies over ocean ridges. Nature 199: 947–949.Google Scholar
Vinet, P., Ferrante, J., Rose, J. H. and Smith, J. R., 1987, Compressibility of solids. J. Geophys. Res. 92: 9319–9325.Google Scholar
Vondrák, J., 1999, Earth rotation parameters, 1899.7–1992.0, after reanalysis within the Hipparcos frame. Surveys in Geophys. 20: 169–195.Google Scholar
Wasson, J. T., 1985, Meteorites: Their Record of Early Solar System History. New York: Freeman.
Watson, E. B. and Harrison, T. M., 2005, Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308: 841–844.Google Scholar
Watt, P. J., Davies, G. F. and O'Connell, R. J., 1976, The elastic properties of composite materials. Rev. Geophys. Space Phys. 14: 541–563.Google Scholar
Watts, A. B., 2001, Isostasy and Flexure of the Lithosphere. Cambridge: Cambridge University Press.
Weaver, H. A., Stern, S. A., Mutchler, M. J., Steffl, A. J., Buie, M. W., Merline, W. J., Spencer, J. R., Young, E. F. and Young, L. A., 2006, Discovery of two new satellites of Pluto. Nature 439: 943–945.Google Scholar
Webb, D. J., 1982, Tides and the evolution of the Earth-Moon system. Geophys. J. R. Astron. Soc. 70: 261–271.Google Scholar
Weertman, J. and Weertman, J. R., 1992, Elementary Dislocation Theory. Oxford: Oxford University Press.
Wetherill, G. W., 1968, Stone meteorites: time of fall and origin. Science 159: 79–82.Google Scholar
Wetherill, G. W., 1981, Nature and origin of basin-forming projectiles. Proc. Lunar Plan. Sci. 12A: 1–18.Google Scholar
Wetherill, G. W., 1985, Asteroidal source of ordinary chondrites. Meteoritics 20: 1–22.Google Scholar
Whaler, K. A., 1980, Does the whole of the Earth's core convect? Nature 287: 528–530.Google Scholar
Wheeler, K. T., Walker, D., Fei, Y., Minarik, W. G., and McDonough, W. F., 2006, Experimental partitioning of uranium between liquid iron sulfide and liquid silicate: implications for radioactivity in the Earth's core. Geochim. Cosmochim. Acta 70: 1537–1547.Google Scholar
White, M. L., 1972, Jet streams and the development of the solar system. Nature Phys. Sci. 238: 104–105.Google Scholar
Wielandt, E., 1987, On the validity of the ray approximation for interpreting delay times. In Nolet, G. (ed.), Seismic Tomography. Dordrecht: Reidel, pp. 85–98.
Wiens, D. A. and Stein, S., 1985, Implications of oceanic intraplate seismicity for plate stresses, driving forces and rheology. Tectonophysics 116: 143–162.Google Scholar
Wignall, P. B., 2001, Large igneous provinces and mass extinctions. Earth Sci. Rev. 53: 1–33.Google Scholar
Williams, G. E., 1990, Tidal rhythmites: key to the history of the Earth's rotation and the lunar orbit. J. Phys. Earth 38: 475–491.Google Scholar
Williams, G. E., 1991, Milankovitch-band cyclicity in bedded halite deposits contemporaneous with Late Ordovician–Early Silurian glaciation, Canning Basin, Western Australia. Earth Plan. Sci. Lett. 103: 143–155.Google Scholar
Williams, G. E., 2000, Geological constraints on the preCambrian history of the Earth's rotation and the Moon's orbit. Rev. Geophys. 38: 37–59.Google Scholar
Williams, J. G., Ratcliffe, J. T. and Boggs, D. H., 2004, Lunar rotation orientation and science. EOS (Trans. AGU Fall Meeting Supplement) 85(47) F603 (Abstract G33A-08).Google Scholar
Williams, Q., Revenaugh, J. and Garnero, E., 1998, A correlation between ultra-low basal velocities in the mantle and hot spots. Science 281: 546–549.Google Scholar
Willson, R. C. and Hudson, H. S., 1991, The sun's luminosity over a complete solar cycle. Nature 351: 42–44.Google Scholar
Wilson, R. L., 1962, The palaeomagnetism of baked contact rocks and reversals of the Earth's magnetic field. Geophys. J. R. Astron. Soc. 7: 194–202.Google Scholar
Wilson, R. L., 1970, Permanent aspects of the Earth's non-dipole magnetic field over Upper Tertiary time. Geophys. J. R. Astron. Soc. 19: 417–437.Google Scholar
Wisdom, J., 1983, Chaotic behaviour and the origin of the 3/1 Kirkwood gap. Icarus 56: 51–74.Google Scholar
Wolbach, W. S., Lewis, R. S. and Anders, E., 1985, Cretaceous extinctions: evidence for wildfire and search for meteoritic material. Science 230: 167–170.Google Scholar
Wood, B. J., 1993, Carbon in the core. Earth Plan. Sci. Lett. 117: 593–607.Google Scholar
Wood, J. A., 1964, The cooling rates and parent planets of several iron meteorites. Icarus 3: 429–459.Google Scholar
Woodhouse, J. H., 1983, The joint inversion of seismic waveforms for lateral variations in Earth structure and earthquake source parameters. In Kanamori, H. and Boschi, E. eds. Proceedings of the Enrico Fermi International School of Physics, 85. Amsterdam: North Holland, pp. 366–397.
Woodhouse, J. H, 1988, The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the earth and the sun. In Doornbos, D. J. (ed.), Physics of the Earth's Interior. Seismological Algorithms, London: Academic Press.
Woodhouse, J. H. and Dziewonski, A. M., 1984, Mapping the upper mantle: three dimensional modelling of Earth structure by inversion of seismic waveforms. J. Geophys. Res. 89: 5953–5986.Google Scholar
Woodhouse, J. H., Giardini, D. and Li, X.-D., 1986, Evidence for inner-core anisotropy from splitting in free oscillation data. Geophys. Res. Lett. 13: 1549–1552.Google Scholar
Xie, S. and Tackley, P. J., 2004, Evolution of helium and argon isotopes in a convecting mantle. Phys. Earth Planet. Inter. 146: 417–439.Google Scholar
Xu, F., Vidale, J. E. and Earle, P. S., 2003, Survey of precursors to P′P′: fine structure of mantle discontinuities. J. Geophys. Res. 108(B1): 2024. doi:10.1029/2001JB000817,2003.Google Scholar
Yeganeh-Haeri, A., 1994, Synthesis and reinvestigation of the elastic properties of magnesium silicate perovskite. Phys. Earth Planet. Inter. 87: 111–121.Google Scholar
Yin, A., 2000, Mode of east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision. J. Geophys. Res. 105(B9): 21745–21759.Google Scholar
Yoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E M. and Folkner, W. M., 2003, Fluid core size of Mars from detection of the solar tide. Science 300: 299–303.Google Scholar
Yoshida, M., 2004, Possible effects of lateral viscosity variations induced by plate tectonic mechanism on geoid inferred from numerical models of mantle convection. Phys. Earth Planet. Inter. 147: 67–85.Google Scholar
Yoshida, S., Sumita, I. and Kumazawa, M., 1996, Growth model of the inner core coupled with outer core dynamics and the resulting elastic anisotropy. J. Geophys. Res. 101: 28085–28103.Google Scholar
Young, C. J., and Lay, T., 1990, Multiple phase analysis of the shear velocity structure in the D″ region beneath Alaska. J. Geophys., Res. 95: 17385–17402.Google Scholar
Yuan, X. et al. (22 authors), 2000, Subduction and collision processes in the central Andes constrained by converted seismic phases. Nature 408: 958–961.Google Scholar
Yukutake, T., 1989, Geomagnetic secular variation: theory. In James (1989), pp. 578–584.
Yukutake, T. and Tachinaka, T., 1969, Separation of the Earth's magnetic field into the drifting and the standing parts. Bull. Earthquake Res. Inst. Univ. Tokyo 47: 65–97.Google Scholar
Zeng, Y., 1993, Theory of scattered P- and S-wave energy in a random isotropic scattering medium. Bull. Seism. Soc. Am. 83(4): 1264–1276.Google Scholar
Zhang, J., Song, X., Li, Y., Richards, P. G., Sun, X. and Waldhauser, F., 2005, Inner core differential motion confirmed by earthquake waveform doublets. Science 309: 1357–1360.Google Scholar
Zhang, Q., Soon, W. H., Baliunas, S. L., Lockwood, G. W., Skiff, B. A. and Radick, R. R., 1994, A method of determining possible brightness variations of the Sun in past centuries from observations of solar-type stars. Astrophys. J. 427: L111–L114.Google Scholar
Zhang, Y. S. and Lay, T., 1999, Evolution of oceanic upper mantle structure. Phys. Earth Planet. Inter. 114: 71–80.Google Scholar
Zhang, Y. S. and Tanimoto, T., 1991, Global Love wave phase velocity variation and it significance to plate tectonics. Phys. Earth Planet. Inter. 66: 160–202.Google Scholar
Zhang, Y. S. and Tanimoto, T., 1992, Ridges, hotspots and their interaction as observed in seismic velocity maps. Nature 335: 4–49.Google Scholar
Zho, W. et al. (15 authors), 2001, Crustal structure of central Tibet as derived from Project INDEPTH wide-angle seismic data. Geophys. J. Int. 145: 486–498.Google Scholar
Abercrombie, R. E. and Brune, J. N., 1994, Evidence for a constant b-value above magnitude 0 in the southern San Andreas, San Jacinto and San Miguel fault zones, and the Long Valley caldera, California. Geophys. Res. Lett. 21: 1647–1650.Google Scholar
Abercrombie, R. and Leary, P., 1993, Source parameters of small earthquakes recorded at 2.5 km depth, Cajon Pass, southern California: implications for earthquake scaling. Geophys. Res. Lett. 20: 1511–1514.Google Scholar
Abercrombie, R. E. and Rice, J. R., 2005, Can observations of earthquake scaling constrain slip weakening? Geophys. J. Int. 162: 406–426.Google Scholar
Acton, G., Yin, Q. -Z., Verosub, K. L., Jovane, L., Roth, A., Jacobsen, B. and Ebel, D. S., 2007, Micromagnetic coercivity distributions and interactions in chondrules with implications for paleointensities of the early Solar System. J. Geophys. Res. 112: B03S90. doi: 10.1029/2006JB004655.Google Scholar
Aharonson, O., Zuber, M. T. and Solomon, S. C., 2004, Crustal remanence in an internally magnetized non uniform shell: a possible source for Mercury's magnetic field. Earth Planet. Sci. Lett. 218: 261–268.Google Scholar
Ahrens, T. J., ed., 1995a, A Handbook of Physical Constants, 1: Global Earth Physics. Washington: AGU.
Ahrens, T. J., ed., 1995b, A Handbook of Physical Constants, 2: Mineral Physics and Crystallography. Washington: AGU.
Ahrens, T. J., ed., 1995c, A Handbook of Physical Constants, 3: Rock Physics and Phase Relations. Washington: AGU.
Aki, K., 1969, Analysis of the seismic coda of local earthquakes as scattered waves. J. Geophys. Res. 74: 615–631.Google Scholar
Aki, K. and Richards, P. G., 2002, Quantitative Seismology, second edn. Sausalito, CA: Science Books.
Alfè, D., Gillan, M. J. and Price, G. D., 2002, Composition and temperature of the Earth's core constrained by combining ab initio calculations and seismic data. Earth Plan. Sci. Lett. 195: 91–98.Google Scholar
Alfvén, H., 1954, The Origin of the Solar System. Oxford: Clarendon Press.
Allègre, C. J., Poirier, J.-P. Humber, E. and Hofmann, A. W., 1995, The chemical composition of the Earth. Earth Plan. Sci. Lett. 134: 515–526.Google Scholar
Allen, C. W., 1973, Astrophysical quantities, third edn. London: Athlone Press.
Alterman, Z., Jarosch, H., and Pekeris, C. L., 1959, Oscillations of the Earth. Proc. Roy. Soc. Lond. A 252: 80–95.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F. and Michel, F. V., 1980, Extraterrestrial cause of the Cretaceous–Tertiary extinction. Science 208: 1095–1108.Google Scholar
Anders, E., 1964, Origin, age and composition of meteorites. Space Sci. Rev. 3: 583–714.Google Scholar
Anderson, E. M., 1905, Dynamics of faulting. Trans. Edinburgh Geol. Soc. 8: 387–402.Google Scholar
Anderson, E. M., 1936, The dynamics of the formation of cone-sheets, ring-dykes, and caldron-subsidences, Proc. Roy. Soc. Edin. 56: 128–156.Google Scholar
Anderson, J. D., Laing, P. A., Lau, E. L., Liu, A. S., Nieto, M. M. and Turyshev, S. G., 1998, Indication, from Pioneer 10/11, Galileo, and Ulysses data of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 81: 2858–2861.Google Scholar
Anderson, O. L., 1995, Equations of State of Solids for Geophysics and Ceramic Science. New York: Oxford University Press.
Anderson, O. L. and Isaak, D. G., 1995, Elastic constants of minerals at high temperature. In Ahrens (1995b), pp. 64–97.
Anderson, O. L. and Zou, K., 1990, Thermodynamic functions and properties of MgO at high compression and high temperature. J. Phys. Chem. Ref. Data 19: 69–83.Google Scholar
Aoyama, Y. and Naito, I., 2001, Atmospheric excitation of the Chandler wobble, 1983–1998. J. Geophys. Res. 106: 8941–8954.Google Scholar
Archer, C. L. and Jacobson, M. Z., 2005, Evaluation of global wind power. J. Geophys. Res. 110: d12110, doi:10.1029/2004JD005462.Google Scholar
Atkinson, B. K., 1982, Subcritical crack propagation in rocks: theory, experimental results and applications. J. Struct. Geol. 4: 41–56.Google Scholar
Balling, R. C. and Cerveny, R. S., 1995, Impact of lunar phase on the timing of global and latitudinal tropospheric temperature maxima. Geophys. Res. Lett. 22(23): 3199–3201.Google Scholar
Bard, B., Hamelin, B., Fairbanks, R. G. and Zindler, A., 1990, Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345: 405–410.Google Scholar
Barton, C. E., 1989, Geomagnetic secular variation: direction and intensity. In James (1989), pp. 560–577.
Bass, J. D., 1995, Elasticity of minerals, glasses and melts. In Ahrens (1995b), pp. 45–63.
Benz, H. M. and Vidale, J. E., 1993, Sharpness of upper-mantle discontinuities determined from high-frequency reflections. Nature 365: 147–150.Google Scholar
Berger, A., 1988, Milankovitch theory and climate. Rev. Geophys. 26: 624–657.Google Scholar
Berger, A. and Loutre, M. F., 1992, Astronomical solutions for paleoclimate studies over the last 3 million years. Earth Plan. Sci. Lett. 111: 369–382.Google Scholar
Bernatowicz, T. J. and Walker, R. M., 1997, Ancient stardust in the laboratory. Physics Today December 1997: 26–32.Google Scholar
Bi, Y., Tan, H. and Jin, F., 2002, Electrical conductivity of iron under shock compression up to 200GPa. J. Phys. Condensed Matter 14; 10849–10854.Google Scholar
Bina, C. R. and Helffrich, G. R., 1994, Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res. 99: 15853–15860.Google Scholar
Birch, F., 1952, Elasticity and constitution of the Earth's interior. J. Geophys. Res. 57: 227–286.Google Scholar
Bird, P., 1978, Finite element modelling of lithosphere deformation: the Zagros collision orogeny. Tectonophysics 50: 307–336.Google Scholar
Bird, P., 1998, Testing hypotheses on plate driving mechanisms with global lithosphere models including topography, thermal structure and faults. J. Geophys. Res. 103(B5): 10115–10129.Google Scholar
Bird, P., 2003, An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems 4(3): 1027. doi: 10.1029/2002GLO16002.Google Scholar
Bird, P. and Kagan, Y. Y., 2004, Plate-tectonic analysis of shallow seismicity; apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bull. Seism. Soc. Am. 94: 2380–2399.Google Scholar
Blackett, P. M. S., 1952, A negative experiment relating to magnetism and the Earth's rotation. Phil. Trans. Roy. Soc. Lond. A245: 309–370.Google Scholar
Bloxham, J., 2002, Time-independent and time-dependent behaviour of high-latitude flux bundles at the core–mantle boundary. Geophys. Res. Lett. 29(18), doi:10.1029/2001GLO14543.Google Scholar
Bloxham, J., Gubbins, D. and Jackson, A., 1989, Geomagnetic secular variation. Phil. Trans. Roy. Soc. Lond. A329: 415–502.Google Scholar
Blyth, A. E., Burbank, D. W., Farley, K. A. and Fielding, E. J., 2000, Structural and topographic evolution of the central Transverse Ranges, California, from apatite fission track, (U-Th)/He and digital elevation model analyses. Basin Research 12: 97–114.Google Scholar
Boehler, R., 1993, Temperatures in the Earth's core from melting point measurements of iron at high static pressures. Nature 363: 534–536.Google Scholar
Boehler, R., 2000, High pressure experiments and the phase diagram of lower mantle and core materials. Rev. Geophys. 38: 221–245.Google Scholar
Boness, D. A., Brown, J. M. and McMahan, A. K., 1986, The electronic thermodynamics of iron under Earth's core conditions. Phys. Earth Planet. Inter. 42: 227–240.Google Scholar
Bonner, J. L., Blackwell, D. D. and Herrin, E. T., 2003, Thermal constraints on earthquake depths in California. Bull. Seism. Soc. Am. 93: 2333–2354.Google Scholar
Born, M. and Wolf, E., 1965, Principles of Optics. Oxford: Pergamon.
Boschi, L. and Dziewonski, A. M., 2000, Whole Earth tomography from delay times of P, PcP, PKP phases: lateral heterogeneities in the outer core, or radial anisotropy in the mantle? J. Geophys. Res. 105: 25567–25594.Google Scholar
Bottke, W. F., Vokrouhlický, D., Rubincam, D. P. and Nesvorný, D., 2005, The Yarkovsky and YORP effects: implications for asteroid dynamics. Ann. Rev. Earth Plan. Sci. 34: 157–191.Google Scholar
Bouhifd, M. A., Gautron, L., Bolfan-Casanova, N., Malavergne, V., Hammouda, T., Andrault, D. and Jephcoat, A. P., 2007, Potassium partitioning into molten iron alloys at high pressure: implications for Earth's core. Phys. Earth Planet. Inter. 160: 22–33.Google Scholar
Bowman, D. D. and King, G. C. P., 2001, Accelerating seismicity and stress accumulation before large earthquakes, Geophys. Res. Lett. 28: 4039–4042.Google Scholar
Boyet, M. and Carlson, R. W., 2005, Nd evidence for early (> 4.53 Ga) global differentiation of the silicate earth. Science 309: 5756–580.Google Scholar
Braginsky, S. I., 1991, Towards a realistic theory of the geodynamo. Geophys. Astrophys. Fluid Dyn. 60: 89–134.Google Scholar
Braginsky, S. I., 1993, MAC-oscillations of the hidden ocean of the core. J. Geomag. Geoelect. 45: 1517–1538.Google Scholar
Braginsky, S. I., 1999, Dynamics of the stably stratified ocean at the top of the core. Phys. Earth Plant. Inter. 111: 21–34.Google Scholar
Braginsky, S. I. and Roberts, P. H., 1995, Equations governing convection in the Earth's core and the geodynamo. Geophys. Astrophys. Fluid Dynam. 79: 1–97.Google Scholar
Brennan, B. J. and Smylie, D. E., 1981, Linear viscoelasticity and dispersion in seismic wave propagation. Rev. Geophys. Space Phys. 19: 233–246.Google Scholar
Bridgman, P. W., 1914, A complete collection of thermodynamic formulas. Phys. Rev. 3: 273–281.Google Scholar
Bridgman, P. W., 1957, Effects of pressure on binary alloys, V and VI. Proc. Am. Acad. Arts Sci. 84: 131–216.Google Scholar
Brown, M. E., Trujillo, C. and Rabinowitz, D., 2004, Discovery of a candidate inner Oort cloud planetoid. Astrophys. J. 617: 645–649.Google Scholar
Brown, M. E., Trujillo, C. and Rabinowitz, D., 2005, Discovery of a planetary-sized object in the scattered Kuiper belt. Astrophys. J. 635: L97–L100.Google Scholar
Brune, J. N., 1968, Seismic moment, seismicity, and rate of slip along major fault zones. J. Geophys. Res. 83: 777–784.Google Scholar
Brune, J. N., 1970, Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75: 4997–5009.Google Scholar
Budner, D. and Cole-Dai, J., 2003, The number and magnitude of large explosive volcanic eruptions between 904 and 1865AD: quantitative evidence from a new South Pole ice core. In Robock, C. and Oppenheimer, C. (eds.), 2003, Volcanism and the Earth's Atmosphere. Washington: American Geophysical Union, pp. 165–176.
Buffett, B. A., 1992, Constraints on magnetic energy and mantle conductivity from the forced nutations of the Earth. J. Geophy. Res. 97: 19581–19597.Google Scholar
Buffett, B. A., 1996, A mechanism for decade fluctuations in the length of day. Geophys. Res. Lett. 23: 3803–3806.Google Scholar
Buffett, B. A., 1997, Geodynamic estimates of the viscosity of the Earth's inner core. Nature 388: 571–573.Google Scholar
Bukowinsky, M. S. T. and Knopoff, L., 1977, Physics and chemistry of iron and potassium. In Manghnani, M. H. and Akimoto, S. (eds.), 1977, High Pressure Research: Applications in Geophysics. New York: Academic Press.
Bullard, E. C., Everett, J. E. and Smith, A. G., 1965, The fit of the continents around the Atlantic. Phil. Trans. Roy. Soc. Lond. A258: 41–51.Google Scholar
Bullard, E. C., Freedman, C., Gellman, H. and Nixon, J., 1950, The westward drift of the Earth's magnetic field. Phil. Trans. Roy. Soc. Lond. A243: 67–92.Google Scholar
Bullard, E. C. and Gellman, H, 1954, Homogeneous dynamos and geomagnetism. Phil. Trans. Roy. Soc. Lond. A247: 213–255.Google Scholar
Bullen, K. E., 1975, The Earth's Density. London: Chapman and Hall.
Bullen, K. E. and Bolt, B. A., 1985, An Introduction to the Theory of Seismology. Cambridge: Cambridge University Press.
Burchfield, J. D., 1975, Lord Kelvin and the Age of the Earth. New York: Science History Publications.
Busse, F. H., 2002, Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids 14: 1301–1314.Google Scholar
Byerlee, J. D., 1978, Friction in rocks. Pure Appl. Geophys. 116: 615–626.Google Scholar
Cagniard, L., 1939, Réflexion et réfraction des ondes séismique progressives. Paris: Gauthier-Villard.
Cagniard, L., 1962, Reflection and Refraction of Progressive Seismic Waves. Translation by E. A. Flinn and C. H. Dix. New York: McGraw-Hill.
Cain, J. C., Wang, Z., Schmitz, D. R. and Meyer, J., 1989, The geomagnetic model spectrum for 1980 and core–crustal separation. Geophys. J. Int. 97: 443–447.Google Scholar
Cande, S. and Kent, D. V., 1995, Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100: 6093–6095.Google Scholar
Canup, R. M. and Asphaug, E., 2001, Origin of the Moon in a giant impact near the end of the Earth's formation. Nature 412: 708–712.Google Scholar
Carlson, R. W., Hilde, T. W. C. and Uyeda, S., 1983, The driving mechanism of plate tectonics: relation to the age of the lithosphere at trenches. Geophys. Res. Lett. 10: 297–300.Google Scholar
Carter, W. E., 1989, Earth orientation. In James (1989), pp. 231–239.
Cazenave, A., 1995, Geoid, topography and distribution of landforms. In Ahrens (1995a), pp. 32–39.
Chambat, F. and Valette, B., 2005, Earth gravity up to second order in topography and density. Phys. Earth Planet. Inter. 151: 89–106.Google Scholar
Chao, B. F., 1995, Anthropogenic impact on global geodynamics due to reservoir water impoundment. Geophys. Res. Lett. 22: 3529–3532.Google Scholar
Chao, B. F., Au, A. Y., Boy, J.-P. and Cox, C. M., 2003, Time-variable gravity signal of an anomalous redistribution of water mass in the extratropic Pacific during 1998–2002. Geochem. Geophys. Geosyst. 4 (11):1096, doi:10.1029/2003GG000589.Google Scholar
Chao, B. F., Rodenburg, E., Sahagian, D. L., Jacobs, D. K. and Schwartz, F. W., 1994, Man made lakes and sea level rise. Nature 370: 258.Google Scholar
Chapman, S. and Bartels, J., 1940, Geomagnetism. London: Oxford University Press.
Chow, T. J. and Patterson, C. C., 1962, The occurrence and significance of lead isotopes in pelagic sediments. Geochim. Cosmochim. Acta 26: 263–308.Google Scholar
Christodoulidis, D. C., Smith, D. E., Williamson, R. G. and Klosko, S. M., 1988, Observed tidal braking in the Earth/Moon/Sun system. J. Geophys. Res. 93: 6216–6236.Google Scholar
Clark, S. P., 1957, Radiative transfer in the Earth's mantle. Trans. Am. Geophys. Un. 38: 931–938.Google Scholar
Clauser, C. and Huenges, E., 1995, Thermal conductivity of rocks and minerals. In Ahrens (1995c), pp. 105–126.
Clayton, R. N., 2002, Self-shielding in the solar nebula. Nature 415; 860–861.Google Scholar
Coblentz, D. D., Zhou, S., Hillis, R. R., Richardson, R. M. and Sandiford, M., 1998, Topography, boundary forces, and the Indo-Australian intraplate stress field. J. Geophys. Res. 103(B1): 919–931.Google Scholar
Cohen, B. A., Swindle, T. D. and Kring, D. A., 2000, Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290: 1754–1756.Google Scholar
Connerney, J. E. P. et al. (10 authors), 1999, Magnetic lineations in the ancient crust of Mars. Science 284; 794–798.Google Scholar
Constable, C. G. and Parker, R. L., 1988, Statistics of the secular variation for the past 5 my. J. Geophys. Res. 93: 11569–11581.Google Scholar
Courboulex, F., Singh, S. K., Pacheco, F. and Ammon, C. J., 1997, The 1995 Colima-Jalisco, Mexico, earthquake (Mw8): a study of the rupture process. Geophy. Res. Lett. 24(9): 1019–1022.Google Scholar
Courtillot, V., 1999, Evolutionary Catastrophes: the Science of Mass Extinction. Cambridge: Cambridge University Press.
Courtillot, V. and LeMouël, J. L., 1984, Geomagnetic secular variation impulses. Nature 311: 709–716.Google Scholar
Cox, A., 1973, Plate Tectonics and Geomagnetic Reversals. San Francisco: W. H. Freeman.
Cox, A., Doell, R. R. and Dalrymple, G. B., 1963, Geomagnetic polarity epochs and pleistocene geochronometry. Nature 198: 1049–1051.Google Scholar
Cox, A. and Hart, R. B., 1986, Plate Tectonics: How it Works. Palo Alto: Blackwell Scientific Publications.
Cox, C. M. and Chao, B. F., 2002, Detection of a large scale mass redistribution in the terrestrial system since 1998. Science 297: 831–833.Google Scholar
Crampin, S., 1977, A review of the effects of anisotropic layering on the propagation of seismic waves. Geophys. J. R. Astr. Soc. 49: 9–27.Google Scholar
Creager, K. C., 1997, Inner core rotation from small scale heterogeneity and time-varying travel times. Science 278: 1284–1288.Google Scholar
Creer, K. M. and Tucholka, P., 1982, Secular variation as recorded in lake sediments: a discussion of North American and European results. Phil. Trans. Roy. Soc. Lond A306: 87–102.Google Scholar
Curie, P., 1894, Sur la symétrie dans les phénomènes physiques, symétrie d'un champ electrique et d'un champ magnétique. J. de Phys. (Paris) 3: 393–415.Google Scholar
Dahlen, F. A., Hung, S.-H. and Nolet, G., 2000, Fréchet kernels for finite-frequency traveltimes – I. Theory. Geophys. J. Int. 141: 157–174.Google Scholar
Dahlen, F. A. and Tromp, J., 1998, Theoretical Seismology. Princeton: Princeton University Press.
Dainty, A. M., 1990, Studies of coda using array and three-component processing. Pure Appl. Geoph. 132: 221–244.Google Scholar
Dainty, A., 1995, The influence of seismic scattering on monitoring. In Husebye, E. S. and Dainty, A. (eds.), Monitoring a Comprehensive Test Ban Treaty. Dordrecht: Kluwer, pp. 663–688.
Dalrymple, G. B. and Ryder, G., 1993, 40Ar/39Ar age spectra of Apollo 15 impact melt rocks by laser step-heating and their bearing on the history of lunar basin formation. J. Geophys. Res. 98(E7): 13085–13096.Google Scholar
Dalrymple, G. B. and Ryder, G., 1996, Argon-40/argon-39 age spectra of Apollo 17 highlands breccia samples by laser step heating and the age of the Serenitatis basin. J. Geophys. Res. 101(E11): 26069–26084.Google Scholar
Das, S., 1981, Three-dimensional spontaneous rupture propagation and implications for the earthquake source mechanism. Geophys. J. Roy. Astr. Soc. 67: 375–393.Google Scholar
Davis, D., Suppe, J. and Dahlen, F. A., 1983, Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 88: 1153–1172.Google Scholar
Davis, P. M., 1983, Surface deformation associated with a dipping hydrofracture. J. Geophys. Res. 88: 5826–5833.Google Scholar
Davis, P. M., 1986, Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space with reference to Kilauea volcano, Hawaii. J. Geophys. Res. 91: 7429–7430.Google Scholar
Davis, P. M., 2003, Azimuthal variation in seismic anisotropy of the Southern California uppermost mantle. J. Geophys. Res. 108(B1): 2052. doi10.1029/2001JB000637,2003.Google Scholar
Davis, P. M., Rubenstein, J. L., Liu, K. H., Gao, S. S. and Knopoff, L., 2000, Northridge earthquake damage caused by geologic focusing of seismic waves. Science 289: 1746–1750.Google Scholar
Dearden, E. W., 1995, Expansion formulae for first order partial derivatives of thermal variables. Eur. J. Phys. 16: 76–79.Google Scholar
Degens, E. T. and Ross, D. A. (eds.), 1969, Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer.
Dehant, V., Creager, K. C., Karato, S. -I. and Zatman, S. (eds.), 2003, Earth's Core: Dynamics, Structure, Rotation. Geodynamics Series 31. Washington: American Geophysical Union.
DeHoop, A. T., 1960, Modification of Cagniard's method for solving seismic pulse problems. Appl. Sci. Res. B8: 349–356.Google Scholar
DeMets, C., Gordon, R. G., Argus, D. F. and Stein, S., 1990, Current plate motions. Geophys. J. Int. 101: 425–478.Google Scholar
DeMets, C., Gordon, R. G., Argus, D. F. and Stein, S., 1994, Effect of recent revisions of the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 21: 2191–2194.Google Scholar
DePaolo, D. J., 1981, Nd isotopic studies: some new perspectives on Earth structure and evolution. EOS (Trans. Am. Geophys. Un.) 62: 137–140 (April 7, 1981).Google Scholar
Deuss, A. and Woodhouse, J., 2001, Seismic observations of splitting of the mid-transition zone discontinuity in Earth's mantle. Science 294: 354–357.Google Scholar
Deuss, A., Woodhouse, J. H., Paulssen, H. and Trampert, J., 2000, The observation of inner core shear waves. Geophys. J. Int. 142: 67–73.Google Scholar
Dieterich, J. H., 1979a, Modeling of rock friction 1, experimental results and constitutive equations. J. Geophys. Res. 84: 2161–2168.Google Scholar
Dieterich, J. H., 1979b, Modeling of rock friction 2, simulation of preseismic slip. J. Geophys. Res. 84: 2169–2175.Google Scholar
Dieterich, J., 1994, A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99: 2601–2618.Google Scholar
Dobson, D. P., 2002, Self-diffusion in liquid Fe at high pressure. Phys. Earth Planet. Inter. 130: 271–284.Google Scholar
Dobson, D. P. and Brodholt, J. P., 2000, The electrical conductivity and thermal profile of the Earth's mid mantle. Geophys. Res. Lett. 27: 2325–2328.Google Scholar
Doornbos, D. J. 1974, The anelasticity of the inner core. Geophys. J. R. Astron. Soc. 38: 397–415.Google Scholar
Doornbos, D. J., 1992, Diffraction and seismic tomography. Geophys. J. Int. 108: 256–266.Google Scholar
Doornbos, D. J. and Hilton, T., 1989, Models of the core–mantle boundary and the travel times of internally reflected core phases. J. Geophys. Res. 94: 15741–15751.Google Scholar
Dragert, H. K., Wang, K. and James, T. S., 2001, A silent slip event on the deeper Cascadia subduction interface, Science 292: 1525–1528.Google Scholar
Duffield, W. A., 1972, A naturally occurring model of global plate tectonics. J. Geophys. Res. 77: 2543–2555.Google Scholar
Dugdale, J. S. and MacDonald, D. K. C., 1953, Thermal expansion of solids. Phys. Rev. 89: 832–834.Google Scholar
Dunlop, D. J. and Özdemir, Ö., 1997, Rock Magnetism: Fundamentals and Frontiers. Cambridge: Cambridge University Press.
Dwight, H. B., 1961, Tables of Integrals and Other Mathematical Data, fourth edn. New York: MacMillan.
Dziewonski, A. M., 1984, Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res. 89: 5929–5952.Google Scholar
Dziewonski, A. M. and Anderson, D. L., 1981, Preliminary reference Earth model. Phys. Earth Planet. Inter. 25: 297–356.Google Scholar
Dziewonski, A. M., Chou, T.-A. and Woodhouse, J. H., 1981, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 86: 2825–2852.Google Scholar
Earle, P. S. and Shearer, P. M., 2001, Observations of PKKP precursors used to estimate small scale topography on the core–mantle boundary. Science 277: 667–670.Google Scholar
Eaton, J. P., Richter, D. H. and Ault, W. U., 1961, The tsunami of May 3, 1960, on the island of Hawaii. Bull. Seism. Soc. Am. 51: 135–157.Google Scholar
Ekman, M., 1993, A concise history of the theories of tides, precession-nutation and polar motion (from antiquity to 1950). Surveys in Geophys. 14: 585–617.Google Scholar
Eldridge, J. S., O'Kelly, G. D. and Northcutt, K. J., 1974, Primordial radioelement concentrations in rocks from the Taurus-Littrow. Proc. Fifth Lunar Conference (Suppl. 5, Geochim. Cosmochim. Acta) 2: 1025–1031.Google Scholar
Elsasser, W. M., 1978, Memoirs of a Physicist in the Atomic Age. New York: Science History Publications and Bristol: Adam Hilger.
Eshelby, J. D., 1973, Dislocation theory for geophysical applications. Phil. Trans. Roy. Soc. Lond A274: 331–338.Google Scholar
Eymin, C. and Hulot, G., 2005, On core surface flows inferred from satellite magnetic data. Phys. Earth Planet. Inter. 152: 200–220.Google Scholar
Falzone, A. J. and Stacey, F. D., 1980, Second order elasticity theory: explanation for the high Poisson's ratio of the inner core. Phys. Earth Planet. Inter. 21: 371–377.Google Scholar
Farley, K. A., Vokrouhlický, D., Bottke, W. F. and Nesvorný, D., 2006, A late Miocene dust shower from the break-up of an asteroid in the main belt. Nature 439: 295–297.Google Scholar
Fearn, D. R. and Loper, D. E., 1981, Compositional convection and stratification of the Earth's core. Nature 289: 393–394.Google Scholar
Fegley, B., 1995, Properties and composition of the terrestrial oceans and of the atmospheres of the Earth and other planets. In Ahrens (1995a). pp. 320–345.
Felzer, K. R. and Brodsky, E. E., 2006, Decay of aftershock density with distance indicates triggering by dynamic stress. Nature 411: 735–738.Google Scholar
Fisher, D. E., 1975, Trapped helium and argon and the formation of the atmosphere by degassing. Nature 256: 113–114.Google Scholar
Fitzgerald, R., 2003, Isotope measurements firm up knowledge of Earth's formation. Physics Today January 2003: 16–18.Google Scholar
Flanagan, M. P. and Shearer, P. M, 1998, Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. J. Geophys. Res. 103: 2673–2692.Google Scholar
Fleischer, R. L., Naeser, C. W., Price, P. B., Walker, R. M. and Maurette, M., 1965, Cosmic ray exposure ages of tektites by the fission track technique. J. Geophys. Res. 70: 1491–1496.Google Scholar
Forsyth, D. W., 1975, The early structural evolution and anisotropy of the oceanic upper mantle. Geophys. J. R. Astr. Soc. 43: 103–162.Google Scholar
Forte, A. M. and Mitrovica, J. X., 2001, Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 410: 1049–1056.Google Scholar
Fowler, W. A., 1961, Rutherford and nuclear cosmo-chronology. Proc. Rutherford Jubilee Intern. Conf., ed. Birks, J. B., pp. 640–676. London: Heywood.
Furumura, T. and Kennett, B. L. N., 2005, Subduction zone guided waves and the heterogeneity structure of the subducted plate. J. Geophys. Res. 110: B10302, doi:10.1029/2004JB003486.Google Scholar
Gessman, C. K. and Wood, B. J., 2002, Potassium in the Earth's core? Earth Plan. Sci. Lett. 200: 63–78.Google Scholar
Gillet, P., Richet, P., Guyot, F. and Fiquet, G., 1991, High temperature thermodynamic properties of forsterite. J. Geophys. Res. 96: 11805–11816.Google Scholar
Gilvarry, J. J., 1956, The Lindemann and Grüneisen laws. Phys. Rev. 102: 308–316.Google Scholar
Glatzmaier, G. A. and Roberts, P. H., 1995a, A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter. 91: 63–75.Google Scholar
Glatzmaier, G. A. and Roberts, P. H., 1995b, A three-dimensional self consistent computer simulation of a geomagnetic field reversal. Nature 377: 203–209.Google Scholar
Glatzmaier, G. A. and Roberts, P. H., 1996, Rotation and magnetism of the Earth's inner core. Science 274: 1887–1891.Google Scholar
Goldstein, J. I. and Ogilvie, R. E., 1965, A re-evaluation of the iron-rich portion of the Fe-Ni system. Trans. Metall. Soc. AIME 233: 2083–2087.Google Scholar
Goncharov, A. F., Struzhkin, V. V. and Jacobsen, S. D., 2006, Reduced radiative conductivity of low-spin (Mg, Fe)O in the lower mantle. Science 312: 1205–1208.Google Scholar
Gordon, A. H., 1994, Weekdays warmer than weekends. Nature 367: 325–326.Google Scholar
Gough, D. I. and Gough, W. I., 1970, Stress and deflection in the lithosphere near Lake Kariba. Geophys. J. Roy. Astron. Soc. 21: 65–78.Google Scholar
Gradstein, F. M. et al. (40 authors), 2005, A Geologic Time Scale 2004. Cambridge: Cambridge University Press. (www.stratigraphy.org/gts.htm).
Grand, S. P. 2001, The implications for mantle flow from global seismic tomography. In Integrated models of Earth structure and evolution, AGU Virtual Spring Meeting, 20 June 2001. (www.agu.org/meetings/umeeting/.)
Grand, S. P., Hilst, R. D. and Widiyantoro, S., 1997, Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7: 1–7.Google Scholar
Gray, C. M., Papanastassiou, D. A. and Wasserburg, G. J., 1973, The identification of early condensates from the solar nebula. Icarus 20: 213–239.Google Scholar
Gross, R. S., 2000, The excitation of the Chandler wobble. Geophys. Res. Lett. 27: 2329–2332.Google Scholar
Gross, R. S., 2001, A combined length-of-day series spanning 1832–1997: LUNAR97. Phys. Earth Planet. Inter. 123: 65–76.Google Scholar
Gubbins, D., 1977, Energetics of the Earth's core. J. Geophys. 43: 453–464.Google Scholar
Gubbins, D., 1994, Geomagnetic polarity reversals: a connection with secular variation and core–mantle interaction? Rev. Geophys. 32: 61–83.Google Scholar
Gubbins, D., 2003, Thermal core–mantle interactions: theory and observations. In Dehant et al. (2003), pp. 163–179.
Gung, Y. C. and Romanowicz, B., 2004, Q tomography of the upper mantle using three component long period waveforms. Geophys. J. Int. 157: 813–830.Google Scholar
Gutenberg, B. and Richter, C. F., 1941, Seismicity of the Earth. Geol. Soc. Am. Spec. Pap. 34: 1–131.Google Scholar
Haak, V. and Jones, A. G., 1997, Introduction to special section: the KTB deep drill hole. J. Geophys. Res. 102(B8): 18175–18177.Google Scholar
Haddon, R. A. W., 1972, Corrugations on the CMB or transition layers between inner and outer cores? Trans. Am. Geophys. Un. 53: 600.Google Scholar
Haddon, R. A. W. and Cleary, J. R., 1974, Evidence for scattering of seismic PKP waves near the mantle–core boundary, Phys. Earth Planet. Int. 8: 211–234.Google Scholar
Haddon, R. A. W., Husebye, E. S. and King, D. W., 1977, Origins of precursors to PP. Phys. Earth Planet. Int. 14: 41–70.Google Scholar
Hager, B. H., 1984, Subducted slabs and the geoid: constraints on mantle rheology and flow. J. Geophys. Res. 89: 6003–6015.Google Scholar
Hager, B. H. and Richards, M. A., 1989, Long wavelength variations in the Earth's geoid: physical models and dynamical implications. Phil. Trans. Roy. Soc. Lond. A328: 309–327.Google Scholar
Hale, C. J., 1987, The intensity of the geomagnetic field at 3.5 Ga: paleointensity results from the Komati Formation, Barberton Mountain Land, South Africa. Earth Plan. Sci. Lett. 86: 354–364.Google Scholar
Halls, H. C., McArdle, N. J., Gratton, M. H. and Shaw, J., 2004, Microwave paleointensities from dyke chilled margins: a way to obtain long-term variations in geodynamo intensity for the last three billion years. Phys. Earth Planet. Inter. 147: 183–195.Google Scholar
Han, D. and Wahr, J., 1995, The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound. Geophys. J. Int. 120: 287–311.Google Scholar
Harrison, T. M., Blichert-Toft, J., Müller, W., Albarede, F., Holden, P. and Mojzsis, S. J., 2005, Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310: 1947–1950.Google Scholar
Hart, R., Hogan, L. and Dymond, J., 1985, The closed system approximation for evolution of argon and helium in the mantle, crust and atmosphere. Chem. Geol. (Isotope Geoscience Section) 52: 45–73.Google Scholar
Hartman, W. K., 2003, Megaregolith evolution and cratering cataclysm models – lunar cataclysm as a misconception (28 years later). Meteoritics and Planetary Science 38: 579–593.Google Scholar
Hasegawa, A., 1989, Seismicity: subduction zone. In James (1989), pp. 1054–1061.
Hasegawa, A., Zhao, D., Shuichiro, H., Yamamoto, A. and Horiuchi, S., 1991, Deep structure of the northeastern Japan arc and its relationship to seismic and volcanic activity. Nature 352: 683–689.Google Scholar
Hashin, Z. and Shtrikman, S., 1963, A variational approach to the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11: 127–140.Google Scholar
Haskell, N. A., 1935, The motion of a fluid under a surface load, 1, Physics 6: 265–269.Google Scholar
Haskell, N. A., 1969, Elastic displacements in the near-field of a propagating fault, Bull. Seism. Soc. Am. 59: 865–908.Google Scholar
Hayatsu, A. and Waboso, C. E., 1985, The solubility of rare gases in silicate melts and implications for K-Ar dating. Chem. Geology (Isotope Geoscience Section) 52: 97–102.Google Scholar
Hearn, E. H., 2003, What can GPS data tell us about the dynamics of post-seismic deformation? Geophys. J. Int. 155: 753–777.Google Scholar
Hedlin, M. A. H. and Shearer, P. M., 2000, An analysis of large-scale variations in small-scale mantle heterogeneity using global seismographic network recordings of precursors to PKP. J. Geophys. Res. 105: 13655–13673.Google Scholar
Heirtzler, J. R., LePichon, X. and Baron, J. G., 1966, Magnetic anomalies over the Reykjannes Ridge. Deep Sea Res. 13: 427–443.Google Scholar
Hellings, R. W., Adams, P. J., Anderson, J. D., Keesey, M. S., Lau, E. L. and Standish, E. M., 1983, Experimental test of the variability of G using Viking Lander ranging data. Phys. Rev. Lett. 51: 1609–1612.Google Scholar
Helmholtz, H., 1856, On the interaction of natural forces. Phil. Mag. 11: 489–578.Google Scholar
Henry, C. and Das, S., 2001, Aftershock zones of large shallow earthquakes: fault dimensions, aftershock area expansion and scaling relations. Geophys. J. Int. 147: 272–293.Google Scholar
Hess, H. H, 1964, Seismic anisotropy of the upper mantle under oceans. Nature 203: 629–631.Google Scholar
Hide, R., 1966, Free hydromagnetic oscillations of the Earth's core and the theory of the geomagnetic secular variation. Phil. Trans. Roy. Soc. Lond. A259: 615–650.Google Scholar
Hill, R., 1952, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A65: 349–354.Google Scholar
Hillgren, V. J. J., Schwager, B. and Boehler, R., 2005, Potassium as a heat source in the core? Metal–silicate partitioning of K and other metals. Eos (Trans. Am. Geophys. Un.) 86(52), Fall meeting abstract MR13A-0086.Google Scholar
Hirao, N., Ohtani, E., Kondo, T., Endo, N., Kuba, T., Suzuki, T. and Kikegawa, T., 2006, Partitioning of potassium between iron and silicate at the core-mantle boundary. Geophys. Res. Lett. 33: L08303. doi: 10:1029/2005GLO025324,2006.Google Scholar
Hollerbach, R. and Jones, C. A., 1995, On the magnetically stabilizing role of the Earth's inner core. Phys. Earth Planet. Inter. 87: 171–181.Google Scholar
Holme, R. and deViron, O., 2005, Geomagnetic jerks and a high resolution length-of-day profile. Geophys. J. Int. 160: 435–439.Google Scholar
Holmes, A., 1965, Principles of Physical Geology. London: Nelson.
Horton, B. K., 1999, Erosional control on the geometry and kinematics of the thrust belt development in the central Andes. Tectonics 18(6): 1292–1304.Google Scholar
Hsu, W., Wasserburg, G. J. and Huss, G. R., 2000, High time resolution by use of the 26Al chronometer in the multistage formation of a CAI. Earth Plan. Sci. Lett. 182: 15–29.Google Scholar
Hurley, P. M., Hughes, H., Faure, G., Fairbairn, H. W. and Pinson, W. H., 1962, Radiogenic strontium-87 model of continent formation, J. Geophys. Res. 67: 5315–5334.Google Scholar
Ide, S., Beroza, G. C., Prejean, S. G. and Ellsworth, W., 2003, Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. J. Geophys. Res. 108(B5): doi:10.1029/2001JB001617.Google Scholar
Isaak, D. G. and Masuda, K., 1995, Elastic and viscoelastic properties of α iron at high temperatures. J. Geophys. Res. 100: 17689–17698.Google Scholar
Ishii, M., Shearer, P. M., Houston, H. and Vidale, J. E., 2005, Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature 435: 933–936.Google Scholar
Ishikawa, Y. and Syono, Y., 1963, Order-disorder transformation and reverse thermoremanent magnetism in the FeTiO3–Fe2O3 system. J. Phys. Chem. Solids 24: 517–528.Google Scholar
Ita, J. and Stixrude, L., 1992, Petrology, elasticity, and composition of the mantle transition zone. J. Geophys. Res. 97: 6849–6866.Google Scholar
Jackson, D. D., Shen, Z.-K., Potter, D., Ge, X.-B. and Sung, L., 1997, Southern California deformation. Science 277: 1621–1622.Google Scholar
Jackson, I., Webb, S., Weston, L. and Boness, D., 2005, Frequency dependence of elastic wave speeds at high temperature: a direct experimental demonstration. Phys. Earth Planet. Inter. 148: 85–96.Google Scholar
Jackson, J. A. and White, N. J., 1989, Normal faulting in the upper continental crust: observations from regions of active extension. J. Struct. Geol. 11: 15–36.Google Scholar
Jaeger, J. C. and Cook, N. G., 1984, Fundamentals of Rock Mechanics, second edn. New York: Chapman and Hall.
James, D. E. (ed.), 1989, The Encyclopedia of Solid Earth Geophysics. New York: Van Nostrand-Reinhold.
Jeffreys, H., 1959, The Earth, its Origin, History and Physical Constitution, fourth edn. Cambridge: Cambridge University Press.
Johnston, M. J. S., Borcherdt, R. D., Linde, A. T. and Gladwin, M. T., 2006, Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M6.0 Parkfield, California, earthquake: implications for nucleation, fault response, earthquake prediction and tremor. Bull. Seism. Soc. Am. 96(4B): S56–S72.Google Scholar
Johnston, M. J. S. and Linde, A. T., 2002, Implications of crustal strain during conventional slow and silent earthquakes. In Lee, W., Kanamori, H., Jennings, P. and Kisslinger, C, International Handbook of Earthquake and Engineering Seismology, 81A: 589–605. London: Academic Press.
Jones, L. E., Mori, J. and Helmberger, D. V., 1992, Short-period constraints on the upper mantle discontinuities J. Geophys. Res. 97: 8765–8774.Google Scholar
Jones, G. M., 1977, Thermal interaction of the core and mantle and long term behaviour of the geomagnetic field. J. Geophys. Res. 82: 1703–1709.Google Scholar
Kagan, Y. Y., 1991, Seismic moment distribution. Geophys. J. Int. 106: 123–134.Google Scholar
Kagan, Y. Y. 2002a, Seismic moment distribution revisited: I. Statistical results. Geophys. J. Int. 148: 520–541.Google Scholar
Kagan, Y. Y. 2002b, Seismic moment distribution revisited: II. Moment conservation principle. Geophys. J. Int. 149: 731–754.Google Scholar
Kagan, Y. Y. and Jackson, D. D., 1994, Long-term probabilistic forecasting of earthquakes. J. Geophys. Res. 99: 13685–13700.Google Scholar
Kagan, Y. Y. and Jackson, D. D., 2000, Probabilistic forecasting of earthquakes. Int. J. Geophys. 143: 438–453.Google Scholar
Kagan, Y. Y. and Knopoff, L., 1987, Statistical short-term earthquake prediction. Science 236: 1563–1567.Google Scholar
Kamo, S. L., Czamanske, G. K., Amelin, Y., Fedorenko, V. A., Davis, D. W. and Trofimov, V. R., 2003, Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251Ma. Earth Plan. Sci. Lett. 214: 75–91.Google Scholar
Kanamori, H., 1977, The energy release in great earthquakes. J. Geophys. Res. 82: 2981–2987.Google Scholar
Kanamori, H. and Anderson, D. L., 1975, Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am. 65: 1073–1095.Google Scholar
Kanamori, H. and Brodsky, E. E., 2004, The physics of earthquakes. Rep. Prog. Phys. 67: 1429–1496.Google Scholar
Kaneshima, S. and Helffrich, G., 1999, Dipping low-velocity layer in the mid-lower mantle: evidence for geochemical heterogeneity. Science 283: 1888–1892.Google Scholar
Karato, S., 1993, Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20: 1623–1626.Google Scholar
Kaufmann, G. and Lambeck, K., 2000, Mantle dynamics, postglacial rebound and the radial viscosity profile. Phys. Earth Planet. Inter. 121: 301–324.Google Scholar
Kaula, W. M., 1968, An Introduction to Planetary Physics: the Terrestrial Planets. New York: Wiley.
Kawakatsu, H., 2006, Sharp and seismically transparent inner core boundary region revealed by an entire network observation of near vertical PKiKP. Earth Planets Space 58(7): 855–863.Google Scholar
Keane, A., 1954, An investigation of finite strain in an isotropic material subjected to hydrostatic pressure and its seismological applications. Australian J. Phys. 7: 322–333.Google Scholar
Keating, P. N., 1966, Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145: 637–645.Google Scholar
Keen, C. E. and Barrett, D. L., 1971, A measurement of seismic anisotropy in the Northeast Pacific. Can. J. Earth Sci. 8: 1056–1064.Google Scholar
Keilis-Borok, V., 2002, Earthquake prediction: state-of-the-art and emerging possibilities, Ann. Rev. Earth Planet. Sci. 30: 1–33.Google Scholar
Keldysh, M. V., 1977, Venus exploration with Venera 9 and Venera 10 spacecraft. Icarus 30: 605–625.Google Scholar
Kelvin, Lord (Thomson, William), 1862, On the age of the Sun's heat. Macmillan Mag. March 5, 1862, 349–368.Google Scholar
Kelvin, Lord (Thomson, William), 1863, On the secular cooling of the Earth. Phil. Mag. 25: 1–14.Google Scholar
Kennett, B. L. N., 1983, Seismic Wave Propagation in Stratified Media. Cambridge: Cambridge University Press.
Kennett, B. L. N. and Engdahl, E. R., 1991, Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 105: 429–465.Google Scholar
Kennett, B. L. N., Engdahl, E. R. and Buland, A., 1995, Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 122: 108–124.Google Scholar
Kennett, B. L. N., Widiyantoro, S. and Hilst, R. D., 1998, Joint seismic tomography for bulk-sound and shear wavespeed in the Earth's mantle. J. Geophys. Res. 103: 12469–12493.Google Scholar
Kent, D. V. and Smethurst, M. A., 1998, Shallow bias of magnetic inclinations in the Paleozoic and Precambrian. Earth Plan. Sci. Lett. 160: 391–402.Google Scholar
Kesson, S. E. and Fitzgerald, J. D., 1992, Partitioning of MgO, FeO, NiO, MnO and Cr2O3 between magnesian silicate perovskite and magnesiowustite; implications for the origin of inclusions in diamonds and the composition of the lower mantle. Earth Plan. Sci. Lett. 111: 229–240.Google Scholar
Kieffer, S. W., Getting, I. C. and Kennedy, G. C., 1976, Experimental determination of the thermal diffusivity of teflon, sodium chloride, quartz and silica. J. Geophys. Res. 81: 3018–3024.Google Scholar
King, C., 1893, The age of the Earth. Am. J. Science 45: 1–20.Google Scholar
King, S. D., 2002, Geoid and topography over subduction zones: the effect of phase transformations. J. Gephys. Res. 107 (B1). doi:10.1029/2000JB000141.Google Scholar
Kittel, C., 1949, Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21: 541–583.Google Scholar
Kittel, C., 1971, Introduction to Solid State Physics, fourth edn. New York: Wiley.
Kivelson, M. J. K., Khurana, K., Russell, C., Volwerk, M., Walker, R. J. and Zimmer, C., 2000, Galileo magnetometer measurements; a stronger case for a subsurface ocean at Europa. Science 289: 1340–1343.Google Scholar
Knopoff, L., 1958, Energy release in earthquakes. Geophys. J. Roy. Astr. Soc. 1: 44–52.Google Scholar
Knopoff, L., 1964, Q. Revs. Geophys. 2: 625–660.
Knopoff, L., 2001, Rayleigh waves without cubic equations. Computational Seismology 32: 31–37.Google Scholar
Kombayashi, T., Omori, S. and Maruyama, S., 2005, Experimental and theoretical study of dense hydrous magnesium silicates in the deep mantle. Phys. Earth Planet. Inter. 153: 191–209.Google Scholar
Kong, X. and Bird, P., 1996, Neotectonics of Asia: thin shell finite-element with faults. In Yin, A. and Harrison, T. M. (eds.) The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, pp. 18–34.
Kono, M. and Roberts, P. H., 2002, Recent geodynamo simulations and observations of the geomagnetic field. Revs. Geophys. 40, doi: 10.1029/2000RG000102.Google Scholar
Konopliv, A. S. and Yoder, C. F., 1996, Venusian k 2 tidal Love number from Magellan and PVO tracking data. Geophys. Res. Lett. 23: 1857–1860.Google Scholar
Kreemer, C., Holt, W. E. and Haines, A. J., 2003, An integrated model of present-day plate motions and plate boundary deformation. Geophys. J. Int. 154: 8–34.Google Scholar
Kring, D. A. and Cohen, B. A., 2002, Cataclysmic bombardment throughout the inner Solar System 3.9–4.0 Ga. J. Geophys. Res. 107(E2). doi 10.1029/2001JE001529.Google Scholar
Kuang, W. and Bloxham, J., 1997, An Earth-like numerical dynamo model. Nature 389: 371–374.Google Scholar
Kyte, F. T., Smit, J. and Wasson, J. T., 1985, Siderophile interelement variations in the Cretaceous–Tertiary boundary sediments from Caravaca, Spain. Earth Plan. Sci. Lett. 73: 183–195.Google Scholar
Lachenbruch, A. H., 1970, Crustal temperature and heat production: implications of the linear heat flow relation. J. Geophys. Res. 75: 3291–3300.Google Scholar
Lachenbruch, A. H. and Sass, J. H., 1980, Heat flow and energetics of the San Andreas fault zone. J. Geophys. Res. 85: 6185–6222 and 86: 7171–7172.Google Scholar
Laj, C., Mazaud, A., Weeks, R., Fuller, M. and Herrero-Bervera, E., 1992, Statistical assessment of the preferred longitude bands for recent geomagnetic reversal records. Geophys. Res. Lett. 19: 2003–2006.Google Scholar
Lamb, H., 1904, On the propagation of tremors over the surface of an elastic solid. Phil. Trans. Roy. Soc. Lond. A203: 1–42.Google Scholar
Lamb, S. and Davis, P., 2003, Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425: 792–797.Google Scholar
Lambeck, K., 1980, The Earth's Variable Rotation. Cambridge: Cambridge University Press.
Lambeck, K., 1990, Glacial rebound, sea level change and mantle viscosity. Q. J. Roy. Astron. Soc. 31: 1–30.Google Scholar
Lambeck, K., Johnston, P., Smither, C. and Nakada, M., 1996, Glacial rebound of the British Isles – III. Constraints on mantle viscosity. Geophys. J. Int. 125: 340–354.Google Scholar
Landau, L. D. and Lifshitz, E. M., 1975, Theory of Elasticity. Oxford: Pergamon Press.
Langel, R. A. and Estes, R. H., 1982, A geomagnetic field spectrum. Geophys. Res. Lett. 9: 250–253.Google Scholar
Lapwood, E. R., 1949, The disturbance due to a line source in a semi-infinite elastic medium. Phil. Trans. Roy. Soc., Lond. A242: 63–100.Google Scholar
Larmor, J., 1919, How could a rotating body such as the Sun become a magnet? Report of the 87th (1919) meeting of the British Association for the Advancement of Science, pp. 159–160.Google Scholar
Laske, G. and Masters, G., 1998, Surface-wave polarization data and global anisotropic structure. Geophys. J. Int. 132: 508–520.Google Scholar
Laske, G. and Masters, G., 2003, The Earth's free oscillations and the differential rotation of the inner core. In Dehant et al. (2003), pp. 5–21.
Lay, T. et al. (14 authors), 2005, The great Sumatra–Andaman earthquake of 26 December 2004. Science 308: 1127–1133.Google Scholar
Lebedev, S., Chevrot, S. and Hilst, R. D., 2002, Seismic evidence for olivine phase changes at the 410- and 660-kilometer discontinuities. Science 296: 1300–1302.Google Scholar
Lee, D. C., Halliday, A. N., Snyder, G. A. and Taylor, L. A., 1997, Age and origin of the moon. Science 278: 1098–1103.Google Scholar
Lemoine, F. G. et al. (15 authors), 1998, The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM 96, NASA Technical Paper, no. 1998–206861.
Lerch, F. J. et al. (20 authors), 1994, A geopotential model from satellite tracking, altimeter and surface gravity data: GEM-T3. J. Geophys. Res. 99: 2815–2839.Google Scholar
Lin, J.-F., Jacobsen, S. D., Sturhahn, W., Jackson, J. M., Zhao, J. and Yoo, C.-S., 2006, Sound velocities of ferropericlase in the Earth's lower mantle. Geophys. Res. Lett. 33: L22304, doi:10.1029/2006GL028099,2006.Google Scholar
Lister, J. R. and Buffett, B. A., 1995, The strength and efficiency of thermal and compositional convection in the geodynamo. Phys. Earth Planet. Inter. 91: 17–30.Google Scholar
Liu, L.-G., 1976, Orthorhombic perovskite phase observed in olivine, pyroxene and garnet at high pressures and temperatures. Phys. Earth Planet. Inter. 11: 289–298.Google Scholar
Long, C. and Christensen, N. I., 2000, Seismic anisotropy of South African upper mantle xenoliths. Earth Plan. Sci. Lett. 179: 551–565.Google Scholar
Longuet-Higgins, M. S. and Ursell, F., 1948, Sea waves and microseisms. Nature 162: 700.Google Scholar
Loper, D. E., 1978a, The gravitationally powered dynamo. Geophys. J. R. Astron. Soc. 54: 389–404.Google Scholar
Loper, D. E., 1978b, Some thermal consequences of the gravitationally powered dynamo. J. Geophys. Res. 83: 5961–5970.Google Scholar
Loper, D. E., 1984, The dynamical structures of D″ and deep mantle plumes in a non-Newtonian mantle. Phys. Earth Planet. Inter. 33: 56–67.Google Scholar
Loper, D. E., 1985, A simple model of whole mantle convection. J. Geophys. Res. 90: 1809–1836.Google Scholar
Loper, D. E. and Stacey, F. D., 1983, The dynamical and thermal structure of deep mantle plumes. Phys. Earth Planet. Inter. 33: 304–317.Google Scholar
Love, A. E. H., 1927, A Treatise on the Mathematical Theory of Elasticity, fourth edn. Cambridge: Cambridge University Press.
Lovell, A. C. B., 1954, Meteor Astronomy. Oxford: Clarendon Press.
Lowes, F. J., 1966, Mean values on sphere of spherical harmonic vector fields. J. Geophys. Res. 71: 2179.Google Scholar
Lowes, F. J., and Wilkinson, I. 1963, Geomagnetic dynamo: a laboratory model. Nature 198: 1158–1160.Google Scholar
Lowes, F. J., and Wilkinson, I. 1968, Geomagnetic dynamo: an improved laboratory model. Nature 219: 717–718.Google Scholar
MacMillan, W. D., 1958, Theory of the Potential. New York: Dover (reprinted from 1930 edition).
Macouin, M., Valet, G. P. and Besse, J., 2004, Long-term evolution of the geomagnetic dipole moment. Phys. Earth Planet. Inter. 147: 239–246.Google Scholar
Madariaga, R., 1976, Dynamics of an expanding circular fault. Bull. Seism. Soc. Am. 66: 639–667.Google Scholar
Maggi, A., Debayle, E., Priestley, K. and Barruol, G., 2006, Multimode surface waveform tomography of the Pacific Ocean: a closer look at the lithospheric cooling signature. Geophys. J. Int. 166: 1384–1397.Google Scholar
Malkus, W. V. R., 1963, Precessional torques as the cause of geomagnetism. J. Geophys. Res. 68: 2871–2886.Google Scholar
Malkus, W. V. R., 1989, An experimental study of global instabilities due to tidal (elliptical) distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid. Dyn. 48: 123–134.Google Scholar
Manga, M. and Jeanloz, R., 1997, Thermal conductivity of corundum and periclase and implications for the lower mantle. J. Geophys. Res. 102: 2999–3008.Google Scholar
Mansinha, L. and Smylie, D. E., 1971, The displacement fields of inclined faults. Bull. Seism. Soc. Am. 61: 1433–1440.Google Scholar
Mao, W. L., Mao, H.-K., Sturhahn, W., Zhao, J., Prakapenka, V. B., Meng, Y., Shu, J., Fei, Y. and Hemley, R. J., 2006, Iron-rich postperovskite and the origin of ultralow-velocity zones. Science 312: 564–565.Google Scholar
Margot, J.-L., Peale, S. J., Jurgens, R. F., Slade, M. A. and Holin, I. V., 2007, Large longitude libration of Mercury reveals a molten core. Science 316: 710–714.Google Scholar
Marone, C. J., Scholz, C. H. and Bilham, R., 1991, On the mechanics of earthquake afterslip. J. Geophys. Res. 96(5): 8441–8452.Google Scholar
Marquering, H., Dahlen, F. A., and Nolet, G., 1999, Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana doughnut paradox. Geophys. J. Int. 137: 805–815.Google Scholar
Masters, G. and Gilbert, F., 1981, Structure of the inner core inferred from observations of its spheroidal shear modes. Geophys. Res. Lett. 8: 569–571.Google Scholar
Masters, G. and Gubbins, D., 2003, On the resolution of density within the Earth. Phys. Earth Planet. Inter. 140: 159–167.Google Scholar
Masters, G., Laske, G., Bolton, H. and Dziewonski, A. M., 2000, The relative behaviour of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In Karato, S.-I. et al, eds., Earth's deep interior: mineral physics and tomography from the atomic to the global scale. Geophysical Monograph Series 117: 63–87. Washington: American Geophysical Union.
Masters, T. G. and Widmer, R., 1995, Free oscillations: frequencies and attenuation. In Ahrens (1995a), pp. 104–125.
Mathews, P. M., Buffett, B. A. and Shapiro, I. I., 1995, Love numbers for diurnal tides: relation to wobble admittances and resonance expansions. J. Geophys. Res. 100: 9935–9948.Google Scholar
Mathews, P. M., Herring, T. A. and Buffett, B. A., 2002, Modeling nutation and precession: new nutation series for nonrigid Earth and insights into the Earth's interior. J. Geophys. Res. 107(B4). 10.1029/2001JB000390.2002.Google Scholar
Maxwell, A. E., Herzen, R. P., Hsü, K. J., Andrews, J. E., Saito, T., Percival, S., Milow, E. D. and Boyce, R. E., 1970, Deep sea drilling in the South Atlantic. Science 168: 1047–1059.Google Scholar
McArdle, N. J., Halls, H. C. and Shaw, J., 2004, Rock magnetic studies and a comparison between microwave and Thellier paleointensities for Canadian Precambrian dykes. Phys. Earth Planet. Inter. 147: 247–254.Google Scholar
McDonough, W. F. and Sun, S.-S., 1995, The composition of the Earth. Chem. Geology 120: 223–253.Google Scholar
McDougall, I., 1981, 40Ar/39Ar age spectra for the KBS tuff, Koobi Fora formation. Nature 294: 120–124.Google Scholar
McDougall, I. and Harrison, T. M., 1999, Geochronology and Thermochronology by the 40 Ar/ 39 Ar Method. New York: Oxford University Press.
McDougall, I., Maier, R., Sutherland-Hawkes, P. and Gleadow, A. J. W., 1980, K-Ar age estimate for the KBS tuff, East Turkana, Kenya. Nature 284: 230–234.Google Scholar
McDougall, I. and Tarling, D. H., 1963, Dating of polarity zones in the Hawaiian islands. Nature 200: 54–56.Google Scholar
McFadden, P. L. and Merrill, R. T., 1984, Lower mantle convection and geomagnetism. J. Geophys. Res. 89: 3354–3362.Google Scholar
McFadden, P. L. and Merrill, R. T., 1995, History of the Earth's magnetic field and possible connections to core–mantle boundary processes. J. Geophys. Res. 100: 307–316.Google Scholar
McFadden, P. L., Merrill, R. T. and McElhinny, M. W., 1988, Dipole/quadrupole modelling of paleosecular variation. J. Geophys. Res. 93: 11583–11588.Google Scholar
McFadden, P. L., Merrill, R. T., McElhinny, M. W. and Lee, S., 1991, Reversals of the Earth's magnetic field and temporal variations of the dynamo families. J. Geophys. Res. 96: 3923–3933.Google Scholar
McGarr, A., 1999, On relating apparent stress to the stress causing earthquake fault slip. J. Geophys. Res. 104(B2): 3003–3011.Google Scholar
McKenzie, D., Jackson, J. and Priestley, K., 2005, Thermal structure of oceanic and continental lithosphere. Earth Plan. Sci. Lett. 233: 337–349.Google Scholar
McLennan, S. M., 1995, Sediments and soils: chemistry and abundances. In Ahrens (1995c). pp. 8–19.
McNutt, M. K., 1998, Superswells. Revs. Geophys. 36: 211–244.Google Scholar
McQueen, R. G. and Marsh, S. P, 1966, Shock wave compression of iron-nickel alloys and the Earth's core. J. Geophys. Res. 71: 1751–1756.Google Scholar
McQueen, R. G., Marsh, S. P. and Fritz, J. N., 1967, Hugoniot equation of state of twelve rocks. J. Geophys. Res. 72: 4999–5036.Google Scholar
McSween, H. Y., 1999, Meteorites and their Parent Planets. Cambridge: Cambridge University Press.
Mei, S. and Kohlstedt, D. L., 2000a, Influence of water on plastic deformation of olivine aggregates 1: Diffusion creep regime. J. Geophys. Res. 105: 21457–21469.Google Scholar
Mei, S. and Kohlstedt, D. L., 2000b, Influence of water on plastic deformation of olivine aggregates 2: Dislocation creep regime. J. Geophys. Res. 105: 21471–21481.Google Scholar
Meredith, P. G. and Atkinson, B. K., 1983, Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocks. Geophys. J. Roy. Astr. Soc. 75: 1–21.Google Scholar
Merrill, R. T., McElhinny, M. W. and McFadden, P. L., 1996, The Magnetic Field of the Earth: Paleomagnetism, the Core and the Deep Mantle. San Diego: Academic Press.
Merrill, R. T. and McFadden, P. L., 1999, Geomagnetic polarity transitions. Rev. Geophys. 37: 201–226.Google Scholar
Mitrovica, J. X., 1996, Haskell [1935] revisited. J. Geophys. Res. 101: 555–569.Google Scholar
Mitrovica, J. X. and Forte, A. M., 1997, Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observable. J. Geophys. Res. 102: 2751–2769.Google Scholar
Mitrovica, J. X. and Peltier, W. R., 1993, Present day secular variations in the zonal harmonics of Earth's geopotential. J. Geophys. Res. 98: 4509–4526.Google Scholar
Mogi, K., 1958, Relations between the eruptions of various volcanoes and the deformation of the ground surface around them. Bull. Earthq. Res. Inst. Univ. Tokyo 36: 99–134.Google Scholar
Molnar, P. and Atwater, T., 1973, Relative motion of hotspots in the mantle. Nature 246: 288–291.Google Scholar
Montagner, J.-P., Griot-Pommera, D.-A. and Lave, J., 2000, How to relate body wave and surface wave anisotropy? J. Geophys. Res. 105: 19015–19027.Google Scholar
Montagner, J.-P. and Kennett, B. L. N., 1996, How to reconcile body wave and normal mode reference models. Geophys. J. Int. 125: 229–248.Google Scholar
Montagner, J.-P. and Tanimoto, T., 1991, Global upper mantle tomography of seismic velocities and anisotropies. J. Geophys. Res. 96: 20337–20351.Google Scholar
Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R. and Hung, S.-H., 2004, Finite-frequency tomography reveals a variety of plumes in the mantle. Science 30: 338–343.Google Scholar
Morgan, W. J., 1971, Convection plumes in the lower mantle. Nature 230: 42–43.Google Scholar
Morozov, I. B. and Smithson, S. B., 2000, Coda of long-range arrivals from nuclear explosions. Bull. Seism. Soc. Am. 90: 929–939.Google Scholar
Morris, J. D., Leeman, W. P. and Tera, F., 1990, The subducted component in island arc lavas: constraint from Be isotopes and B-Be systematics. Nature 344: 31–36.Google Scholar
Mukhopadhyay, S. and Nittler, L., 2004, Report in Yearbook 02/03, p. 69. Washington: Carnegie Institution.
Murakami, M., Hirose, K., Kawamura, K., Sata, N. and Ohishi, Y., 2004, Post-perovskite phase transition in MgSiO3 . Science 304: 855–858.Google Scholar
Murthy, V. R., Westrenen, W. and Fei, Y., 2003, Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature 423: 163–165.Google Scholar
Nadeau, R. M. and Dolenc, D., 2005, Nonvolcanic tremors deep beneath the San Andreas Fault. Science 307: 389–390.Google Scholar
Nagata, T., 1953, Rock Magnetism, first edn. Tokyo: Maruzen.
Nagata, T., 1979, Meteorite magnetism and the early solar system magnetic field. Phys. Earth Planet. Inter. 20: 324–341.Google Scholar
Nakiboglu, S. M., 1982, Hydrostatic theory of the Earth and its mechanical implications. Phys. Earth Planet. Inter. 28: 302–311.Google Scholar
Narayan, C. and Goldstein, J. I., 1985, A major revision of iron meteorite cooling rates – an experimental study of the growth of the Widmanstätten pattern. Geochim. Cosmochim. Acta 49: 397–410.Google Scholar
Navon, O. and Wasserburg, G. J., 1985, Self-shielding in O2 – a possible explanation of oxygen isotope anomalies in meteorites. Earth Plan. Sci. Lett. 73: 1–16.Google Scholar
Nawa, K., Sudo, N., Fukao, Y., Sato., T., Aoyama, Y. and Shibuya, K., 1998, Incessant excitation of the Earth's free oscillations. Earth Space Sci. 50: 3–8.Google Scholar
Néel, L. 1955, Some theoretical aspects of rock magnetism. Adv. Phys. 4: 191–243.Google Scholar
Ness, N. F., 1994, Intrinsic magnetic fields of the planets: Mercury to Neptune. Phil. Trans. Roy. Soc. Lond. A349: 249–260.Google Scholar
Newsom, H. E., 1995, Composition of the solar system, planets, meteorites and major terrestrial reservoirs. In Ahrens (1995a), pp. 159–189.
Nieto, M. M., 1972, The Titius–Bode Law of Interplanetary Distances: its History and Theory. Oxford: Pergamon.
Nimmo, F., Price, G. D., Brodholt, J. and Gubbins, D., 2004, The influence of potassium on core and geodynamo evolution. Geophys. J. Int. 156: 363–376.Google Scholar
Nishimura, C. E. and Forsyth, D. W., 1989, The anisotropic structure of the upper mantle in the Pacific. Geophys. J. 96: 203–229.Google Scholar
Nittler, L., 2003, Presolar stardust in meteorites: recent advances and scientific frontiers. Earth Plan. Sci. Lett. 209: 259–273.Google Scholar
Norton, I. O., 1995, Plate motions in the north Pacific: the 43 Ma nonevent. Tectonics 14(5): 1080–1094.Google Scholar
Nyblade, A. A. and Robinson, S. W., 1994, The African superswell. Geophys. Res. Lett. 21: 765–768.Google Scholar
Oganov, A. R., Brodholt, J. P. and Price, G. D., 2000, Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model applied to MgSiO3 perovskite. Phys. Earth Planet. Inter. 122: 277–288.Google Scholar
Ogata, Y., 1998, Space-time point process models for earthquake occurrences. Annals Inst. Statistical Mechanics 50: 379–402.Google Scholar
Ogino, K., Nishiwacki, A. and Hosotani, Y., 1984, Density of molten Fe-C alloys. J. Japan Inst. Metals 48: 1004–1010.Google Scholar
Ohtani, E., Litasov, K., Suzuki, A. and Kondo, T., 2001, Stability field of a new hydrous phase, δ-AlOOH, with implications for water transport in the deep mantle. Geophys. Res. Lett. 28: 3991–3993.Google Scholar
Okada, Y., 1985, Surface deformation due to shear and tensile faults in a half space. Bull. Seism. Soc. Am. 75: 1135–1154.Google Scholar
Okal, E. A., 2001, ‘Detached’ deep earthquakes: are they really? Phys. Earth Planet. Inter. 127: 109–143.Google Scholar
Okuchi, T., 1997, Hydrogen partitioning into molten iron at high pressure: implications for the Earth's core. Science 278: 1781–1784.Google Scholar
Okuchi, T., 1998, The melting temperature of iron hydride at high pressures and its implication for the temperature of the Earth's core. J. Phys. Condensed Matter 10: 11595–11598.Google Scholar
Oliver, J., 1962, A summary of observed seismic wave dispersion. Bull. Seism. Soc. Am. 52: 81–86.Google Scholar
Olsen, N., 2002, A model of the geomagnetic field and its secular variation for the epoch 2000 estimated from Ørsted data. Geophys. J. Int. 149: 454–462.Google Scholar
Olsen, P. E. et al. (10 authors), 2002, Ascent of dinosaurs linked to an iridium anomaly at the Triassic–Jurassic boundary. Science 296: 1305–1307.Google Scholar
Olson, P., 1983, Geomagnetic polarity reversals in a turbulent core. Phys. Earth Planet. Inter. 33: 260–274.Google Scholar
Olson, P. and Aurnou, J. 1999, A polar vortex in the Earth's core. Nature 402: 170–173.Google Scholar
Omori, F. J., 1894, On after-shocks of earthquakes. College of Science, Imperial University of Tokyo 7: 111–200.Google Scholar
Opdyke, N. D. and Channell, J. E. T., 1996, Magnetic Stratigraphy. San Diego: Academic Press.
Opdyke, N. D., Kent, D. V. and Lowrie, W., 1973, Details of magnetic polarity transitions recorded in a high deposition rate deep sea core. Earth Plan. Sci. Lett. 20: 315–324.Google Scholar
Oversby, V. M. and Ringwood, A. E., 1971, Time of formation of the Earth's core. Nature 234: 463–465.Google Scholar
Ozima, M. and Podosek, F. A., 1999, Formation age of Earth from 129I/127I and 244Pu/238U systematics and the missing Xe. J. Geophys. Res. 104: 25493–25499.Google Scholar
Padhy, S, 2005, A scattering model for seismic attenuation and its global applications. Phys. Earth Planet. Int. 148: 1–12.Google Scholar
Pagiatakis, S. D., Yin, H. and El-Gelil, M. A., 2007, Least squares self-coherency analysis of superconducting gravimeter records in search for the Slichter triplet. Phys. Earth Planet. Inter. 160: 108–123.Google Scholar
Panning, M. P. and Romanowicz, B. A., 2006, A three dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int. 167: 361–379.Google Scholar
Parkinson, W. D., 1983, Introduction to Geomagnetism. Edinburgh: Scottish Academic Press.
Paterson, M. S. and Weiss, L. E., 1961, Symmetry concepts in the structural analysis of deformed rocks. Geol. Soc. Am. Bull. 72: 841–882.Google Scholar
Peale, S. J., Cassen, P. and Reynolds, R. P., 1979, Melting of Io by tidal dissipation. Science 203: 892–894.Google Scholar
Pearce, S. J. and Russell, R. D., 1990, Inversion of cosmogenic nuclide data from iron meteorites. Canad. J. Earth Sci. 68: 1312–1321.Google Scholar
Peltier, W. R., 1982, Dynamics of the ice age Earth. Adv. Geophys. 24: 1–146.Google Scholar
Peltier, W. R., 1998, Postglacial variations in the level of the sea: implications for climate dynamics. Rev. Geophys. 36: 603–689.Google Scholar
Peltier, W. R., 2004, Global glacial isostasy and the surface of the ice age Earth: the Ice-5 g (Vm2) model and Grace. Ann. Rev. Earth Plan. Sci. 32: 111–149.Google Scholar
Peltzer, G., Crampé, F. and King, G., 1999, Evidence of nonlinear elasticity in the crust from the Mw7.6 Manyi (Tibet) earthquake. Science 286: 272–276.Google Scholar
Pesonen, L. J., Elming, S.-A., Mertanen, S., Pisarevsky, S., D'Agrella-Filho, M. S., Meert, J. G., Schmidt, P. W., Abrahamsen, N. and Bylund, G., 2003, Palaeomagnetic configuration of the continents during the Proterozoic. Tectonophysics 375: 289–324.Google Scholar
Plafker, G., 1965, Tectonic deformation associated with the 1964 Alaska earthquake. Science 148: 1675–1687.Google Scholar
Poirier, J. -P., 1988, Transport properties of liquid metals and viscosity of the Earth's core. Geophys. J. R. Astron. Soc. 92: 99–105.Google Scholar
Poirier, J. -P., 1994, Light elements in the Earth's core: a critical review. Phys. Earth Planet. Inter. 85: 319–337.Google Scholar
Poirier, J.-P., 2000, Introduction to the Physics of the Earth's Interior, second edn. Cambridge: Cambridge University Press.
Poirier, J.-P. and Tarantola, A., 1998, A logarithmic equation of state. Phys. Earth Planet. Inter. 109: 1–8.Google Scholar
Pollack, H. N. and Huang, S., 2000, Climate reconstruction from subsurface temperatures. Ann. Rev. Earth Plan. Sci. 28: 339–365.Google Scholar
Pollack, H. N., Hurter, S. J. and Johnson, J. R., 1993, Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys. 31: 267–280.Google Scholar
Poupinet, G. R., Pillet, R. and Souriau, A., 1983, Possible heterogeneity of the Earth's core deduced from PKIKP travel times. Nature 305: 204–206.Google Scholar
Prentice, A. J. R., 1986, Uranus: predicted origin and composition of its atmosphere, moons and rings. Phys. Lett. A114: 211–216.Google Scholar
Prentice, A. J. R., 1989, Neptune: predicted origin and composition of a regular satellite system. Phys. Lett. A140: 265–270.Google Scholar
Proudman, J., 1953, Dynamical Oceanography. London: Methuen.
Rabinowicz, E., 1965, Friction and Wear of Materials. New York: Wiley.
Rädler, K.-H. and Cēbers, A. (Eds.), 2002, MHD dynamo experiments. Magnetohydrodynamics 38: 3–217.Google Scholar
Raitt, R. W., Shor, G. G., Francis, T. G. J. and Morris, G. B., 1969, Anisotropy of the Pacific upper mantle. J. Geophys. Res. 74: 3095–3109.Google Scholar
Rapp, R. H. and Pavlis, N. K., 1990, The development and analysis of geopotential coefficient models to spherical harmonic degree 360. J. Geophys. Res. 95: 21885–21911.Google Scholar
Ray, R. D., Eanes, R. J. and LeMoine, F. G., 2001, Constraints on energy dissipation in the Earth's body tide from satellite tracking and altimetry. Geophys. J. Int. 144: 471–480.Google Scholar
Reasenberg, P. A., 1999, Foreshock occurrence before large earthquakes, J. Geophys. Res. 104(B3): 4755–4768.Google Scholar
Reid, H. F., 1910, The California Earthquake of April 18, 1906. II. The Mechanics of the Earthquake. Washington: Carnegie Institution.
Reinecker, J., Heidbach, O., Tingay, M., Connolly, P. and Müller, B., 2004, The 2004 release of The World Stress Map. (www.world-stress-map.org).
Rhie, J. and Romanowicz, B., 2004, Excitation of the Earth's free oscillations by atmosphere–ocean–seafloor coupling. Nature 431: 552–556.Google Scholar
Richards, M. A. and Engebretson, D. C., 1992, Large scale mantle convection and the history of subduction. Nature 355: 437–440.Google Scholar
Richardson, R. M., 1992, Ridge forces, absolute plate motions and the intraplate stress field. J. Geophys. Res. 97(8): 11739–11748.Google Scholar
Richter, C. F., 1958, Elementary Seismology. San Francisco: Freeman.
Rigden, S. M., Gwanmesia, G. D., Fitzgerald, J. D., Jackson, I. and Liebermann, R. C., 1991, Spinel elasticity and seismic structure of the transition zone of the mantle. Nature 34: 143–145.Google Scholar
Rikitake, T., 1966, Electromagnetism and the Earth's Interior. Amsterdam: Elsevier.
Ringwood, A. E., 1966, Chemical evolution of the terrestrial planets. Geochim. Cosmochim. Acta 30: 41–104.Google Scholar
Ringwood, A. E., 1989, Flaws in the giant impact hypothesis of lunar origin. Earth Plan. Sci. Lett. 95: 208–214.Google Scholar
Ritsema, J., Heijst, H. J. and Woodhouse, J. H., 1999, Complex shear velocity structure imaged beneath Africa and Iceland. Science 286: 1925–1928.Google Scholar
Roberts, P., 1987, Origin of the main field: dynamics. In Jacobs, J. A. (ed.), Geomagnetism Vol. 2. London: Academic Press, pp. 251–306.
Roberts, P. H. and Gubbins, D., 1987, Origin of the main field: dynamics. In Jacobs, J. A. (ed.), Geomagnetism Vol. 2. London: Academic Press, pp. 185–249.
Robertson, G. S. and Woodhouse, J. H., 1996a, Ratio of relative S to P heterogeneity in the lower mantle. J. Geophys. Res. 101: 20041–20052.Google Scholar
Robertson, G. S. and Woodhouse, J. H., 1996b, Constraints on lower mantle physical properties from seismology and mineral physics. Earth Planet. Sci. Lett. 143: 197–205.Google Scholar
Robock, A., 2000, Volcanic eruptions and climate. Rev. Geophys. 38: 191–219.Google Scholar
Robock, A., 2003, Introduction: Mount Pinatubo as a test of climate feedback mechanisms. In Robock, A. and Oppenheimer, C. (eds.) Volcanism and the Earth's Atmosphere. Washington: American Geophysical Union, pp. 1–8.
Rogers, G. and Dragert, H., 2003, Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300: 1942–1943.Google Scholar
Roth, M., Müller, G. and Snieder, R., 1993, Velocity shifts in random media. Geophys. J. Int. 115: 552–563.Google Scholar
Runnegar, B., 1982, The Cambrian explosion: animals or fossils? J. Geol. Soc. Australia 29: 395–411.Google Scholar
Rutherford, E. and Soddy, F., 1903, Radioactive change. Phil. Mag. (Series 6) 5: 1576–1591.Google Scholar
Ryder, G., 1990, Lunar samples, lunar accretion and the early bombardment of the Moon. EOS (Trans. AGU Spring Meeting Supplement) 71: 313 and 322–323 (March 6, 1990).Google Scholar
Ryder, G. and Mojzsis, S. J., 1998, Accretion to the Earth and Moon around 3.85 Ga: what is the evidence? EOS (Trans. AGU Fall Meeting Supplement) 79(45): F48 (Abstract U22B-10).Google Scholar
Sanloup, C., Guyot, F., Gillet, P., Fiquet, G., Hemley, R. J., Mezouar, M. and Martinez, I., 2000, Structural changes in liquid Fe at high pressures and high temperatures from synchrotron X-ray diffraction. Europhys. Lett. 52: 151–157.Google Scholar
Sasatani, T., 1989, Deep earthquakes. In James (1989), pp. 174–181.
Schneider, J. F. and Sacks, I. S., 1992 ubduction of the Nazca plate beneath central Peru from local earthquakes. Unpublished manuscript.
Scholz, C. H., 1990, The Mechanics of Earthquakes and Faulting. Cambridge: Cambridge University Press.
Schubert, G., Masters, G., Olson, P. and Tackley, P., 2004, Superplumes or plume clusters? Phys. Earth Planet. Int. 146: 147–162.Google Scholar
Secco, R. A., 1995, Viscosity of the outer core. In Ahrens (1995b), pp. 218–226.
Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazzotti, S. and Dokka, R. K., 2007, Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys. Res. Lett. 34: L02306. doi:10.1029/2006GL027081.Google Scholar
Shaw, B. E., 1993, Generalized Omori law for aftershocks and foreshocks from simple dynamics. Geophys. Res. Letters 20: 907–910.Google Scholar
Shaw, J., 1974, A new method of determining the magnitude of the palaeomagnetic field. Geophys. J. R. Astron. Soc. 39: 133–141.Google Scholar
Shaw, J. and Sherwood, G., 1991, Palaeointensity and reversal frequency – are they related? Geophy. Astrophy. Fluid Dyn. 60: 135–140.Google Scholar
Shearer, P. M., 1990, Seismic imaging of upper mantle structure with new evidence for a 520 km discontinuity. Nature 344: 121–126.Google Scholar
Sheriff, R. E., and Geldart, L. P., 1982, Exploration Seismology, Vol. 1: History, Theory and Data Acquisition. Cambridge: Cambridge University Press.
Sibson, R. H. and Xie, G., 1998, Dip range for intracontinental reverse fault ruptures: truth not stranger than friction. Bull. Seism. Soc. Am. 88: 1014–1022.Google Scholar
Silver, P. G., 1996, Seismic anisotropy beneath the continents: probing the depths of geology. Ann. Rev. Earth Planet. Sci. 24: 385–432.Google Scholar
Singh, S. K. and Ordaz, M., 1994, Seismic energy release in Mexican subduction zone earthquakes. Bull. Seism. Soc. Am. 84: 1533–1550.Google Scholar
Slater, J. C., 1939, Introduction to Chemical Physics. New York: McGraw-Hill.
Sleep, H. N., 1990, Hot spots and mantle plumes: some phenomenology. J. Geophys. Res. 95: 6715–6736.Google Scholar
Slichter, L. B., 1967, Spherical oscillations of the earth, Geophys. J. R. Astron. Soc. 14: 171–177.Google Scholar
Smith, S. W., 1967, Free vibrations of the Earth. In Runcorn, S. K. (ed.) International Dictionary of Geophysics (2 vols.) Oxford: Pergamon, pp. 344–346.
Smyth, J. R., and McCormick, T. C., 1995, Crystallographic data for minerals. In Ahrens, T. J. (1995b), pp. 1–17.
Sneddon, I. N., 1980, Special Functions of Mathematical Physics and Chemistry, third edn. Edinburgh: Oliver and Boyd.
Solheim, L. P. and Peltier, W. R., 1994, Phase boundary deflections at 660 km depth and episodically layered isochemical convection in the mantle. J. Geophys. Res. 99: 15861–15875.Google Scholar
Solomatov, V. S. and Stevenson, D. J., 1994, Can sharp seismic discontinuities be caused by non-equilibrium phase transitions? Earth Plan. Sci. Lett. 125: 267–279.Google Scholar
Song, X. and Richards, P. G., 1996, Seismological evidence for differential rotation of the Earth's inner core. Nature 382: 221–224.Google Scholar
Souriau, A., Roudil, P. and Moynot, B. 1997, Inner core differential rotation: facts and artifacts. Geophys. Res. Lett. 24: 2103–2106.Google Scholar
Spetzler, J. and Snieder, R., 2004, Tutorial, the Fresnel volume and transmitted waves. Geophysics 69: 653–663.Google Scholar
Stacey, F. D., 1973, The coupling of the core to the precession of the Earth. Geophys. J. R. Astron Soc. 33: 47–55.Google Scholar
Stacey, F. D., 2000, Kelvin's age of the Earth paradox revisited. J. Geophys. Res. 105: 13155–13158.Google Scholar
Stacey, F. D., 2005, High pressure equations of state and planetary interiors. Reps. Prog. Phys. 68: 341–383.Google Scholar
Stacey, F. D. and Anderson, O. L., 2001, Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions. Phys. Earth Planet. Inter. 124: 153–162.Google Scholar
Stacey, F. D. and Davis, P. M., 2004, High pressure equations of state with applications to the lower mantle and core. Phys. Earth Planet. Inter. 142: 137–184.Google Scholar
Stacey, F. D. and Irvine, R. D., 1977, A simple dislocation theory of melting. Australian J. Phys. 30: 641–646.Google Scholar
Stacey, F. D. and Isaak, D. G., 2003, Anharmonicity in mineral physics: a physical interpretation. J. Geophys. Res. 108(B9): 2440. doi:10.1029/2002JB002316,2003.Google Scholar
Stacey, F. D. and Loper, D. E., 1983, The thermal boundary layer interpretation of D″ and its role as a plume source. Phys. Earth Planet. Inter. 33: 45–55.Google Scholar
Stacey, F. D. and Loper, D. E., 1984, Thermal histories of the core and mantle. Phys. Earth Planet. Inter. 36: 99–115.Google Scholar
Stacey, F. D. and Loper, D. E., 2007, A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance. Phys. Earth Planet. Inter. 161: 13–18.Google Scholar
Stacey, F. D., Spiliopoulos, S. S. and Barton, M. A., 1989, a critical re-examination of the thermodynamic basis of Lindemann's melting law. Phys. Earth Planet. Inter. 55: 201–207.Google Scholar
Stacey, F. D. and Stacey, C. H. B., 1999, Gravitational energy of core evolution: implications for thermal history and geodynamo power. Phys. Earth Planet. Inter. 110: 83–93.Google Scholar
Stanley, S., Bloxham, J., Hutchison, W. E. and Zuber, M. T., 2005, Thin shell dynamo models consistent with Mercury's weak observed magnetic field. Earth Planet. Sci. Lett. 234: 27–38.Google Scholar
Stein, C. A., 1995, Heat flow from the Earth. In Ahrens (1995a), pp. 144–158.
Stein, C. A. and Stein, S., 1992, A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359: 123–129.Google Scholar
Stein, C. A. and Stein, S., 1994, Constraints on hydrothermal heat flux through oceanic lithosphere from global heat flux. J. Geophys. Res. 99: 3081–3095.Google Scholar
Stein, R. S., 1999, The role of stress transfer in earthquake occurrence. Nature 402: 605–609.Google Scholar
Stein, S. and Wysession, M., 2003, An Introduction to Seismology, Earthquakes and Earth Structure. Oxford: Blackwell.
Stephenson, F. R. and Morrison, L. V., 1995, Long-term fluctuations in the Earth's rotation. Phil. Trans. Roy. Soc. Lond. A351: 165–202.Google Scholar
Stevenson, D. J., 2003, Planetary magnetic fields. Earth Plan. Sci. Lett. 208: 1–11.Google Scholar
Stevenson, D., 2005, Earthquakes and tsunamis: what physics is interesting? Physics Today June 2005: 10–11.Google Scholar
Stoneley, R., 1924, Elastic waves at the surface of separation of two solids. Proc. Roy. Soc. Lond. A106: 416–420.Google Scholar
Strutt, R. J., 1906, On the distribution of radium in the Earth's crust and on the Earth's internal heat. Proc. Roy. Soc. Lond. A77: 472–485.Google Scholar
Sturhahn, W., Jackson, J. M. and Lin, J.-F., 2005, The spin state of iron in minerals of the Earth's lower mantle. Geophys. Res. Lett. 32: L12307, doi:10.1029/2005GL022802,2005.Google Scholar
Su, W. J. and Dziewonski, A. M., 1997, Simultaneous inversion for 3D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter. 100: 135–156.Google Scholar
Su, W. J., Dziewonski, A. M and Jeanloz, R., 1996, Planet within a planet: rotation of the inner core of the Earth. Science 274: 1883–1887.Google Scholar
Sumita, I. and Yoshida, S., 2003, Thermal interactions between the mantle, outer and inner cores, and the resulting structural evolution of the core. In Dehant et al. (2003), pp. 213–231.
Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. and Schubert, G., 1994, Effects of multiple phase transitions in a three-dimensional spherical model of convection in the Earth's mantle. J. Geophys. Res. 99: 15877–15901.Google Scholar
Takahashi, F., Matsushima, M. and Honkura, Y., 2005, Simulations of a quasi-Taylor state geomagnetic field including polarity reversals on the Earth simulator. Science 309: 459–461.Google Scholar
Tarling, D., 1971, Principles and Applications of Palaeomagnetism. London: Chapman and Hall.
Tarling, D. H., 1989, Archaeomagnetism. In James (1989), pp. 33–37.
Tatsumoto, M., 1966, Genetic relationships of ocean basalts as indicated by lead isotopes. Science 153: 1094–1101.Google Scholar
Tatsumoto, M., Knight, R. J. and Allègre, C. J., 1973, Time differences in the formation of meteorites as determined by the ratio of lead-207 to lead-206. Science 180: 1279–1283.Google Scholar
Tauxe, L., 2006, Long-term trends in paleointensity: the contribution of DSDP/ODP submarine basalt glass collections. Phys. Earth Planet. Inter. 156: 223–241.Google Scholar
Tera, F., 2003, A lead isotope method for the accurate dating of disturbed geological systems: numerical demonstrations, some applications and implications. Geochim. Cosmochim. Acta 67: 3687–3715.Google Scholar
Tera, F., Papanastassiou, D. A. and Wasserburg, G. J., 1974, Isotopic evidence for a terminal lunar cataclysm. Earth Plan. Sci. Lett. 22: 1–21.Google Scholar
Thatcher, W., 1983, Nonlinear strain buildup and the earthquake cycle on the San Andreas fault. J. Geophys. Res. 88: 5893–5902.Google Scholar
Thellier, E. and Thellier, O., 1959, Sur l′intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Geophys. 15: 285–376.Google Scholar
Tilton, G. R. and Steiger, R. H., 1965, Lead isotopes and the age of the Earth. Science 150: 1805–1808.Google Scholar
Toon, O. B., Zahnle, K., Morrison, D., Turco, R. P. and Covey, C., 1997, Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys. 35(1): 41–78.Google Scholar
Tozer, D. C., 1972, The present thermal state of the terrestrial planets. Phys. Earth Planet. Inter. 6: 182–197.Google Scholar
Tromp, J., 1993, Support for anisotropy of the Earth's inner core from splitting in free oscillation data. Nature 366: 678–681.Google Scholar
Turcotte, D. L. and Schubert, G., 2002, Geodynamics. Cambridge: Cambridge University Press.
Turner, G. M. and Thompson, R., 1981, Lake sediment record of the geomagnetic secular variation in Britain during Holocene times. Geophys. J. R. Astron. Soc. 65: 703–725.Google Scholar
Utsu, T., 1961, A statistical study of the occurrence of aftershocks. Geophys. Magazine 30: 521–605.Google Scholar
Utsu, T., 2002, Statistical features of seismicity. In International Handbook of Earthquake Engineering and Seismology, ed. Lee, W. H. K.. San Diego: Academic Press. Part A, pp. 719–732.
Voo, R, 1990, Phanerozoic poles from Europe and North America and comparisons with continental reconstruction. Rev. Geophys. 28: 167–206.Google Scholar
Voo, R., 1992, Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. Cambridge: Cambridge University Press.
Vanyo, J. D., 1991, A geodynamo powered by lunisolar precession. Geophys. Astrophys. Fluid Dyn. 59: 209–234.Google Scholar
Vashchenko, V. Ya., and Zubarev, V. N., 1963, Concerning the Grüneisen constant. Sov. Phys. Solid State 5: 653–655.Google Scholar
Veizer, J. and Jansen, S. L., 1979, Basement and sedimentary recycling and continental evolution. J. Geol. 87: 341–370.Google Scholar
Veizer, J. and Jansen, S. L., 1985, Basement and sedimentary recycling – 2: Time dimension to global tectonics. J. Geol. 93: 625–643.Google Scholar
Venkataraman, A. and Kanamori, H., 2004, Observational constraints on the fracture energy of subduction zone earthquakes. J. Geophys. Res. 109B:5302. doi:10.1029/2003JB002549.Google Scholar
Vidale, J. E., 2001, Peeling back the layers in Earth's mantle. Science 294: 313.Google Scholar
Vidale, J. E., Dodge, D. A. and Earle, P. S., 2000, Slow differential rotation of the Earth's inner core indicated by temporal changes in scattering, Nature 405: 445–448.Google Scholar
Vidale, J. E. and Earle, P. S., 2000, Fine-scale heterogeneity in the Earth's inner core, Nature 405: 273–275.Google Scholar
Vidale, J. E., and Hedlin, M. A. H., 2000, Evidence for partial melt at the core–mantle boundary north of Tonga from the strong scattering of seismic waves, Nature 391: 682–685.Google Scholar
Vine, F. J. and Matthews, D. H., 1963, Magnetic anomalies over ocean ridges. Nature 199: 947–949.Google Scholar
Vinet, P., Ferrante, J., Rose, J. H. and Smith, J. R., 1987, Compressibility of solids. J. Geophys. Res. 92: 9319–9325.Google Scholar
Vondrák, J., 1999, Earth rotation parameters, 1899.7–1992.0, after reanalysis within the Hipparcos frame. Surveys in Geophys. 20: 169–195.Google Scholar
Wasson, J. T., 1985, Meteorites: Their Record of Early Solar System History. New York: Freeman.
Watson, E. B. and Harrison, T. M., 2005, Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308: 841–844.Google Scholar
Watt, P. J., Davies, G. F. and O'Connell, R. J., 1976, The elastic properties of composite materials. Rev. Geophys. Space Phys. 14: 541–563.Google Scholar
Watts, A. B., 2001, Isostasy and Flexure of the Lithosphere. Cambridge: Cambridge University Press.
Weaver, H. A., Stern, S. A., Mutchler, M. J., Steffl, A. J., Buie, M. W., Merline, W. J., Spencer, J. R., Young, E. F. and Young, L. A., 2006, Discovery of two new satellites of Pluto. Nature 439: 943–945.Google Scholar
Webb, D. J., 1982, Tides and the evolution of the Earth-Moon system. Geophys. J. R. Astron. Soc. 70: 261–271.Google Scholar
Weertman, J. and Weertman, J. R., 1992, Elementary Dislocation Theory. Oxford: Oxford University Press.
Wetherill, G. W., 1968, Stone meteorites: time of fall and origin. Science 159: 79–82.Google Scholar
Wetherill, G. W., 1981, Nature and origin of basin-forming projectiles. Proc. Lunar Plan. Sci. 12A: 1–18.Google Scholar
Wetherill, G. W., 1985, Asteroidal source of ordinary chondrites. Meteoritics 20: 1–22.Google Scholar
Whaler, K. A., 1980, Does the whole of the Earth's core convect? Nature 287: 528–530.Google Scholar
Wheeler, K. T., Walker, D., Fei, Y., Minarik, W. G., and McDonough, W. F., 2006, Experimental partitioning of uranium between liquid iron sulfide and liquid silicate: implications for radioactivity in the Earth's core. Geochim. Cosmochim. Acta 70: 1537–1547.Google Scholar
White, M. L., 1972, Jet streams and the development of the solar system. Nature Phys. Sci. 238: 104–105.Google Scholar
Wielandt, E., 1987, On the validity of the ray approximation for interpreting delay times. In Nolet, G. (ed.), Seismic Tomography. Dordrecht: Reidel, pp. 85–98.
Wiens, D. A. and Stein, S., 1985, Implications of oceanic intraplate seismicity for plate stresses, driving forces and rheology. Tectonophysics 116: 143–162.Google Scholar
Wignall, P. B., 2001, Large igneous provinces and mass extinctions. Earth Sci. Rev. 53: 1–33.Google Scholar
Williams, G. E., 1990, Tidal rhythmites: key to the history of the Earth's rotation and the lunar orbit. J. Phys. Earth 38: 475–491.Google Scholar
Williams, G. E., 1991, Milankovitch-band cyclicity in bedded halite deposits contemporaneous with Late Ordovician–Early Silurian glaciation, Canning Basin, Western Australia. Earth Plan. Sci. Lett. 103: 143–155.Google Scholar
Williams, G. E., 2000, Geological constraints on the preCambrian history of the Earth's rotation and the Moon's orbit. Rev. Geophys. 38: 37–59.Google Scholar
Williams, J. G., Ratcliffe, J. T. and Boggs, D. H., 2004, Lunar rotation orientation and science. EOS (Trans. AGU Fall Meeting Supplement) 85(47) F603 (Abstract G33A-08).Google Scholar
Williams, Q., Revenaugh, J. and Garnero, E., 1998, A correlation between ultra-low basal velocities in the mantle and hot spots. Science 281: 546–549.Google Scholar
Willson, R. C. and Hudson, H. S., 1991, The sun's luminosity over a complete solar cycle. Nature 351: 42–44.Google Scholar
Wilson, R. L., 1962, The palaeomagnetism of baked contact rocks and reversals of the Earth's magnetic field. Geophys. J. R. Astron. Soc. 7: 194–202.Google Scholar
Wilson, R. L., 1970, Permanent aspects of the Earth's non-dipole magnetic field over Upper Tertiary time. Geophys. J. R. Astron. Soc. 19: 417–437.Google Scholar
Wisdom, J., 1983, Chaotic behaviour and the origin of the 3/1 Kirkwood gap. Icarus 56: 51–74.Google Scholar
Wolbach, W. S., Lewis, R. S. and Anders, E., 1985, Cretaceous extinctions: evidence for wildfire and search for meteoritic material. Science 230: 167–170.Google Scholar
Wood, B. J., 1993, Carbon in the core. Earth Plan. Sci. Lett. 117: 593–607.Google Scholar
Wood, J. A., 1964, The cooling rates and parent planets of several iron meteorites. Icarus 3: 429–459.Google Scholar
Woodhouse, J. H., 1983, The joint inversion of seismic waveforms for lateral variations in Earth structure and earthquake source parameters. In Kanamori, H. and Boschi, E. eds. Proceedings of the Enrico Fermi International School of Physics, 85. Amsterdam: North Holland, pp. 366–397.
Woodhouse, J. H, 1988, The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the earth and the sun. In Doornbos, D. J. (ed.), Physics of the Earth's Interior. Seismological Algorithms, London: Academic Press.
Woodhouse, J. H. and Dziewonski, A. M., 1984, Mapping the upper mantle: three dimensional modelling of Earth structure by inversion of seismic waveforms. J. Geophys. Res. 89: 5953–5986.Google Scholar
Woodhouse, J. H., Giardini, D. and Li, X.-D., 1986, Evidence for inner-core anisotropy from splitting in free oscillation data. Geophys. Res. Lett. 13: 1549–1552.Google Scholar
Xie, S. and Tackley, P. J., 2004, Evolution of helium and argon isotopes in a convecting mantle. Phys. Earth Planet. Inter. 146: 417–439.Google Scholar
Xu, F., Vidale, J. E. and Earle, P. S., 2003, Survey of precursors to P′P′: fine structure of mantle discontinuities. J. Geophys. Res. 108(B1): 2024. doi:10.1029/2001JB000817,2003.Google Scholar
Yeganeh-Haeri, A., 1994, Synthesis and reinvestigation of the elastic properties of magnesium silicate perovskite. Phys. Earth Planet. Inter. 87: 111–121.Google Scholar
Yin, A., 2000, Mode of east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision. J. Geophys. Res. 105(B9): 21745–21759.Google Scholar
Yoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E M. and Folkner, W. M., 2003, Fluid core size of Mars from detection of the solar tide. Science 300: 299–303.Google Scholar
Yoshida, M., 2004, Possible effects of lateral viscosity variations induced by plate tectonic mechanism on geoid inferred from numerical models of mantle convection. Phys. Earth Planet. Inter. 147: 67–85.Google Scholar
Yoshida, S., Sumita, I. and Kumazawa, M., 1996, Growth model of the inner core coupled with outer core dynamics and the resulting elastic anisotropy. J. Geophys. Res. 101: 28085–28103.Google Scholar
Young, C. J., and Lay, T., 1990, Multiple phase analysis of the shear velocity structure in the D″ region beneath Alaska. J. Geophys., Res. 95: 17385–17402.Google Scholar
Yuan, X. et al. (22 authors), 2000, Subduction and collision processes in the central Andes constrained by converted seismic phases. Nature 408: 958–961.Google Scholar
Yukutake, T., 1989, Geomagnetic secular variation: theory. In James (1989), pp. 578–584.
Yukutake, T. and Tachinaka, T., 1969, Separation of the Earth's magnetic field into the drifting and the standing parts. Bull. Earthquake Res. Inst. Univ. Tokyo 47: 65–97.Google Scholar
Zeng, Y., 1993, Theory of scattered P- and S-wave energy in a random isotropic scattering medium. Bull. Seism. Soc. Am. 83(4): 1264–1276.Google Scholar
Zhang, J., Song, X., Li, Y., Richards, P. G., Sun, X. and Waldhauser, F., 2005, Inner core differential motion confirmed by earthquake waveform doublets. Science 309: 1357–1360.Google Scholar
Zhang, Q., Soon, W. H., Baliunas, S. L., Lockwood, G. W., Skiff, B. A. and Radick, R. R., 1994, A method of determining possible brightness variations of the Sun in past centuries from observations of solar-type stars. Astrophys. J. 427: L111–L114.Google Scholar
Zhang, Y. S. and Lay, T., 1999, Evolution of oceanic upper mantle structure. Phys. Earth Planet. Inter. 114: 71–80.Google Scholar
Zhang, Y. S. and Tanimoto, T., 1991, Global Love wave phase velocity variation and it significance to plate tectonics. Phys. Earth Planet. Inter. 66: 160–202.Google Scholar
Zhang, Y. S. and Tanimoto, T., 1992, Ridges, hotspots and their interaction as observed in seismic velocity maps. Nature 335: 4–49.Google Scholar
Zho, W. et al. (15 authors), 2001, Crustal structure of central Tibet as derived from Project INDEPTH wide-angle seismic data. Geophys. J. Int. 145: 486–498.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Frank D. Stacey, Paul M. Davis, University of California, Los Angeles
  • Book: Physics of the Earth
  • Online publication: 05 July 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511812910.038
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Frank D. Stacey, Paul M. Davis, University of California, Los Angeles
  • Book: Physics of the Earth
  • Online publication: 05 July 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511812910.038
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Frank D. Stacey, Paul M. Davis, University of California, Los Angeles
  • Book: Physics of the Earth
  • Online publication: 05 July 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511812910.038
Available formats
×