Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-03T15:13:06.967Z Has data issue: false hasContentIssue false

6 - Performance bounds for parameter estimation

from Part II - Complex random vectors

Published online by Cambridge University Press:  25 January 2011

Peter J. Schreier
Affiliation:
University of Newcastle, New South Wales
Louis L. Scharf
Affiliation:
Colorado State University
Get access

Summary

All parameter estimation begins with a measurement and an algorithm for extracting a parameter estimate from the measurement. The algorithm is the estimator.

There are two ways to think about performance analysis. One way is to begin with a particular estimator and then to compute its performance. Typically this would amount to computing the bias of the estimator and its error covariance matrix. The practitioner then draws or analyzes concentration ellipsoids to decide whether or not the estimator meets specifications. But the other, more general, way is to establish a limit on the accuracy of any estimator of the parameter. We might call this a uniform limit, uniform over an entire class of estimators. Such a limit would speak to the information that the measurement carries about the underlying parameter, independently of how the information is extracted.

Performance bounds are fundamental to signal processing because they tell us when the number and quality of spatial, temporal, or spatial–temporal measurements is sufficient to meet performance specifications. That is, these general bounds speak to the quality of the experiment or the sensing schema itself, rather than to the subsequent signal processing. If the sensing scheme carries insufficient information about the underlying parameter, then no amount of sophisticated signal processing can extract information that is not there. In other words, if the bound says that the error covariance is larger than specifications require, then the experiment or measurement scheme must be redesigned.

Type
Chapter
Information
Statistical Signal Processing of Complex-Valued Data
The Theory of Improper and Noncircular Signals
, pp. 151 - 176
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×