Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-01T09:56:30.227Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  05 June 2012

Ralph Baierlein
Affiliation:
Wesleyan University, Connecticut
Get access

Summary

Several aims guided me while I wrote. My first goal was to build from the familiar to the abstract and still get to entropy, conceived microscopically, in the second chapter. I sought to keep the book crisp and lean: derivations were to be succinct and simple; topics were to be those essential for physics and astronomy. From the professor's perspective, a semester is a short time, and few undergraduate curricula can devote more than a semester to thermal physics.

Modularity was another aim. Instructors' tastes vary greatly, and so I sought maximal flexibility in what to teach and when to cover it. The book's logical structure is displayed in figure P1. Chapters 1 to 3 develop topics that appear in the typical fat textbook for introductory physics but are rarely assimilated by students in that course, if the instructor even gets to the topics. Thus the book presumes only an elementary knowledge of classical mechanics and some rudimentary ideas from quantum theory, primarily the de Broglie relationship p = h/λ and the idea of energy eigenstates.

A benefit of modularity is that one can study chapter 13—the classical theory—any time after chapter 5. I placed the classical theory so far back in the book because I think students should get to use the quantum machinery of chapters 4 and 5 on some important physics before they face the development of more formalism.

Type
Chapter
Information
Thermal Physics , pp. xi - xiv
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Ralph Baierlein, Wesleyan University, Connecticut
  • Book: Thermal Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840227.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Ralph Baierlein, Wesleyan University, Connecticut
  • Book: Thermal Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840227.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Ralph Baierlein, Wesleyan University, Connecticut
  • Book: Thermal Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840227.001
Available formats
×