Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-05T06:40:07.698Z Has data issue: false hasContentIssue false

3 - Thermal stability of polystyrene nanocomposites from improved thermally stable organoclays

from Part I - Thermal stability

Published online by Cambridge University Press:  05 August 2011

Vikas Mittal
Affiliation:
The Petroleum Institute, Abu Dhabi
Get access

Summary

Introduction

Polymer/clay nanocomposites exhibit remarkable improvement in material properties relative to unfilled polymers or conventional composites. These improvements can include increased tensile modulus, mechanical strength, and heat resistance and reduced gas permeability and flammability. There are various methods of preparing polymer/clay nanocomposites: (i) in situ polymerization, (ii) solution intercalation, (iii) melt intercalation, and (iv) in situ template synthesis.

Nanoclays are difficult to disperse in polymer matrices, because of the strong attractive forces among the clay platelets and the commonly hydrophobic nature of polymers. Thus, it is necessary to modify pristine nanoclays in order to (i) render them compatible with most polymers and (ii) enlarge the basal spacing of clay to favor polymer intercalation. Several approaches are used to modify clays and clay minerals.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ray, S. SinhaOkamoto, M.Polymer/layered silicate nanocomposites: A review from preparation to processingProgress in Polymer Science 28 2003 1539Google Scholar
Pavlidou, S.Papaspyrides, C. D.A review on polymer–layered silicate nanocompositesProgress in Polymer Science 33 2008 1119CrossRefGoogle Scholar
de Paiva, L. B.Morales, A. R.Díaz, F. R. ValenzuelaOrganoclays: Properties, preparation and applicationsApplied Clay Science 42 2008 8CrossRefGoogle Scholar
Lagaly, G.Interaction of alkylamines with different types of layered compoundsSolid State Ionics 22 1986 43CrossRefGoogle Scholar
Lagaly, G.Beneke, K.Intercalation and exchange reactions of clay minerals and non-clay layer compoundsColloid and Polymer Science 269 1991 1198CrossRefGoogle Scholar
Xi, Y.Zhou, Q.Frost, R. L.He, H.Thermal stability of octadecyltrimethylammonium bromide modified montmorillonite organoclayJournal of Colloid and Interface Science 311 2007 347CrossRefGoogle ScholarPubMed
Xie, W.Gao, Z.Pan, W.-P.Hunter, D.Singh, A.Vaia, R.Thermal degradation chemistry of alkyl quaternary ammonium montmorilloniteChemistry of Materials 13 2001 2979CrossRefGoogle Scholar
Xie, W.Gao, Z.Liu, K.Pan, W.-P.Vaia, R.Hunter, D.Singh, A.Thermal characterization of organically modified montmorilloniteThermochimica Acta 367 2001 339CrossRefGoogle Scholar
Avalos, F.Ortiz, J. C.Zitzumbo, R.López-Manchado, M. A.Verdejo, R.Arroyo, M.Phosphonium salt intercalated montmorillonitesApplied Clay Science 43 2009 27CrossRefGoogle Scholar
Stoeffler, K.Lafleur, P. G.Denault, J.Thermal decomposition of various alkyl onium organoclays: Effect on polyethylene terephthalate nanocomposites’ propertiesPolymer Degradation and Stability 93 2008 1332CrossRefGoogle Scholar
Cervantes-Uc, J. M.Cauich-Rodrıguez, J. V.Vazquez-Torres, H.Garfias-Mesıas, L. F.Paul, D. R.Thermal degradation of commercially available organoclays studied by TGA–FTIRThermochimica Acta 457 2007 92CrossRefGoogle Scholar
Edwards, G.Halley, P.Kerven, G.Martina, D.Thermal stability analysis of organo-silicates, using solid phase microextraction techniquesThermochimica Acta 429 2005 13CrossRefGoogle Scholar
Xi, Y.Frost, R.He, H.Kloprogge, T.Bostrom, T.Modification of Wyoming montmorillonite surfaces using a cationic surfactantLangmuir 21 2005 8675CrossRefGoogle ScholarPubMed
Cui, L.Khramov, D. M.Bielawski, C. W.Hunter, D. L.Yoon, P. J.Paul, D. R.Effect of organoclay purity and degradation on nanocomposite performance. Part 1. Surfactant degradationPolymer 49 2008 3751CrossRefGoogle Scholar
Xie, W.Xie, R.Pan, W.-P.Hunter, D.Koene, B.Tan, L.-S.Vaia, R.Thermal stability of quaternary phosphonium modified montmorillonitesChemistry of Materials 14 2002 4837CrossRefGoogle Scholar
Nassar, N.Utracki, L. A.Kamal, M. R.Melt intercalation in montmorillonite/ polystyrene nanocompositesInternational Polymer Processing 20 2005 423CrossRefGoogle Scholar
Lee, J. W.Lim, Y. T.Park, O. O.Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocompositesPolymer Bulletin 45 2000 191CrossRefGoogle Scholar
Scaffaro, R.Mistretta, M. C.La Mantia, F. P.Frache, A.Effect of heating of organo-montmorillonites under different atmospheresApplied Clay Science 45 2009 185CrossRefGoogle Scholar
Dharaiya, D.Jana, S. C.Thermal decomposition of alkyl ammonium ions and its effects on surface polarity of organically treated nanoclayPolymer 46 2005 10139CrossRefGoogle Scholar
Jang, B. N.Wilkie, C. A.The thermal degradation of polystyrene nanocompositePolymer 46 2005 2933CrossRefGoogle Scholar
Chen, K.Vyazovkin, S.Mechanistic differences in degradation of polystyrene and polystyrene–clay nanocomposite: Thermal and thermo-oxidative degradationMacromolecular Chemistry and Physics 207 2006 587CrossRefGoogle Scholar
Leszczynska, A.Njuguna, J.Pielichowski, K.Banerjee, J. R.Polymer/ montmorillonite nanocomposites with improved thermal properties. Part I. Factors influencing thermal stability and mechanisms of thermal stability improvementThermochimica Acta 453 2007 75Google Scholar
Leszczynska, A.Njuguna, J.Pielichowski, K.Banerjee, J. R.Polymer/ montmorillonite nanocomposites with improved thermal properties. Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixesThermochimica Acta 454 2007 1Google Scholar
Gilman, J. W.Harris, R. H.Shields, J. R.Kashiwagi, T.Morgan, A. B.A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: Layered silicate reinforced carbonaceous charPolymers for Advanced Technologies 17 2006 263CrossRefGoogle Scholar
Kumar, A. P.Depan, D.Tomer, N. S.Singha, R. P.Nanoscale particles for polymer degradation and stabilization – Trend and future perspectivesProgress in Polymer Science 34 2009 479CrossRefGoogle Scholar
Yei, D.-R.Fu, H.-K.Chang, Y.-H.Kuo, S.-W.Huang, J.-M.Chang, F.-C.Thermal properties of polystyrene nanocomposites formed from rigid intercalation agent-treated montmorilloniteJournal of Polymer Science, Part B: Polymer Physics 45 2007 1781CrossRefGoogle Scholar
Chigwada, G.Wang, D.Jiang, D. D.Wilkie, C. A.Styrenic nanocomposites prepared using a novel biphenyl-containing modified clayPolymer Degradation and Stability 91 2006 755CrossRefGoogle Scholar
Chigwada, G.Jiang, D. D.Wilkie, C. A.Polystyrene nanocomposites based on carbazole-containing surfactantsThermochimica Acta 436 2005 113CrossRefGoogle Scholar
Chigwada, G.Wang, D.Wilkie, C. A.Polystyrene nanocomposites based on quinolinium and pyridinium surfactantsPolymer Degradation and Stability 91 2006 848CrossRefGoogle Scholar
Yei, D.-R.Kuo, S.-W.Fu, H.-K.Chang, F.-C.Enhanced thermal properties of PS nanocomposites formed from montmorillonite treated with a surfactant/cyclodextrin inclusion complexPolymer 46 2005 741CrossRefGoogle Scholar
Carniato, F.Bisio, C.Gatti, G.Boccaleri, E.Bertinetti, L.Coluccia, S.Monticelli, O.Marchese, L.Titanosilsesquioxanes embedded in synthetic clay as a hybrid material for polymer scienceAngewandte Chemie International Edition 48 2009 6059CrossRefGoogle Scholar
Yei, D.-R.Kuo, S.-W.Su, Y.-C.Chang, F.-C.Enhanced thermal properties of PS nanocomposites formed from inorganic POSS-treated montmorillonitePolymer 45 2004 2633CrossRefGoogle Scholar
Fu, H.-K.Kuo, S.-W.Yeh, D.-R.Chang, F.-C.Properties enhancement of PS nanocomposites through the POSS surfactantsJournal of Nanomaterials 2008CrossRefGoogle Scholar
Fu, H.-K.Huang, C.-F.Huang, J.-M.Chang, F.-C.Studies on thermal properties of PS nanocomposites for the effect of intercalated agent with side groupsPolymer 49 2008 1305CrossRefGoogle Scholar
Zhu, J.Morgan, A. B.Lamelas, F. J.Wilkie, C. A.Fire properties of polystyrene–clay nanocompositesChemistry of Materials 13 2001 3774CrossRefGoogle Scholar
Zhu, J.Uhl, F. M.Morgan, A. B.Wilkie, C. A.Studies on the mechanism by which the formation of nanocomposites enhances thermal stabilityChemistry of Materials 13 2001 4649CrossRefGoogle Scholar
Wang, H.-W.Chang, K.-C.Chu, H.-C.hLiou, S.-J.Yeh, J.-M.Significant decreased dielectric constant and loss of polystyrene–clay nanocomposite materials by using long-chain intercalation agentJournal of Applied Polymer Science 92 2004 2402CrossRefGoogle Scholar
Wang, H.-W.Chang, K.-C.Yeh, J.-M.Liou, S.-J.Synthesis and dielectric properties of polystyrene–clay nanocomposite materialsJournal of Applied Polymer Science 91 2004 1368CrossRefGoogle Scholar
Yeh, J.-M.Liou, S.-J.Lu, H.-J.Huang, H.-Y.Enhancement of corrosion protection effect of poly(styrene-co-acrylonitrile) by the incorporation of nanolayers of montmorillonite clay into copolymer matrixJournal of Applied Polymer Science 92 2004 2269CrossRefGoogle Scholar
Morgan, A. B.Chu, L.-L.Harris, J. D.A flammability performance comparison between synthetic and natural clays in polystyrene nanocompositesFire and Materials 29 2005 213CrossRefGoogle Scholar
Kim, M. H.Park, C. I.Choi, W. M.Lee, J. W.Lim, J. G.Park, O. O.Kim, J. M.Synthesis and material properties of syndiotactic polystyrene/organophilic clay nanocompositesJournal of Applied Polymer Science 92 2004 2144CrossRefGoogle Scholar
Bruzaud, S.Grohens, Y.Ilinca, S.Carpentier, J.-F.Syndiotactic polystyrene/ organoclay nanocomposites: Synthesis via in situ coordination-insertion polymerization and preliminary characterizationMacromolecular Materials and Engineering 290 2005 1106CrossRefGoogle Scholar
Cai, Y.Wei, Q.Chen, G.Wu, N.Gao, W.Comparison between effects of two different cationic surfactants on structure and properties of HIPS/OMT nanocompositesJournal of Reinforced Plastics and Composites 28 2009 2161Google Scholar
Yei, D.-R.Fu, H.-K.Chang, Y.-H.Kuo, S.-W.Huang, J.-M.Chang, F.-C.Thermal properties of polystyrene nanocomposites formed from rigid intercalation agent-treated montmorilloniteJournal of Polymer Science, Part B: Polymer Physics 45 2007 1781CrossRefGoogle Scholar
Calderon, J. U.Lennox, B.Kamal, M. R.Thermally stable phosphonium–montmorillonite organoclaysApplied Clay Science 40 2008 90CrossRefGoogle Scholar
Kamal, M. R.Calderon, J. U.Lennox, R. B.Surface energy of modified nano- clays and its effect on polymer/clay nanocompositesJournal of Adhesion Science and Technology 23 2009 663CrossRefGoogle Scholar
Gilman, J. W.Awad, W. H.Davis, R. D.Shields, J.Harris, R. H.Davis, C.Morgan, A. B.Sutto, T. E.Callahan, J.Trulove, P. C.DeLong, H. C.Polymer/layered silicate nanocomposites from thermally stable trialkylimidazolium-treated montmorilloniteChemistry of Materials 14 2002 3776CrossRefGoogle Scholar
Awad, W. H.High-throughput method for the synthesis of high performance polystyrene nanocompositesPolymer–Plastics Technology and Engineering 45 2006 1117CrossRefGoogle Scholar
Bourbigot, S.Vanderhart, D. L.Gilman, J. W.Awad, W. H.Davis, R. D.Morgan, A. B.Wilkie, C. A.Investigation of nanodispersion in polystyrene–montmorillonite nanocomposites by solid-state NMRJournal of Polymer Science, Part B: Polymer Physics 41 2003 3188CrossRefGoogle Scholar
Bottino, F. A.Fabbri, E.Fragala, I. L.Malandrino, G.Orestano, A.Pilati, F.Pollicino, A.Polystyrene–clay nanocomposites prepared with polymerizable imidazolium surfactantsMacromolecular Rapid Communication 24 2003 1079CrossRefGoogle Scholar
Abate, L.Blanco, I.Bottino, F. A.Di Pasquale, G.Fabbri, E.Orestano, A.Pollicino, A.Kinetic study of the thermal degradation of PS/MMT nanocomposites prepared with imidazolium surfactantsJournal of Thermal Analysis and Calorimetry 91 2008 681CrossRefGoogle Scholar
Bottino, F. A.Di Pasquale, G.Fabbri, E.Orestano, A.Pollicino, A.Influence of montmorillonite nano-dispersion on polystyrene photo-oxidationPolymer Degradation and Stability 94 2009 369CrossRefGoogle Scholar
Morgan, A. B.Harris, J. D.Exfoliated polystyrene–clay nanocomposites synthesized by solvent blending with sonicationPolymer 45 2004 8695CrossRefGoogle Scholar
Zhao, J.Morgan, A. B.Harris, J. D.Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersionPolymer 46 2005 8641CrossRefGoogle Scholar
Wang, Z. M.Chung, T. C.Gilman, J. W.Manias, E.Melt-processable syndiotactic polystyrene/montmorillonite nanocompositesJournal of Polymer Science, Part B: Polymer Physics 41 2003 3173CrossRefGoogle Scholar
Costache, M. C.Heidecker, M. J.Manias, E.Gupta, R. K.Wilkie, C. A.Benzimidazolium surfactants for modification of clays for use with styrenic polymersPolymer Degradation and Stability 92 2007 1753CrossRefGoogle Scholar
Awad, W. H.Gilman, J. W.Nydena, M.Harris, R. H.Sutto, T. E.Callahan, J.Trulove, P. C.DeLongc, H. C.Fox, D. M.Thermal degradation studies of alkyl-imidazolium salts and their application in nanocompositesThermochimica Acta 409 2004 3CrossRefGoogle Scholar
Wang, D.Wilkie, C. A.A stibonium-modified clay and its polystyrene nanocompositePolymer Degradation and Stability 82 2003 309CrossRefGoogle Scholar
Greesh, N.Hartmann, P. C.Sanderson, R. D.Preparation of polystyrene/clay nanocomposites by free-radical polymerization in dispersionMacromolecular Materials and Engineering 294 2009 787CrossRefGoogle Scholar
Tang, Z.Lu, D.Guo, J.Su, Z.Thermal stabilities of vermiculites/polystyrene (VMTs/PS) nanocomposites via in-situ bulk polymerizationMaterials Letters 62 2008 4223CrossRefGoogle Scholar
Zhang, J.Wilkie, C. A.A carbocation substituted clay and its styrene nanocompositePolymer Degradation and Stability 83 2004 301CrossRefGoogle Scholar
Zhao, M.Liu, P.Halloysite nanotubes/polystyrene (HNTs/PS) nanocomposites via in situ bulk polymerizationJournal of Thermal Analysis and Calorimetry 94 2008 103CrossRefGoogle Scholar
Fan, X.Xia, C.Advincula, R. C.Grafting of polymers from clay nanoparticles via in situ free radical surface-initiated polymerization: Monocationic versus bicationic initiatorsLangmuir 19 2003 4381CrossRefGoogle Scholar
Samakande, A.Hartmann, P. C.Cloete, V.Sanderson, R. D.Use of acrylic based surfmers for the preparation of exfoliated polystyreneeclay nanocompositesPolymer 48 2007 1490CrossRefGoogle Scholar
Samakande, A.Juodaityte, J. J.Sanderson, R. D.Hartmann, P. C.Novel cationic raft-mediated polystyrene/clay nanocomposites: Synthesis, characterization, and thermal stabilityMacromolecular Materials and Engineering 293 2008 428CrossRefGoogle Scholar
Samakande, A.Sanderson, R. D.Hartmann, P. C.RAFT-mediated polystyrene–clay nanocomposites prepared by making use of initiator-bound MMT clayEuropean Polymer Journal 45 2009 649CrossRefGoogle Scholar
Liu, P.Polymer modified clay minerals: A reviewApplied Clay Science 38 2007 64CrossRefGoogle Scholar
Zang, Y.Xu, W.Qiu, D.Chen, D.Chen, R.Su, S.Synthesis, characterization and thermal stability of different polystyryl quaternary ammonium surfactants and their montmorillonite complexesThermochimica Acta 474 2008 1CrossRefGoogle Scholar
Su, S.Jiang, D. D.Wilkie, C. A.Study on the thermal stability of polystyryl surfactants and their modified clay nanocompositesPolymer Degradation and Stability 84 2004 269CrossRefGoogle Scholar
Su, S.Jiang, D. D.Wilkie, C. A.Novel polymerically-modified clays permit the preparation of intercalated and exfoliated nanocomposites of styrene and its copolymers by melt blendingPolymer Degradation and Stability 83 2004 333CrossRefGoogle Scholar
Jang, B. N.Costache, M.Wilkie, C. A.The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocompositesPolymer 46 2005 10CrossRefGoogle Scholar
Sepehr, M.Utracki, L. A.Zheng, X.Wilkie, C. A.Polystyrenes with macro-intercalated organoclay. Part I. Compounding and characterizationPolymer 46 2005 11557CrossRefGoogle Scholar
Han, S. S.Kim, Y. S.Lee, S. G.Lee, J. H.Zhang, K.Choi, H. J.Rheological properties of polystyrene–organophilic layered silicate nanocompositesMacromolecular Symposium 245 2006 199CrossRefGoogle Scholar
Su, S.Jiang, D. D.Wilkie, C. A.Polybutadiene-modified clay and its nanocompositesPolymer Degradation and Stability 84 2004 279CrossRefGoogle Scholar
Su, S.Jiang, D. D.Wilkie, C. A.Polybutadiene-modified clay and its polystyrene nanocompositesJournal of Vinyl and Additive Technology 10 2004 44CrossRefGoogle Scholar
Sen, S.Nugay, N.Nugay, T.Effects of the nature and combinations of solvents in the intercalation of clay with block copolymers on the properties of polymer nanocompositesJournal of Applied Polymer Science 112 2009 52CrossRefGoogle Scholar
Zheng, X.Wilkie, C. A.Flame retardancy of polystyrene nanocomposites based on an oligomeric organically-modified clay containing phosphatePolymer Degradation and Stability 81 2003 539CrossRefGoogle Scholar
Chigwada, G.Jash, P.Jiang, D. D.Wilkie, C. A.Synergy between nanocomposite formation and low levels of bromine on fire retardancy in polystyrenesPolymer Degradation and Stability 88 2005 382CrossRefGoogle Scholar
Zhang, J.Jiang, D. D.Wang, D.Wilkie, C. A.Mechanical and fire properties of styrenic polymer nanocomposites based on an oligomerically-modified clayPolymers for Advanced Technologies 16 2005 800CrossRefGoogle Scholar
Zhang, J.Jiang, D. D.Wang, D.Wilkie, C. A.Styrenic polymer nanocomposites based on an oligomerically-modified clay with high inorganic contentPolymer Degradation and Stability 91 2006 2665CrossRefGoogle Scholar
Zhang, J.Jiang, D. D.Wilkie, C. A.Polyethylene and polypropylene nanocomposites based on a three component oligomerically-modified clayPolymer Degradation and Stability 91 2006 641CrossRefGoogle Scholar
Chen, R.Chen, D.Su, S.Synthesis and characterization of novel oligomeric poly(styrene-co-acrylonitrile)–clay complexesJournal of Applied Polymer Science 112 2009 3355CrossRefGoogle Scholar
Zheng, X.Jiang, D. D.Wang, D.Wilkie, C. A.Flammability of styrenic polymer clay nanocomposites based on a methyl methacrylate oligomerically-modified clayPolymer Degradation and Stability 91 2006 289CrossRefGoogle Scholar
Zheng, X.Jiang, D. D.Wilkie, C. A.Polystyrene nanocomposites based on an oligomerically-modified clay containing maleic anhydridePolymer Degradation and Stability 91 2006 108CrossRefGoogle Scholar
Calderon, J. U.Lennox, B.Kamal, M. R.Polystyrene/phosphonium organoclay nanocomposites by melt compoundingInternational Polymer Processing 23 2008 119CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×