Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-18T17:49:10.611Z Has data issue: false hasContentIssue false

12 - Viscosity

Published online by Cambridge University Press:  05 August 2012

George D. J. Phillies
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] H., Staudinger and R., Nodzu. Viskositaetsuntersuchungen an paraffin-loesungen. Berichte der Deutschen Chemischen Gesellschaft, 63 (1930), 721–724.Google Scholar
[2] Y., Furukawa. Inventing Polymer Science, (Philadelphia: University of Pennsylvania Press, 1998), Ch. 2.Google Scholar
[3] W., Kuhn and H., Kuhn. Die Abhaengigkeit der Viskositaet vom Stromungsgefaelle bei hochverduennten Suspensionen und Loesungen. Helvetica Chimica Acta 28 (1945), 97–104.Google Scholar
[4] P., Debye. The intrinsic viscosity of polymer solutions. J. Chem. Phys., 14 (1946), 415–424.Google Scholar
[5] J. G., Kirkwood and J., Riseman. The intrinsic viscosities and diffusion coefficients of flexible macromolecules in solution. J. Chem. Phys., 16 (1948), 565–573.Google Scholar
[6] N., Saito. Concentration dependence of the viscosity of high polymer solutions. J. Phys. Soc. Japan, 5 (1949), 4-8; N. Saito. A remark on the hydrodynamical theory of the viscosity of solutions of macromolecules. J. Phys. Soc. Japan, 7 (1952), 447–450.Google Scholar
[7] A. F., Martin. A new correlation of viscosity and concentration for high molecular weight compounds. Division of Cellulose Chemistry, Am. Chem. Soc. Meeting, Memphis, 1942. Presented Paper.Google Scholar
[8] S., Matsuoka and M. K., Cowman. Equation of state for polymer solution. Polymer, 43 (2002), 3447–3453.Google Scholar
[9] E., Rotureau, E., Dellacherie, and A., Durand. Concentration dependence of aqueous solution viscosities of amphiphilic polymers. Macromolecules, 38 (2005), 4940–4941.Google Scholar
[10] D. W., Schaefer. Polymer reptation in semidilute solutions. J. Polymer Sci. Polymer Symp., 73 (1985), 121–131.Google Scholar
[11] P.-G., Gennes. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys., 55 (1971), 572–579.Google Scholar
[12] A. R., Altenberger and J. S., Dahler. Application of a new renormalization group to the equation of state of a hard-sphere fluid. Phys. Rev. E, 54 (1996), 6242–6252.Google Scholar
[13] G. D. J., Phillies. Low-shear viscosity of nondilute polymer solutions from a generalized Kirkwood–Riseman model. J. Chem. Phys., 116 (2002), 5857–5866.Google Scholar
[14] G. D. J., Phillies. Self-consistency of hydrodynamic models for low-shear viscosity and self-diffusion. Macromolecules, 35 (2002), 7414–7418.Google Scholar
[15] G. D. J., Phillies and C. A., Quinlan. Analytic structure of the solutionlike–meltlike transition in polymer solution dynamics. Macromolecules, 28 (1995), 160–164.Google Scholar
[16] A., Jamieson and D., Telford. Newtonian viscosity of semidilute solutions of polystyrene in tetrahydrofuran. Macromolecules, 15 (1982), 1329–1332.Google Scholar
[17] R., Cush, P. S., Russo, Z., Kucukyavuz, et al.Rotational and translational diffusion of a rodlike virus in random coil polymer solutions. Macromolecules, 30 (1997), 4902–4926.Google Scholar
[18] R., Cush, D., Dorman, and P. S., Russo. Rotational and translational diffusion of tobacco mosaic virus in extended and globular polymer solutions. Macromolecules, 37 (2004), 9577–9584.Google Scholar
[19] H., Enomoto,Y., Einaga, and A., Teramoto. Viscosity of concentrated solutions of rodlike polymers. Macromolecules, 18 (1985), 2695–2702.Google Scholar
[20] R., Furukawa, J. L., Arauz-Lara, and B. R., Ware. Self-diffusion and probe diffusion in dilute and semidilute aqueous solutions of dextran. Macromolecules, 24 (1991), 599–605.Google Scholar
[21] F. M., Goycoolea, E. R., Morris, R. K., Richardson, and A. E., Bell. Solution rheology of mesquite gum in comparison with gum arabic. Carbohydrate Polymers, 27 (1995), 37–45.Google Scholar
[22] C. E., Ioan, T., Aberle, and W., Burchard. Light scattering and viscosity behavior of dextran in semidilute solution. Macromolecules, 34 (2001), 326–336.Google Scholar
[23] C. E., Ioan, T., Aberle, and W., Burchard. Structure properties of dextran. 2. Dilute solution. Macromolecules, 33 (2000), 5730–5739.Google Scholar
[24] J. E., Martin. Polymer self-diffusion: Dynamic light scattering studies of isorefractive ternary solutions. Macromolecules, 17 (1984), 1279–1283.Google Scholar
[25] C. N., Onyenemezu, D., Gold, M., Roman, and W. G., Miller. Diffusion of polystyrene latex spheres in linear polystyrene nonaqueous solutions. Macromolecules, 26 (1993), 3833–3837.Google Scholar
[26] N. A., Busch, T., Kim, and V. A., Bloomfield. Tracer diffusion of proteins in DNA solutions. 2. Green fluorescent protein in crowded DNA solutions. Macromolecules, 33 (2000), 5932–5937.Google Scholar
[27] W., Brown, and R., Rymden, Comparison of the translational diffusion of large spheres and high molecular weight coils in polymer solutions. Macromolecules, 21 (1988), 840–846.Google Scholar
[28] S. C., Smedt, P., Dekeyser, V., Ribitsch, A., Lauwers, and J., Demeester. Viscoelastic and transient network properties of hyaluronic acid as a function of the concentration. Biorheology, 30 (1993), 31–41.Google Scholar
[29] T., Yang and A. M., Jamieson. Diffusion of latex spheres through solutions of hydroxypropylcellulose in water. J. Coll. Interf. Sci., 126 (1988), 220–230.Google Scholar
[30] Z., Pu and W., Brown. Translational diffusion of large silica spheres in semidilute polymer solutions. Macromolecules, 22 (1989), 890–896.Google Scholar
[31] M., Sakai, T., Fujimoto, and M., Nagasawa. Steady flow properties of monodisperse polymer solutions. Molecular weight and polymer concentration dependences. Steady shear compliance at zero and finite shear rates. Macromolecules, 5 (1972), 786–792.Google Scholar
[32] K., Osaki, Y., Einaga, M., Kurata, and M., Tamura. Creep behavior of polymer solutions. I. A new type of apparatus for creep and creep recovery. Macromolecules, 4 (1971), 77–82.Google Scholar
[33] Y., Einaga, K., Osaki, M., Kurata, and M., Tamura. Creep behavior of polymer solutions. II. Steady-shear compliance of concentrated polymer solutions. Macromolecules, 4 (1970), 82–87.Google Scholar
[34] H., Tao, T. P., Lodge, and E. D., von Meerwall. Diffusivity and viscosity of concentrated hydrogenated polybutadiene solutions. Macromolecules, 33 (2000), 1747–1758.Google Scholar
[35] G. S., Ullmann, K., Ullmann, R. M., Lindner, and G. D. J., Phillies. Probe diffusion of polystyrene latex spheres in poly(ethylene oxide) : water. J. Phys. Chem., 89 (1985), 692–700.Google Scholar
[36] R. H., Colby, L. J., Fetters, W. G., Funk, and W. W., Graessley. Effects of concentration and thermodynamic interaction on the viscoelastic properties of polymer solutions. Macromolecules, 24 (1991), 3873–3882.Google Scholar
[37] V. E., Dreval, A. Ya., Malkin, and G. O., Botvinnik. Approach to generalization of concentration dependence of zero-shear viscosity in polymer solutions. J. Polymer Sci.: Polymer Phys. Ed., 11 (1973), 1055–1066.Google Scholar
[38] Dreval, et al. (37) cite this as A. Ya., Malkin, N. K., Blinova, and G. V., Vinogradov. Paper presented at the VI Symposium on Polymer Rheology, Moscow, (1971).Google Scholar
[39] Dreval, et al. (37) cite this as O. A., Mochalova, I. Ya., Slonim, V. E., Dreval, et al. Vysokomol. Soedin., A14 (1972), 1294.
[40] Dreval, et al. (37) cite these as (a) A. A., Tager and V. E., Dreval. Usp. Khim., 36 (1976), 888; (b) A. A. Tager and V. E. Dreval. Rheol. Acta, 9 (1970), 517; and (c) A. A. Tager, V. E. Dreval, G. O. Botvinnick, et al. Vysokomol. Soedin., A14 (1972), 1381.
[41] A., Ohshima, H., Kudo, T., Sato, and A., Teramoto. Entanglement effects in semiflexible polymer solutions. 1. Zero-shear viscosity of poly(n-hexyl isocyanate) solutions. Macromolecules, 28 (1995), 6095–6099.Google Scholar
[42] A., Ohshima, A., Yamagata, T., Sato, and A., Teramoto. Entanglement effects in semiflexible polymer solutions. 3. Zero-shear viscosity and mutual diffusion coefficient of poly(n-hexyl isocyanate) solutions. Macromolecules, 32 (1991), 8645–8654.Google Scholar
[43] J., Roovers. Concentration dependence of the relative viscosity of star polymers. Macromolecules, 27 (1994), 5359–5364.Google Scholar
[44] E., Raspaud, D., Lairez, and M., Adam. On the number of blobs per entanglement in semidilute and good solvent solution: melt influence. Macromolecules, 28 (1995), 927–933.Google Scholar
[45] T.-H., Lin and G. D. J., Phillies. Probe diffusion in polyacrylic acid : water – effect of polymer molecular weight. J. Coll. Interf. Sci., 100 (1984), 82–95.Google Scholar
[46] T.-H., Lin and G. D. J., Phillies. Probe diffusion in poly(acrylic acid) : water. Effect of probe size. Macromolecules, 17 (1984), 1686–1691.Google Scholar
[47] G. D. J., Phillies, C., Richardson, C. A., Quinlan, and S. Z., Ren. Transport in intermediate and high molecular weight hydroxypropylcellulose/water solutions. Macromolecules, 26 (1993), 6849–6858.Google Scholar
[48] G. H., Koenderinck, S., Sacanna, D. G. A. L., Aarts, and A. P., Philipse. Rotational and translational diffusion of fluorocarbon tracer spheres in semidilute xanthan solutions. Phys. Rev. E, 69 (2004), 021804 1–12.Google Scholar
[49] M., Milas, M., Rinaude, M., Knipper, and J. L., Schuppiser. Flow and viscoelastic properties of xanthan gum solutions. Macromolecules, 23 (1990), 2506–2511.Google Scholar
[50] S., Onogi, S., Kinura, T., Kato, T., Masuda, and N., Miyanaga. Effects of molecular weight and concentration on flow properties of concentrated polymer solutions. J. Polymer Sci. C, 15 (1966), 381–406.Google Scholar
[51] M., Doi and S. F., Edwards. The Theory of Polymer Dynamics, (Oxford: Clarendon Press, 1986).Google Scholar
[52] N., Nemoto, T., Kojima, T., Inoue, et al.Self-diffusion and tracer-diffusion coefficient and viscosity of concentrated solutions of linear polystyrenes in dibutyl phthalate. Macromolecules, 22 (1989), 3793–3798.Google Scholar
[53] N., Nemoto, T., Kojima, T., Inoue, and M., Kurata. Self-diffusion of polymers in the concentrated regime. I. Temperature dependence of the self-diffusion coefficient and the steady viscosity of polystyrene in dibutyl phthalate. Polymer Journal, 20 (1988), 875–881.Google Scholar
[54] W. W., Graessley, T., Masuda, J. E. L., Roovers, and N., Hadjichristidis. Rheological properties of linear and branched polyisoprene. Macromolecules, 9 (1976), 127–141.Google Scholar
[55] H., Kajiura, Y., Ushiyama, T., Fujimoto, and M., Nagasawa. Viscoelastic properties of star-shaped polymers in concentrated solutions. Macromolecules, 11 (1978), 894–899.Google Scholar
[56] L. A., Utracki and J. E. L., Roovers. Viscosity and normal stresses of linear and star branched polystyrene solutions. I. Application of corresponding states principle to zero-shear viscosities. Macromolecules, 6 (1973), 366–372.Google Scholar
[57] D., Gold, C., Onyenemezu, and W. G., Miller. Effect of solvent quality on the diffusion of polystyrene latex spheres in solutions of poly(methylmethacrylate). Macromolecules, 29 (1996), 5700–5709.Google Scholar
[58] Y., Isono and M., Nagasawa. Solvent effects on rheological properties of polymer solutions. Macromolecules, 13 (1980), 862–867.Google Scholar
[59] R., Simha and F. S., Chan. Corresponding state relations for the Newtonian viscosity of concentrated polymer solutions. Temperature dependence. J. Phys. Chem., 75 (1971), 256–267.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Viscosity
  • George D. J. Phillies, Worcester Polytechnic Institute, Massachusetts
  • Book: Phenomenology of Polymer Solution Dynamics
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511843181.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Viscosity
  • George D. J. Phillies, Worcester Polytechnic Institute, Massachusetts
  • Book: Phenomenology of Polymer Solution Dynamics
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511843181.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Viscosity
  • George D. J. Phillies, Worcester Polytechnic Institute, Massachusetts
  • Book: Phenomenology of Polymer Solution Dynamics
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511843181.013
Available formats
×