Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-15T05:40:08.467Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2014

Jack Dvorkin
Affiliation:
Stanford University, California
Mario A. Gutierrez
Affiliation:
Shell Exploration and Production Inc., Texas
Dario Grana
Affiliation:
University of Wyoming
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aki, K. and Richards, P. G. (1980). Quantitative Seismology: Theory and Methods. W.H. Freeman and Co.Google Scholar
Anselmetti, F. S. and Eberly, G. P. (1997). Sonic velocity in carbonate sediments and rocks. In Palaz, I. and Marfurt, K. J., eds, Carbonate Seismology, Geophysical Developments. Tulsa, OK, USA: SEG, 53–74.CrossRefGoogle Scholar
Arns, C. H., Knackstedt, M. A., Pinczewski, W. V. and Garboczi, E. J. (2002). Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment, Geophysics, 67, 1396–1405, doi: .CrossRefGoogle Scholar
Athy, L. F. (1930). Density, porosity, and compaction of sedimentary rocks, AAPG Bulletin, 14, 1–24.Google Scholar
Avseth, P. (2000). Combining rock physics and sedimentology for seismic reservoir characterization of North Sea turbidite systems. Ph.D. thesis, Stanford University.Google Scholar
Avseth, P., Mukerji, T., and Mavko, G. (2005). Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press.CrossRefGoogle Scholar
Avseth, P., Dvorkin, J., Mavko, G. and Rykkje, J. (2000). Rock physics diagnostic of North Sea sands: link between microstructure and seismic properties, Geophysical Research Letters, 27, 2761–2764, doi: .CrossRefGoogle Scholar
Bachrach, R. and Avseth, P. (2008). Rock physics modeling of unconsolidated sands: accounting for nonuniform contacts and heterogeneous stress fields in the effective media approximation with applications to hydrocarbon exploration, Geophysics, 73, E197–E209.CrossRefGoogle Scholar
Backus, G. F. (1962). Long-wave elastic anisotropy produced by horizontal layering, Journal of Geophysical Research, 67, 4427–4441, doi: .CrossRefGoogle Scholar
Baldwin, B. and Butler, C. O. (1985). Compaction curves, AAPG Bulletin, April, 69, 622–626.Google Scholar
Bangs, N. L., Sawyer, D. S. and Golovchenko, X. (1993). Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple junction, Geology, 21, 905–908.2.3.CO;2>CrossRefGoogle Scholar
Batzle, M. and Wang, Z. (1992). Seismic properties of pore fluids, Geophysics, 57, 1396–1408, doi: .CrossRefGoogle Scholar
Batzle, M. L., Han, D.-H., and Hofmann, R. (2006). Fluid mobility and frequency-dependent seismic velocity – direct measurements, Geophysics, 71, N1–N9, doi: .CrossRefGoogle Scholar
Berryman, J. G. (1992). Single-scattering approximations for coefficients in Biot’s equations of poroelasticity, The Journal of the Acoustical Society of America, 91, 551–571, doi: .CrossRefGoogle Scholar
Blangy, J. P. (1992). Integrated seismic lithologic interpretation: The petrophysical basis. Ph.D. thesis, Stanford University.Google Scholar
Blatt, H., Middleton, G. and Murray, R. (1980). Origin of Sedimentary Rocks. Prentice-Hall, Inc.Google Scholar
Boggs, S. (1995). Principles of Sedimentology and Stratigraphy. Prentice-Hall, Inc.Google Scholar
Bosl, W., Dvorkin, J. and Nur, A. (1998). A study of porosity and permeability using a lattice Boltzmann simulation. Geophysical Research Letters, 25, 1475–1478, doi: .CrossRefGoogle Scholar
Bourbie, T. and Zinszner, B. (1985). Hydraulic and acoustic properties as a function of porosity in Fountainebleau sandstone. Journal of Geophysical Research, 90, 11524–11532, doi: .CrossRefGoogle Scholar
Bowers, G. L. (1995). Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction. SPE Drilling and Completion, SPE 27488, 515–530, doi: .Google Scholar
Bowers, G. L. (2002). Detecting high overpressure. The Leading Edge, 21, 174–177, doi: .CrossRefGoogle Scholar
Box, G. E. P. and Draper, N. R. (1987). Empirical Model-Building and Response Surfaces, Wiley.Google Scholar
Box, R. and Lowrey, P. (2003). Reconciling sonic logs with check-shot surveys: stretching synthetic seismograms. The Leading Edge, 22, 510, doi: .CrossRefGoogle Scholar
Brie, A., Pampuri, F., Marsala, A. F. and Meazza, O., O. (1995). Shear sonic interpretation in gas bearing sands. Proceedings of SPE Annual Technical Conference and Exhibition, SPE 30595, 701–710, doi: .Google Scholar
Brown, A. (2011). Interpretation of Three-Dimensional Seismic Data. SEG.CrossRefGoogle Scholar
Cadoret, T. (1993). Effet de la saturation eau/gas sur les proprietes acoustiques des roches, Ph.D. thesis, University of Paris, VII.Google Scholar
Calvert, R. (2005). Insights and Methods for 4D Reservoir Monitoring and Characterization. SEG and EAGE.CrossRefGoogle Scholar
Castagna, J. P., Batzle, M. L. and Eastwood, R. L. (1985). Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks, Geophysics, 50, 571–581, doi: .CrossRefGoogle Scholar
Castagna, J. P., Batzle, M. L. and Kan, T. K. (1993). Rock physics – The link between rock properties and AVO response, in Offset-dependent reflectivity – Theory and practice of AVO analysis. In, Castagna, J. P. and M. Backus, eds, Investigations in Geophysics, 8. SEG, pp. 135–171.Google Scholar
Castagna, J. P., Swan, H. W. and Foster, D. J. (1998). Framework for AVO gradient and intercept interpretation, Geophysics, 63, 948–956, doi: .CrossRefGoogle Scholar
Castagna, J. P., Sun, S. and Siegfried, R. W. (2003). Instantaneous spectral analysis: detection of low-frequency shadows associated with hydrocarbons, The Leading Edge, 22, 120–127, doi: .CrossRefGoogle Scholar
Chatenever, A. and Calhoun, J. C. (1952). Visual examinations of fluid behavior in porous media – Part 1, AIME Petroleum Transactions, 195, 149–195, doi: .Google Scholar
Chen, G., Matteucci, G., Fahmy, B. and Finn, C. (2008). Spectral-decomposition response to reservoir fluids from a deepwater West Africa reservoir, Geophysics, 73, 23–30, doi: .CrossRefGoogle Scholar
Connolly, P. (1999). Elastic impedance, The Leading Edge, 19, 438–452, doi: .CrossRefGoogle Scholar
Cordon, I., Dvorkin, J. and Mavko, G. (2006). Seismic reflections of gas hydrate from perturbational forward modeling, Geophysics, 71, F165–F171, doi: .CrossRefGoogle Scholar
Dai, J., Xu, H., Shyder, F. and Dutta, N. (2004). Detection and estimation of gas hydrates using rock physics and seismic inversion: examples from the northern deepwater Gulf of Mexico, The Leading Edge, 23, 60–66.CrossRefGoogle Scholar
De Jager, J. (2012). Prospect evaluation and risk and volume assessment, Lecture notes, upublished.
Deutsch, C.V. and Journel, A. G, (1996). GSLIB: Geostatistical software library and user’s guide, 2nd edn. Oxford University Press.Google Scholar
Dickey, P. (1992). La Cira-Infantas Field, Middle Magdalena Basin. In E. A. Beaumont and N. H. Foster, eds, Structural Traps VII, AAPG Treatise of Petroleum Geology, Atlas for Oil and Gas Field. AAPG, pp. 323–347.Google Scholar
Domenico, S.N. (1977). Elastic properties of unconsolidated porous sand reservoirs, Geophysics, 42, 1339–1368, doi: .CrossRefGoogle Scholar
Dutta, N. C. (1987). Fluid flow in low permeable porous media, in Migration of hydrocarbons in sedimentary basins. In B. Doligez, ed., 2nd IFP Exploration Research Conference, Carcans, France, June 15–19. Editions Technip.Google Scholar
Dutta, N., Utech, R. and Shelander, D. (2010). Role of 3D seismic for quantitative shallow hazard assessment in deepwater sediments, The Leading Edge, 29, 930–942, doi: .CrossRefGoogle Scholar
Dvorkin, J. (2007). Self-similarity in rock physics, The Leading Edge, 26, 946–950, doi: .CrossRefGoogle Scholar
Dvorkin, J. (2008a). Yet another Vs equation, Geophysics, 73, E35–E39, doi: .CrossRefGoogle Scholar
Dvorkin, J. (2008b). The physics of 4D seismic, Fort Worth Basin Oil and Gas Magazine, October 2008, 33–36.Google Scholar
Dvorkin, J. (2008c). Can gas sand have a large Poisson’s ratio?, Geophysics, 73, E51–E57, doi: .CrossRefGoogle Scholar
Dvorkin, J. (2008d). Seismic-scale rock physics of methane hydrates, Fire in the Ice, DOE/NETL Methane Hydrate Newsletter, Summer 2008, 13–17.Google Scholar
Dvorkin, J. (2009). Digital rock physics bridges scales of measurement, E&P, 82, 9, 31–35.Google Scholar
Dvorkin, J. and Alkhater, S. (2004). Pore fluid and porosity mapping from seismic, First Break, 22, 53–57, doi: .CrossRefGoogle Scholar
Dvorkin, J. and Brevik, I. (1999). Diagnosing high-porosity sandstones: strength and permeability from porosity and velocity, Geophysics, 64, 795–799, doi: .CrossRefGoogle Scholar
Dvorkin, J. and Cooper, R. (2005). The caveat of scale, E&P, 78, 10, 83–86.Google Scholar
Dvorkin, J. and Derzhi, N. (2013). Rules for upscaling for rock physics transforms: composites of randomly and independently drawn elements, Geophysics, 77, WA120–WA139, doi: .Google Scholar
Dvorkin, J. and Gutierrez, M. (2001). Textural Sorting Effect on Elastic Velocities, Part II: Elasticity of a Bimodal Grain Mixture. SEG Technical Program Expanded Abstracts 2001, 1764–1767. Read more: .Google Scholar
Dvorkin, J. and Gutierrez, M., 2002, Grain sorting, porosity, and elasticity, Petrophysics, 43, 3, 185–196.Google Scholar
Dvorkin, J. and Mavko, G. (2006). Modeling attenuation in reservoir and non-reservoir rock, The Leading Edge, 25, 194–197, doi: .CrossRefGoogle Scholar
Dvorkin, J. and Nur, A. (1996). Elasticity of high-porosity sandstones: theory for two North Sea datasets, Geophysics, 61, 1363–1370, doi: .CrossRefGoogle Scholar
Dvorkin, J. and Nur, A. (1998). Time-average equation revisited, Geophysics, 63, 460–464, doi: .CrossRefGoogle Scholar
Dvorkin, J. and Nur, A. (2009). Scale of experiment and rock physics trends, The Leading Edge, 28, 110–115, doi: .CrossRefGoogle Scholar
Dvorkin, J. and Uden, R. (2004). Seismic wave attenuation in a methane hydrate reservoir, The Leading Edge, 23, 730–734, doi: .CrossRefGoogle Scholar
Dvorkin, J. and Uden, R. (2006). The challenge of scale in seismic mapping of hydrate and solutions, The Leading Edge, 25, 637–642, doi: .CrossRefGoogle Scholar
Dvorkin, J., Mavko, G. and Nur, A. (1999). Overpressure detection from compressional- and shear-wave data, Geophysical Research Letters, 26, 3417–3420, doi: .CrossRefGoogle Scholar
Dvorkin, J., Gutierrez, M. and Nur, A. (2002). On the universality of diagenetic trends, The Leading Edge, 21, 40–43.Google Scholar
Dvorkin, J., Nur, A., Uden, R. and Taner, T. (2003). Rock physics of a gas hydrate reservoir, The Leading Edge, 22, 842–847, doi: .CrossRefGoogle Scholar
Dvorkin, J., Walls, J., Uden, R., Carr, M., Smith, M. and Derzhi, N. (2004). Lithology substitution in fluvial sand, The Leading Edge, 23, 108–114, doi: .CrossRefGoogle Scholar
Dvorkin, J., Mavko, G. and Gurevich, B. (2007). Fluid substitution in shaley sediment using effective porosity, Geophysics, 72, O1–O8, doi: .CrossRefGoogle Scholar
Dvorkin, J., Armbruster, M., Baldwin, C., Fang, Q., Derzhi, N., Gomez, C., Nur, A. and Mu, Y. (2008). The future of rock physics: computational methods versus lab testing, First Break, 26, 63–68, doi: .Google Scholar
Dvorkin, J., Derzhi, N., Fang, Q., Nur, A., Grader, A., Baldwin, C., Tono, H. and Diaz, E. (2009). From micro to reservoir scale: Permeability from digital experiments, The Leading Edge, 28, 1446–1453, doi: .CrossRefGoogle Scholar
Dvorkin, J., Derzhi, N., Diaz, E. and Fang, Q. (2011). Relevance of computational rock physics, Geophysics, 76, E141–E153.CrossRefGoogle Scholar
Eastwood, J., Lebel, P., Dilay, A. and Blakeslee, S. (1994). Seismic monitoring of steam-based recovery of bitumen, The Leading Edge, 13, 242–251, doi: .CrossRefGoogle Scholar
Eaton, B. A. (1975). The equation for geopressured prediction from well logs, Proceedings of Fall Meeting of the Society of Petroleum Engineers of AIME, SPE 5544, doi: .CrossRefGoogle Scholar
Ebaid, H., Tura, A., Nasser, M., Hatchell, P., Smit, F., Payne, N., Herron, D., Stanley, D., Kaldy, J. and Barousse, C. (2008). First dual-vessel high-repeat GoM 4D shows development options at Holstein field, SEG Expanded Abstracts, doi: .Google Scholar
Eberli, G. P., Baechle, G. T., Anselmetti, F. S. and Incze, M. L. (2003). Factors controlling elastic properties in carbonate sediments and rocks, The Leading Edge, 22, 654–660, doi: .CrossRefGoogle Scholar
Ebrom, D. (2004). The low-frequency gas shadow on seismic sections, The Leading Edge, 23, 772, doi: .CrossRefGoogle Scholar
Ecker, C., Dvorkin, J. and Nur, A. (2000). Estimating the amount of gas hydrate and free gas from marine seismic data, Geophysics, 65, 565–573.CrossRefGoogle Scholar
Einsele, G., Ricken, W., and Seilacher, A., eds. (1991). Cycles and Events in Stratigraphy. Springer-Verlag.Google Scholar
Evejen, H. M. (1967). Outline of a system of refraction interpretation for monotonic increase of velocity with depth. In Musgrave, A. W., ed., Seismic Refraction Prospecting. SEG, p. 290.Google Scholar
Fabricius, I. L., Mavko, G., Mogensen, C. and Japsen, P. (2002). Elastic moduli of chalk as a reflection of porosity, sorting, and irreducible water saturation, SEG Expanded Abstracts, 1903–1906, doi: .Google Scholar
Fabricius, I. L., Baechle, G. T. and Eberli, G. P. (2010). Elastic moduli of dry and water-saturated carbonates – effect of depositional texture porosity and permeability, Geophysics, 75, 65–78, doi: .CrossRefGoogle Scholar
Fahmy, W. (2006). DHI/AVO Best Practices Methodology and Application, SEG/AAPG 2006 Fall Distinguished Lecture.Google Scholar
Fahmy, W. A., Matteucci, G., Parks, J., Matheney, M. and Zhang, J. (2008). Extending the Limits of Technology to Explore Below the DHI Floor; Successful Application of Spectral Decomposition to Delineate DHI’s Previously Unseen on Seismic Data. SEG Technical Program Expanded Abstracts 2008, 408–412.Google Scholar
Faust, L. Y. (1951). Seismic velocity as function of depth and geological time, Geophysics, 16, 192–206, doi: .CrossRefGoogle Scholar
Faust, L. Y. (1953). A velocity function including lithologic variation, Geophysics, 18, 271–288, doi: .CrossRefGoogle Scholar
Forrest, M., Roden, R. and Holeywell, R. (2010). Risking seismic amplitude anomaly prospects based on database trends, The Leading Edge, 29, 936–930, doi: .CrossRefGoogle Scholar
Fournier, F. and Borgomano, J. (2007). Geological significance of seismic reflections and imaging of reservoir architecture in the Malampaya gas field (Philippines), AAPG Bulletin, 92, 235–258, doi: .CrossRefGoogle Scholar
Gal, D., Dvorkin, J. and Nur, A. (1998). A physical model for porosity reduction in sandstones, Geophysics, 63, 454–459, doi: .CrossRefGoogle Scholar
Gal, D., Dvorkin, J. and Nur, A. (1999). Elastic-wave velocities in sandstones with non-load-bearing clay, GRL, 26, 939–942.CrossRefGoogle Scholar
Garboczi, E. J. and Day, A. R. (1995). An algorithm for computing the effective linear elastic properties of heterogeneous materials: three dimensional results for composites with equal phase Poisson’s ratios, Journal of the Mechanics and Physics of Solids, 43, 1349–1362, doi: .CrossRefGoogle Scholar
Gassmann, F. (1951). Elasticity of porous media: Uber die elastizitat poroser medien: Vierteljahrsschrift der Naturforschenden, Gesellschaft, 96, 1–23.Google Scholar
Ghaderi, A. and Landrø, M. (2009). Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time-lapse seismic data, Geophysics, 74, O17–O28, doi: .CrossRefGoogle Scholar
Ghosh, R. and Sen., M. (2012). Predicting subsurface CO2 movement: from laboratory to field scale, Geophysics, 77, M27–M37, doi: .CrossRefGoogle Scholar
Giles, M. (1997). Diagenesis: A Quantitative Perspective and Implications for Basin Modeling and Rock Property Prediction. Kluwer Academic Publishers, p. 526.Google Scholar
Gommesen, L., Dons, T., Hansen, H. P., Jan Stammeijer, J. and Hatchell, P. (2007). 4D seismic signatures of North Sea chalk – the Dan field, SEG Expanded Abstracts, 2847–2851, doi: .Google Scholar
Grana, D. and Della Rossa, E. (2010). Probabilistic petrophysical properties estimation integrating statistical rock physics with seismic inversion, Geophysics, 75, O21–O37, doi: .CrossRefGoogle Scholar
Grana, D., Mukerji, T., Dvorkin, J. and Mavko, G. (2012). Stochastic inversion of facies from seismic data based on sequential simulations and probability perturbation method, Geophysics, 77, M53–M72, doi: .CrossRefGoogle Scholar
Greenberg, M. L. and Castagna, J. P. (1992). Shear-wave velocity estimation in porous rocks: theoretical formulation, preliminary verification and applications, Geophysical Prospecting, 40, 195–209, doi: .CrossRefGoogle Scholar
Grotsch, J. and Mercadier, C. (1999). Integrated 3-D reservoir modelling based on 3-D seismic: the Tertiary Malampaya and Camago buildups, offshore Palawan, Philippines. AAPG Bulletin, 83, 1703–1728.Google Scholar
Grude, S., Dvorkin, J. and Landro, M. (2013). Rock physics estimation of cement type and impact on the permeability for the Snohvit Field, the Barents Sea, SEG Expanded Abstract.Google Scholar
Guerin, G. and Goldberg, D. (2002). Sonic waveform attenuation in gas-hydrate-bearing sediments from the Mallik 2L-38 research well, Mackenzie Delta, Canada, Journal of Geophysical Research, 107, 1029–1085, doi: .CrossRefGoogle Scholar
Guerin, G., Goldberg, D. and Meltzer, A. (1999). Characterization of in-situ elastic properties of gas-hydrate-bearing sediments on the Blake Ridge, JGR, 104, 17781–17796.CrossRefGoogle Scholar
Gutierrez, M. A. (2001). Rock physics and 3-D seismic characterization of reservoir heterogeneities to improve recovery efficiency. Ph.D. thesis, Stanford University.Google Scholar
Gutierrez, M. A. and Dvorkin, J. (2010). Rock physics workflows for exploration in frontier basins, SEG Expanded Abstracts, 2441–2446, doi: .Google Scholar
Gutierrez, M. A., Braunsdorf, N. R. and Couzens, B. A. (2006). Calibration and ranking of pore-pressure prediction models, The Leading Edge 25, 1458–1460, doi: .CrossRefGoogle Scholar
Hackert, C. L. and Parra, J. O. (2004). Improving Q estimates from seismic reflection data using well-log-based localized spectral correction, Geophysics, 69, 1521–1529, doi: .CrossRefGoogle Scholar
Hamilton, E. L. (1972). Compressional-wave attenuation in marine sediments, Geophysics, 37, 620–646, doi: .CrossRefGoogle Scholar
Han, D.-H. (1986). Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments. Ph.D. thesis, Stanford University.Google Scholar
Hardage, B. A. (1985). Vertical Seismic Profiling, Part A, Principles, 2nd edn. Elsevier.Google Scholar
Hardage, B., Levey, R., Pendleton, V., Simmons, J. and Edson, R. (1994). A 3-D seismic case history evaluating fluvially deposited thin-bed reservoirs in a gas-producing property, Geophysics, 59, 1650–1665, doi: .CrossRefGoogle Scholar
Hashin, Z. and Shtrikman, S. (1963). A variational approach to the elastic behavior of multiphase materials, Journal of Mechanics and Physics of Solids, 33, 3125–3131, doi: .Google Scholar
Helgerud, M. (2001). Wave speeds in gas hydrate and sediments containing gas hydrate: a laboratory and modeling study, Ph.D. thesis, Stanford University.Google Scholar
Helgerud, M., Dvorkin, J., Nur, A., Sakai, A. and Collett, T. (1999). Elastic-wave velocity in marine sediments with gas hydrates: effective medium modeling, GRL, 26, 2021–2024.CrossRefGoogle Scholar
Hill, R. (1952). The elastic behavior of crystalline aggregate, Proceedings of the Physical Society, London, A65, 349–354, doi: .CrossRefGoogle Scholar
Hilterman, F. (1989). Is AVO the seismic signature of rock properties?, SEG Expanded Abstracts, 559–562, doi: .Google Scholar
Hilterman, F. (2001). Seismic amplitude interpretation, SEG distinguished instructor short course.
Hilterman, F. and Zhou, Z. (2009). Pore-fluid quantification: Unconsolidated versus consolidated sediments, SEG Expanded Abstracts, 331–335, doi: .Google Scholar
Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A. and Lizarralde, D. (1996). Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling, Science, 273, 1840–1843.CrossRefGoogle Scholar
Hyndman, R. D. and Spence, G. D. (1992). A seismic study of methane hydrate marine bottom simulating reflectors, JGR, 97, 6683–6698.CrossRefGoogle Scholar
Japsen, P. (1993). Influence of lithology and Neogene uplift on seismic velocities in Denmark; implications for depth conversion of maps, AAPG Bulletin, 77, 194–211.Google Scholar
Japsen, P. (1998). Regional velocity-depth anomalies, North Sea Chalk: a record of overpressure and Neogene uplift and erosion, AAPG Bulletin, 82, 2031–2074Google Scholar
Japsen, P., Mukerji, T. and Mavko, G. (2007). Constraints on velocity-depth trends from rock physics models, Geophysical Prospecting, 55, 135–154, doi: .CrossRefGoogle Scholar
Jizba, D. L. (1991). Mechanical and acoustic properties of sandstones and shales. Ph.D. dissertation, Stanford University.Google Scholar
Johnson, D. L. (2001). Theory of frequency dependent acoustics in patchy-saturated porous media, The Journal of the Acoustical Society of America, 110, 682–694, doi: .CrossRefGoogle Scholar
Kameda, A. and Dvorkin, J. (2004). To see a rock in a grain of sand, The Leading Edge, 23, 790–794, doi: .CrossRefGoogle Scholar
Katahara, K. (2003). Analysis of overpressure on the Gulf of Mexico Shelf, Proceedings of Offshore Technology Conference, OTC 15293, doi: .Google Scholar
Keehm, Y., Mukerji, T. and Nur, A. (2001). Computational rock physics at the pore scale: Transport properties and diagenesis in realistic pore geometries, The Leading Edge, 20, 180–183, doi: .CrossRefGoogle Scholar
Kenter, J., Podladchikov, F., Reinders, M., Van der Gaast, S., Fouke, B. and Sonnenfeld, M. (1997). Parameters controlling sonic velocities in a mixed carbonate-siliciclastic Permian shelf-margin (upper San Andres formation, Last Chance Canyon, New Mexico), Geophysics, 64, 505–520, doi: .CrossRefGoogle Scholar
Klimentos, T. (1995). Attenuation of P- and S-waves as a method of distinguishing gas and condensate from oil and water, Geophysics, 60, 447–458, doi: .CrossRefGoogle Scholar
Klimentos, T. and McCann, C. (1990). Relationships among compressional wave attenuation, porosity, clay content, and permeability in sandstones, Geophysics, 55, 998–1014, doi: .CrossRefGoogle Scholar
Knackstedt, M. A., Arns, C. H. and Pinczewski, W. V. (2003). Velocity-porosity relationships, 1: Accurate velocity model for clean consolidated sandstones, Geophysics, 68, 1822–1834, doi: .CrossRefGoogle Scholar
Knight, R., Dvorkin, J. and Nur, A. (1998). Seismic signatures of partial saturation, Geophysics, 63, 132–138, doi: .CrossRefGoogle Scholar
Koesoemadinata, A.P. and McMechan, G.A. (2001). Empirical estimation of viscoelastic seismic parameters from petrophysical properties of sandstone, Geophysics, 66, 1457–1470, doi: .CrossRefGoogle Scholar
Krief, M., Garat, J., Stellingwerff, J. and Ventre, J. (1990). A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic), The Log Analyst, 31, 355–369.Google Scholar
Krumbein, W. C. and Dacey, M. F. (1969). Markov chains and embedded Markov chains in geology: Mathematical Geology, 1 (1), 79–96, doi: .CrossRefGoogle Scholar
Kvamme, L. and Havskov, J. (1989). Q in southern Norway, Bulletin of the Seismological Society of America, 79, 1575–1588.Google Scholar
Kvenvolden, K. A. (1993). Gas hydrates as a potential energy resource – a review of their methane content. In The Future of Energy Gases – U.S.G.S. Professional Paper 1570, pp. 555–561.
Lancaster, A. and Whitcombe, D. (2000). Fast-track ‘colored’ inversion, SEG Expanded Abstracts, 1572–1575, doi: .Google Scholar
Lander, R. H. and Walderhaug, O. (1999). Reservoir quality predictions through simulation of sandstones compaction and quartz cementation, AAPG Bulletin, 83, 433–449.Google Scholar
Latimer, R. B. (2011). Inversion and interpretation of impedance data. In Brown, A.R., ed., Interpretation of Three-Dimensional Seismic. SEG and AAPG.Google Scholar
Laverde, F. (1996). Estratigrafia de alta resolucion de la seccion corazonada en el campo, La Cira: Ecopetrol, Technical report, 37 p.Google Scholar
Leary, P., Henyey, T. and Li, Y. (1988). Fracture related reflectors in basement rock from vertical seismic profiling at Cajon Pass, Geophysical Research Letters, 15, 1057–1060, doi: .CrossRefGoogle Scholar
Lebedev, M., Toms-Stewart, J., Clennell, B., Pervukhina, M., Shulakova, V., Paterson, L., Müller, T.M., Gurevich, B. and Wenzlau, F. (2009). Direct laboratory observation of patchy saturation and its effects on ultrasonic velocities, The Leading Edge, 28, 24–27, doi: .CrossRefGoogle Scholar
Lee, M. W. (2002). Biot-Gassmann theory for velocities of gas hydrate-bearing sediments, Geophysics, 67, 1711–1719.CrossRefGoogle Scholar
Lee, M. W. (2006). A simple method of predicting S-wave velocity, Geophysics, 71, F161–F164, doi: .CrossRefGoogle Scholar
Li, J. and Dvorkin, J. (2012). Effects of fluid changes on seismic reflections: predicting amplitudes at gas reservoir directly from amplitudes at wet reservoir, Geophysics, 77, D129–D140, doi: .CrossRefGoogle Scholar
Lilwall, R. (1988). Regional mb:Ms, Lg/Pg amplitude ratios and Lg spectral ratios as criteria for distinguishing between earthquakes and explosions: A theoretical study, Geophysical Journal, 93, 137–147, doi: .CrossRefGoogle Scholar
Lucet, N. (1989). Vitesse et attenuation des ondes elastiques soniques et ultrasoniques dans ler roches sous pression de confinement (Velocity and attenuation of elastic sonic and ultrasonic waves in rocks under confining pressure). Ph.D. thesis, University of Paris.Google Scholar
Lucia, F. J. (2007). Carbonate Reservoir Characterization, 2nd edn. Springer.Google Scholar
Marion, D. and Jizba, D. (1997). Acoustic properties of carbonate rocks: use in quantitative interpretation of sonic and seismic measurements. In Palaz, I. and Marfurt, K. J., eds, Carbonate Seismology, Geophysical Developments. SEG, pp. 75–94.CrossRefGoogle Scholar
Marion, D., Mukerji, T. and Mavko, G. (1994). Scale effects on velocity dispersion: from ray to effective medium theories in stratified media, Geophysics, 59, 1613–1619, doi: .CrossRefGoogle Scholar
Marsden, D., Bush, M. D. and Sik Johng, D. (1995). Analytic velocity functions, The Leading Edge, 14, 775–782, doi: .CrossRefGoogle Scholar
Mavko, G. and Jizba, D. (1991). Estimating grain-scale fluid effects on velocity dispersion in rocks, Geophysics, 56, 1940–1949, doi: .CrossRefGoogle Scholar
Mavko, G., Chan, C. and Mukerji, T. (1995). Fluid substitution: Estimating changes in Vp without knowing Vs, Geophysics, 60, 1750–1755, doi: .CrossRefGoogle Scholar
Mavko, G., Mukerji, T. and Dvorkin, J. (2009). The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, Cambridge University Press.CrossRefGoogle Scholar
Menezes, C. and Gosselin, O. (2006). From logs scale to reservoir scale: upscaling of the petroelastic model, Proceedings of SPE Europec/EAGE Annual Conference and Exhibition, SPE 100233, doi: .CrossRefGoogle Scholar
Miall, A. D. (1996). The Geology of Fluvial Deposits: Sedimentary facies, basin analysis and petroleum geology. Springer-Verlag.Google Scholar
Miall, A. D. (1997). The Geology of Stratigraphic Sequences. Springer-Verlag.CrossRefGoogle Scholar
Miller, J. J., Lee, M. W. and von Huene, R. (1991). An analysis of a seismic reflection from the base of a gas hydrate zone, offshore Peru, AAPG Bull., 75, 910–924.Google Scholar
Mindlin, R.D. (1949). Compliance of elastic bodies in contact, Transactions ASME, 71, A–259, doi: .Google Scholar
Minshull, T. A., Singh, S. C. and Westbrook, G. K. (1994). Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from full waveform inversion, JGR, 99, 4715–4734.CrossRefGoogle Scholar
Morales, L. G., Podesta, D. J., Hatfield, W. C., Tanner, H., Jones, S. H., Barker, M. H., O’Donoghue, D. J., Mohler, C. E., Dubois, E. P., Jacobs, C. and Goss, C. R. (1958). General Geology and Oil Occurrences of the Middle Magdalena Valley, Colombia: Habitat of Oil Symposium. American Association of Petroleum Geologists, pp. 641–695.Google Scholar
Mukerji, T., Jorstad, A., Avseth, P., Mavko, G. and Granli, J. R. (2001). Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: seismic inversions and statistical rock physics, Geophysics, 66, 988–1001, di: 10.1190/1.1487078.CrossRefGoogle Scholar
Murphy, W. F. (1982). Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials. Ph.D. thesis, Stanford University.Google Scholar
Nur, A. (1969). Effects of stress and fluid inclusions on wave propagation in rock. Ph.D. thesis, MIT.Google Scholar
O’Brien, J. (2004). Seismic amplitudes from low gas saturation sands, The Leading Edge, 23, 1236–1243, doi: .CrossRefGoogle Scholar
Øren, P. E. and Bakke, S. (2003). Reconstruction of Berea sandstone and pore-scale modeling of wettability effects, Journal of Petroleum Science and Engineering, 39, 177–199, doi: .CrossRefGoogle Scholar
Osdal, B., Husby, O., Aronsen, H. A., Chen, N. and Alsos, T. (2006). Mapping the fluid front and pressure buildup using 4D data on Norne Field, The Leading Edge, 25, 1134–1141, doi: .CrossRefGoogle Scholar
Ostrander, W.J. (1984). Plane-wave reflection coefficients for gas sands at non-normal angles of incidence, Geophysics, 49, 1637–164, doi: .CrossRefGoogle Scholar
Paillet, F., Cheng, C. and Pennington, W. (1992). Acoustic waveform logging: advances in theory and application, Log Analyst, 33, 239–258.Google Scholar
Palaz, I. and Marfurt, K. J., eds, (1997). Carbonate Seismology, Geophysical Developments. SEG.CrossRefGoogle Scholar
Pearson, C., Murphy, J. and Hermes, R. (1986). Acoustic and resistivity measurements on rock samples containing tetrahydrofuran hydrates: laboratory analogues to natural gas hydrate deposits, JGR, 91, 14132–14138.CrossRefGoogle Scholar
Pickett, G. R. (1963). Acoustic character logs and their applications in formation evaluation, Journal of Petroleum Technology, 15, 650–667, doi: .CrossRefGoogle Scholar
Pratt, R. G., Bauer, K. and Weber, M. (2003). Cross-hole waveform tomography velocity and attenuation images of arctic gas hydrates, SEG Expanded Abstracts, 2255–2258, doi: .Google Scholar
Pride, S. R., Harris, J. M., Johnson, D. L., Mateeva, A., Nihei, K. T., Nowack, R. L., Rector, J. W., Spetzler, H., Wu, R., Yamamoto, T., Berryman, J. G. and Fehler, M. (2003). Permeability dependence of seismic amplitudes, The Leading Edge, 22, 518–525, doi: .CrossRefGoogle Scholar
Quan, Y. and Harris, J. M. (1997). Seismic attenuation tomography using the frequency shift method, Geophysics, 62, 895–905, doi: .CrossRefGoogle Scholar
Ramm, M. and Bjørlykke, K. (1994). Porosity/depth trends in reservoir sandstones; assessing the quantitative effects of varying pore-pressure, temperature history and mineralogy, Norwegian shelf data, Clay Minerals, 29, 475–490, doi: .CrossRefGoogle Scholar
Raymer, L. L., Hunt, E. R. and Gardner, J. S. (1980). An improved sonic transit time-to-porosity transform, Transactions of the Society of Professional Well Log Analysts, 21st Annual Logging Symposium, Paper P.Google Scholar
Ren, H., Hilterman, F., Zhou, Z. and Dunn, M. (2006). AVO equation without velocity and density, SEG Expanded Abstracts, 239–243, doi: .Google Scholar
Rider, M. (2002). The Geological Interpretation of Well Logs, 2nd edn. Whittles Publishing.Google Scholar
Rio, P., Mukerji, T., Mavko, G. and Marion, D. (1996). Velocity dispersion and upscaling in a laboratory-simulated VSP, Geophysics, 61, 584–593, doi: .CrossRefGoogle Scholar
Roden, R., Forrest, M., and Holeywell, R., 2005, The impact of seismic amplitudes on prospect risk analysis, The Leading Edge, 24, 706–711, doi: .CrossRefGoogle Scholar
Roden, R., Forrest, M. and Holeywell, R. (2012). Relating seismic interpretation to reserve/resource calculations: insights from a DHI consortium, The Leading Edge, 31, 1066– 1074, doi: .CrossRefGoogle Scholar
Rose, P. (2001). Risk analysis and management of petroleum exploration ventures, AAPG Methods in Exploration Series, No. 12.Google Scholar
Ruiz, F. J. (2009). Porous grain model and equivalent elastic medium approach for predicting effective elastic properties of sedimentary rocks. Ph.D. thesis, Stanford University.Google Scholar
Russell, B. (1998). Introduction to Seismic Inversion Methods. SEG.Google Scholar
Rutherford, S. R. and Williams, R. H. (1989). Amplitude versus offset variations in gas sands, Geophysics, 54, 680–688, doi: .CrossRefGoogle Scholar
Sain, R. (2010). Numerical simulation of pore-scale heterogeneity and its effects on elastic, electrical, and transport properties. Ph.D. thesis, Stanford University.Google Scholar
Sakai, A. (1999). Velocity analysis of vertical seismic profiling (VSP) survey at Japex/JNOC/GSC Mallik 2L-38 gas hydrate research well, and related problems for estimating gas hydrate concentration, GSC Bulletin, 544, 323–340.Google Scholar
Sams, M. S. and Williamson, P. R. (1993). Backus averaging, scattering and drift, Geophysical Prospecting, 42, 541–564, doi: .CrossRefGoogle Scholar
Sayers, C. M. (2002). Stress-dependent elastic anisotropy of sandstones, Geophysical Prospecting, 50, 85–95, doi: .CrossRefGoogle Scholar
Scholl, D. W. and Hart, P. E. (1993), Velocity and Amplitude Structures on Seismic-Reflection Profiles–Possible Massive Gas-Hydrate Deposits and Underlying Gas in The Future of Energy Gases, ed. D. G. Howell, pp. 331–351.
Schon, J. H. (2004). Physical Properties of Rocks: Fundamentals and Principles of Petrophysics, Elsevier.Google Scholar
Scotellaro, C., Vanorio, T. and Mavko, G. (2008). The effect of mineral composition and pressure on carbonate rocks, SEG Expanded Abstracts, 1684–1689, doi: .Google Scholar
Sen, M. and Stoffa, P. L. (2013). Global Optimization Methods in Geophysical Inversion, 2nd edn. Elsevier.CrossRefGoogle Scholar
Sharp, B., DesAutels, D., Powers, G., Young, R., Foster, S., Diaz, E. and Dvorkin, J. (2009). Capturing digital rock properties for reservoir modeling, World Oil, 230, 10, 67–68.Google Scholar
Sheriff, R. and Geldart, L. (1995). Exploration Seismology. Cambridge University Press.CrossRefGoogle Scholar
Shuey, R. T. (1985). A simplification of the Zoeppritz equations, Geophysics, 50, 619–624, doi: .CrossRefGoogle Scholar
Slotnick, M. M. (1936). On seismic computations with applications, Geophysics, 1, 9–22, doi: .CrossRefGoogle Scholar
Spencer, J. W., Cates, M. E. and Thompson, D. D. (1994). Frame moduli of unconsolidated sands and sandstones, Geophysics, 59, 1352–1361, doi: .CrossRefGoogle Scholar
Strandenes, S. (1991). Rock physics analysis of the Brent Group Reservoir in the Oseberg Field: Stanford Rock Physics and Borehole Geophysics Project, special volume.
Su, Y., Tao, Y., Wang, T., Chen, G. and Li, J. (2010). AVO attributes interpretation and identification of lithological traps by prestack elastic parameters inversion – a case study in K Block, South Turgay Basin, SEG Expanded Abstract, 439–443, doi: .Google Scholar
Taner, M. T., Koehler, F. and Sheriff, R. E. (1979). Complex seismic trace analysis, Geophysics, 44, 1041–1063, doi: .CrossRefGoogle Scholar
Tarantola, A. (2005). Inverse Problem Theory. SIAM.Google Scholar
Timur, A. (1968). An investigation of permeability, porosity, and residual water saturation relationships for sandstone reservoirs:The Log Analyst, 9, 4, 8–17.Google Scholar
Tolke, J., Baldwin, C., Mu, Y., Derzhi, N., Fang, Q., Grader, A. and Dvorkin, J. (2010). Computer simulations of fluid flow in sediment: From images to permeability, The Leading Edge, 29, 68–74, doi: .CrossRefGoogle Scholar
Toms, J., Muller, T. M., Cizc, R. and Gurevich, B. (2006). Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks, Soil Dynamics and Earthquake Engineering, 26, 548–565, doi: .CrossRefGoogle Scholar
Trani, M., Arts, R., Leeuwenburgh, O. and Brouwer, J. (2011). Estimation of changes in saturation and pressure from 4D seismic AVO and time-shift analysis, Geophysics, 76, C1–C17, doi: .CrossRefGoogle Scholar
Vanorio, T. and Mavko, G. (2011). Laboratory measurements of the acoustic and transport properties of carbonate rocks and their link with the amount of microcrystalline matrix, Geophysics, 76, E105–E115. doi: .CrossRefGoogle Scholar
Vanorio, T., Scotellaro, C. and Mavko, G. (2008). The effect of chemical processes and mineral composition on the acoustic properties of carbonate rocks, The Leading Edge, 27, 1040–1048, doi: .CrossRefGoogle Scholar
Vanorio, T., Nur, A. and Ebert, Y. (2011). Rock physics analysis and time-lapse rock imaging of geochemical effects due to the injection of CO2 into reservoir rocks, Geophysics, 76, O23–O33, doi: .CrossRefGoogle Scholar
Vasquez, G. F., Dillon, L. D., Varela, C. L., Neto, G. S., Velloso, R. Q. and Nunes, C. F. (2004). Elastic log editing and alternative invasion correction methods, The Leading Edge, 23, 20–25, doi: .CrossRefGoogle Scholar
Vernik, L., Fisher, D. and Bahret, S. (2002). Estimation of net-to-gross from P and S impedance in deepwater turbidites, The Leading Edge, 21, 380–387, doi: .CrossRefGoogle Scholar
Walls, J., Dvorkin, J. and Smith, B. (1998). Modeling seismic velocity in Ekofisk chalk, SEG Expanded Abstracts, 1016–1019, doi: .Google Scholar
Wang, Z. (1988). Wave velocities in hydrocarbons and hydrocarbon saturated rocks – with application to EOR monitoring. Ph.D. thesis, Stanford University.Google Scholar
Wang, Z. (1997). Seismic properties of carbonate rocks. In Carbonate Seismology, Geophysical Developments, Palaz, I. and Marfurt, K. J., eds. SEG, pp. 29–52.CrossRefGoogle Scholar
Wang, Z. (2000). Velocity-density relationships in sedimentary rocks. In Wang, Z., Nur, A. and Ebrom, D. A., eds, Seismic and Acoustic Velocities in Reservoir Rocks, Recent Developments (Geophysics Reprint Series 19), SEG, pp. 256–268.Google Scholar
Waters, K. H. (1992). Reflection Seismology: A tool for energy resource exploration, 3rd edn. Krieger.Google Scholar
White, J. E. (1983). Underground Sound: Application of seismic waves. Elsevier.Google Scholar
Williams, D. M. (1990). The acoustic log hydrocarbon indicator, SPWLA 31st Logging Symposium, Paper W.
Winkler, K. (1979). The effects of pore fluids and frictional sliding on seismic attenuation. Ph.D. thesis, Stanford University.Google Scholar
Wood, A. W. (1955). A Textbook of Sound. MacMillan.Google Scholar
Wood, W. T., Stoffa, P. L. and Shipley, T. H. (1994). Quantitative detection of methane hydrate through high-resolution seismic velocity analysis, Journal of Geophysical Research, 99, 9681–9695.CrossRefGoogle Scholar
Wood, W. T., Holbrook, W. S. and Hoskins, H. (2000). In situ measurements of P-wave attenuation in the methane hydrate- and gas-bearing sediments of the Blake Ridge. In Paull, C. K., Matsumoto, R., Wallace, P. J. and Dillon, W. P., eds, Proceedings of the Ocean Drilling Program, Scientific Results, 164, 265–272.
Wyllie, M. R. J., Gregory, A. R. and Gardner, G. H. F. (1956). Elastic wave velocities in heterogeneous and porous media. Geophysics, 21, 41–70.CrossRefGoogle Scholar
Yilmaz, O. (2001), Seismic Data Analysis. SEG.CrossRefGoogle Scholar
Yin, H. (1992). Acoustic velocity and attenuation of rocks: Isotropy, intrinsic anisotropy, and stress-induced anisotropy. Ph.D. thesis, Stanford University.Google Scholar
Zhou, Z. and Hilterman, F. (2010). A comparison between methods that discriminate fluid content in unconsolidated sandstone reservoirs, Geophysics, 75, B47–B58, doi: .CrossRefGoogle Scholar
Zhou, Z., Hilterman, F. and Ren, H. (2006). Stringent assumptions necessary for pore-fluid estimation, SEG Expanded Abstracts, 244–248, doi: .Google Scholar
Zimmer, M. A. (2003). Seismic velocities in unconsolidated sands: measurements of pressure, sorting, and compaction effects. Ph.D. thesis, Stanford University.Google Scholar
Zoeppritz, K. (1919). Erdbebenwellen VIIIB, On the reflection and propagation of seismic waves, Gottinger Nachrichten, I, 66–84.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×