Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T12:44:19.762Z Has data issue: false hasContentIssue false

11 - Chromosomes and evolution in New Zealand endemic angiosperms and gymnosperms

Published online by Cambridge University Press:  07 October 2011

Brian G. Murray
Affiliation:
The University of Auckland
Peter J. de Lange
Affiliation:
The University of Auckland
David Bramwell
Affiliation:
Jardín Botánico Canario 'Viera y Clavijo' - Unidad Asociada CSIC
Juli Caujapé-Castells
Affiliation:
Jardín Botánico Canario 'Viera y Clavijo' - Unidad Asociada CSIC
Get access

Summary

The New Zealand flora, like that of many other oceanic islands, is unique in several ways. It has a high level of endemicity (de Lange et al., 2006) but this is largely at the species level, with approximately 82% (1944/2357) of taxa being endemic. However, only 65 of the 446 indigenous genera are regarded as endemic and there was only one endemic family, the Ixerbaceae, represented by the monogeneric Ixerba brexioides (Fig. 11.1a.b), a small woody tree of northern New Zealand forests, but the family has now been merged with the Strasburgiaceae (APG, 2009). The vascular flora is also remarkably small for an archipelago the size of New Zealand (263 830 km2), in comparison, the much smaller Fijian archipelago (18 235 km2) has an indigenous spermatophyte flora of 1318 taxa in 137 families and 490 genera (Smith, 1996) and, while complete statistics are not available, the even smaller Hawaiian archipelago (16 626 km2) has an indigenous flowering plant flora of c.956 species in 87 families and 216 genera (Wagner et al., 1990). So what makes New Zealand’s flora so unusual? Perhaps the answer lies not so much in the size of the flora and its perceived diversity but rather in the problem of species and generic delimitation. Many New Zealand genera, most notably those that are species rich, either have poorly defined generic boundaries, e.g. Celmisia, Raoulia (Allan, 1961; Ward, 1997; Cross et al., 2002; Smissen et al., 2004), or hybridise readily, especially in situations of prolonged disturbance, e.g. Chionochloa, Coprosma, Epilobium and Kunzea (Oliver, 1935; Connor, 1967; Raven & Raven, 1976; Wichman et al., 2002; de Lange et al., 2005). Hybridism is a feature of the New Zealand flora and it occurs at both the species and genus level to varying degrees but at sufficient frequency to ensure that the existence of hybrids has caused difficulties with traditional taxonomic attempts to classify the flora (Morgan-Richards et al., 2009). This recognition of hybridism in the New Zealand flora is not a recent discovery; indeed, early New Zealand botanical writings indicate an awareness of hybrids as early as the mid 1860s and it was certainly postulated as both a driver for speciation and a feature of the indigenous flora by pioneering botanists such as Leonard Cockayne and Harry Allan (Cockayne, 1923, 1929; Allan, 1924; Cockayne & Allan, 1934). Although the prevalence of widespread hybridism has been questioned (Allan, 1961; Hair, 1966; Connor, 1985), its significance has come in for re-evaluation (Morgan-Richards et al., 2009), especially with the advent of DNA-based methods when many examples have been confirmed (Molloy & Dawson, 1998; Lockhart et al., 2001; Wichman et al., 2002; Gardner et al., 2004; Murray et al., 2004; de Lange et al., 2008).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, H. H. 1924 On the hybridity of Coprosma cunninghamii Hook.f. New ZealJ. Sci. Technol. 6 310Google Scholar
Allan, H. H. 1961 Flora of New Zealand, Volume IWellingtonGovernment PrinterGoogle Scholar
APG III 2009 An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IIIBotanical Journal of the Linnean Society 161 105CrossRefGoogle Scholar
Bennett, M. D. 2004 Perspectives on polyploidy in plants – ancient and neoBiol. J. Linn. Soc. 82 411CrossRefGoogle Scholar
Brownsey, P. J. 2001 New Zealand’s pteridophyte flora – plants of ancient lineage but recent arrival?Brittonia 53 284CrossRefGoogle Scholar
Campbell, H.Hutching, G. 2007 In Search of Ancient New ZealandLondonPenguin BooksGoogle Scholar
Cockayne, L. 1923 Hybridism in the New Zealand floraNew Phytol. 22 105CrossRefGoogle Scholar
Cockayne, L. 1929 Hybridism in the forests of New ZealandActa Forest. Fenn. 34 23Google Scholar
Cockayne, L.Allan, H. H. 1934 An annotated list of groups of wild hybrids in the New Zealand floraAnn. Bot. 48 1CrossRefGoogle Scholar
Connor, H. E. 1967 Interspecific hybrids in Chionochloa (Gramineae)New Zeal. J. Bot. 5 3CrossRefGoogle Scholar
Connor, H. E. 1985 Biosystematics of higher plants in New Zealand 1965–1984New Zeal. J. Bot. 23 613CrossRefGoogle Scholar
Cross, E. W.Quinn, C. J.Wagstaff, S. J. 2002 Molecular evidence for the polyphyly of Olearia (Astereae: Asteraceae)Plant Syst. Evol. 235 99CrossRefGoogle Scholar
Davies, B. J.O’Brien, I. E. W.Murray, B. G. 1997 Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnospermsPlant Syst. Evol 208 169CrossRefGoogle Scholar
Dawson, M. I.Beuzenberg, E. J. 2000 Contributions to a chromosome atlas of the New Zealand flora – 36. Miscellaneous familiesNew Zeal. J. Bot. 38 1CrossRefGoogle Scholar
Dawson, M. I.Molloy, B.Beuzenberg, E. J. 2007 Contributions to a chromosome atlas of the New Zealand flora – 39. OrchidaceaeNew Zeal. J. Bot. 45 611CrossRefGoogle Scholar
de Lange, P. J. 2000 A new northern limit forCrassula ruamahanga 60 20Google Scholar
de Lange, P. J.Murray, B. G. 2008 Ranunculus ranceorum, a new name and rank for Ranunculusrecens var. lacustris G. Simpson, an elusive, rarely seen buttercup of the Fiordland lakes, South Island, New ZealandNew Zeal. J. Bot. 46 1CrossRefGoogle Scholar
de Lange, P. J.Datson, P. M.Murray, B. G.Toelken, H. R. 2005 Hybridisim in the Kunzea ericoides complex (Myrtaceae): an analysis of artificial crossesAust. Syst. Bot. 18 117CrossRefGoogle Scholar
de Lange, P. J.Sawyer, J. W. D.Rolfe, J. R. 2006 New Zealand Indigenous Vascular Plant ChecklistWellingtonNew Zealand Plant Conservation NetworkGoogle Scholar
de Lange, P. J.Heenan, P. B.Keeling, D. J.Murray, B. G.Smissen, R.Sykes, W. R. 2008 Biosystematics and conservation: a case study of two enigmatic and uncommon species of Crassula from New ZealandAnn. Bot. 101 881CrossRefGoogle ScholarPubMed
de Laubenfels, D. 1969 A revision of the Malesian and Pacific rainforest conifers 1. PodocarpaceaeJ. Arnold Arbor. 50 274Google Scholar
Ehrendorfer, F. 1980 Lewis, W. H.Polyploidy: Biological RelevanceNew YorkPlenumGoogle Scholar
Fleming, C. A. 1949 The geological history of New Zealand (with reference to the origin and history of the flora and fauna)Tuatara 2 72Google Scholar
Frankel, O. H.Hair, J. B. 1937 Studies on the cytology, genetics, and taxonomy of New Zealand Hebe and Veronica (Part 1)New Zeal. J. Sci. Technol. 18 669Google Scholar
Gardner, R. C.de Lange, P. J.Keeling, J. K.Bowala, T.Brown, H. A.Wright, S. D. 2004 A late Quaternary phylogeography for Metrosideros (Myrtaceae) in New Zealand inferred from chloroplast DNA haplotypesBiol. J. Linn. Soc. 83 399CrossRefGoogle Scholar
Gibbs, G. 2007 Ghosts of Gondwana: The History of Life in New ZealandNelson, New ZealandCraig Potton PublishingGoogle Scholar
Goldblatt, P. 1980 Lewis, W. H.Polyploidy: Biological RelevanceNew YorkPlenumGoogle Scholar
Guerra, M. 2008 Chromosome numbers in plant cytotaxonomy: concepts and implicationsCytogenet. Genome Res. 120 339CrossRefGoogle ScholarPubMed
Hair, J. B. 1966 Biosystematics of the New Zealand Flora 1945–1964New Zeal. J. Bot. 4 559CrossRefGoogle Scholar
Hair, J. B.Beuzenberg, E. J. 1958 Contributions to a chromosome atlas of the New Zealand flora – 1New Zeal. J. Sci. 1 617Google Scholar
Hair, J. B.Beuzenberg, E. J. 1958 Chromosomal evolution in the PodocarpaceaeNature 181 1584CrossRefGoogle Scholar
Hauber, D. P. 1986 Autotetraploidy in Haplopappus spinulosus hybrids: evidence from natural and synthetic tetraploidsAm. J. Bot. 73 1595CrossRefGoogle Scholar
Hizume, M.Ishida, F.Murata, M. 1992 Multiple locations of the rDNA genes in pines, Pinus densiflora and P. thunbergiiJpn. J. Genet. 67 389CrossRefGoogle Scholar
Jacobs, M.Gardner, R. C.Murray, B. G. 2000 Cytological characterization of heterochromatin and rDNA in Pinus radiata and P. taedaPlant Syst. Evol. 223 71CrossRefGoogle Scholar
Knapp, M.Stöckler, K.Havell, D.Delsuc, F.Sebastiani, F.Lockhart, P. J. 2005 Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (Southern Beech)Public Lib. Sci. Biol. 3 38Google Scholar
Knapp, M.Mudaliar, R.Havell, D.Wagstaff, S. J.Lockhart, P. J. 2007 The drowning of New Zealand and the problem of AgathisSyst. Biol. 56 862CrossRefGoogle ScholarPubMed
Knox, E. B.Heenan, P. B.Muasya, A. M.Murray, B. G. 2008 Phylogenetic position and relationships of Lobelia glaberrima (Lobeliaceae), a new alpine species from southern South Island (New Zealand)New Zeal. J. Bot. 47 77CrossRefGoogle Scholar
Lange, P. J.Heenan, P. B.Keeling, D. J.Murray, B. G.Smissen, R.Sykes, W. R. 2008 Bio systematics and conservation: a case study with two enigmatic and uncommon species of Crassula from New ZealandAnnals of Botany 101 881CrossRefGoogle Scholar
Lee, D. E.Bannister, J. M.Lindqvist, J. K. 2007 Late Oligocene-Early Miocene leaf macrofossils confirm a long history of Agathis in New ZealandNew Zeal. J. Bot. 45 565CrossRefGoogle Scholar
Lockhart, P. J.McLenachan, P. A.Havell, D.Glenny, DHuson, D.Jensen, U. 2001 Phylogeny, dispersal and radiation of New Zealand alpine buttercups: molecular evidence under split decompositionAnn. Mo. Bot. Gard. 88 458CrossRefGoogle Scholar
Lubaretz, O.Fuchs, J.Ahne, R.Meister, A. 1996 Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer aided chromosome analysisTheor. Appl. Genet. 92 411CrossRefGoogle ScholarPubMed
McGlone, M. S.Duncan, R. P.Heenan, P. B. 2001 Endemisim, species selection and the origin and distribution of the vascular flora of New ZealandJ. Biogeogr. 28 199CrossRefGoogle Scholar
Molloy, B. P. J. 1995 Manoao (Podocarpaceae), a new monotypic conifer genus endemic to New ZealandNew Zeal. J. Bot. 33 183CrossRefGoogle Scholar
Molloy, B. P. J.Dawson, M. I. 1998 Speciation in Thelymitra (Orchidaceae) by natural hybridism and amphidiploidy. In R. Lynch (ed.), ‘Ecosystems, entomology and plants: proceedings of a symposium held at Lincoln University to mark the retirement of Bryony Macmillan, John Dugdale, Peter Wardle and Brian Molloy’, 1 September 1995R. Soc. New Zeal. Misc. Ser. 48 103Google Scholar
Morgan-Richards, M.Smissen, R. D.Shepherd, L. D.Wallis, G. P.Hayward, J. J.Chi-hang, C. 2009 A review of genetic analyses of hybridisation in New ZealandJ. R. Soc. New Zeal. 39 15CrossRefGoogle Scholar
Murray, B. G.Sieber, V. K.Jackson, R. C. 1984 Further evidence for the presence of meiotic pairing control genes in Alopecurus L. (Gramineae)Genetica 63 13CrossRefGoogle Scholar
Murray, B. G.Braggins, J. E.Newman, P. D. 1989 Intraspecific polyploidy in Hebe diosmifolia (Cunn.) Cockayne et Allan (Scrophulariaceae)New Zeal. J. Bot. 27 587CrossRefGoogle Scholar
Murray, B. G.Friesen, N.Heslop-Harrison, J. S. 2002 Molecular cytogenetic analysis of Podocarpus and comparison with other gymnosperm speciesAnn. Bot. 89 483CrossRefGoogle ScholarPubMed
Murray, B. G.Datson, P. M.Lai, E. L. Y.Sheath, K. M.Cameron, E. K. 2004 Polyploidy, hybridization and evolution in Pratia (Campanulaceae)New Zeal. J. Bot 42 905CrossRefGoogle Scholar
Oliver, W. R. B. 1935 The genus Coprosma. Bernice P. Bishop MusBull 132 1Google Scholar
Otto, S. P.Whitton, J. 2000 Polyploid incidence and evolutionAnnu. Rev. Genet. 34 401CrossRefGoogle ScholarPubMed
Page, C. N. 1990 Kubitzki, K.The Families and Genera of Vascular Plants. 1. Pteridophytes and GymnospermsBerlinSpringerGoogle Scholar
Paun, O.Forest, F.Fay, M. F.Chase, M. W. 2009 Hybrid speciation in angiosperms: parental divergence drives ploidyNew Phytol. 182 507CrossRefGoogle ScholarPubMed
Pole, M. 1994 The New Zealand flora – entirely long-distance dispersal?J. Biogeogr. 21 625CrossRefGoogle Scholar
Pole, M. 2008 The record of Araucariaceae macrofossils in New ZealandAlcheringa: An Australas. J. Palaeontol. 32 405CrossRefGoogle Scholar
Quinn, C. J. 1982 Taxonomy of Dacrydium Sol. ex Lamb. emend. de Laub. (Podocarpaceae)Aust. J. Bot. 30 311CrossRefGoogle Scholar
Raven, P. H.Raven, T. 1976 The genus Epilobium (Onagraceae) in Australasia: a systematic and evolutionary studyNew Zeal. DSIR Bull. 216 1Google Scholar
Rendle, H.Murray, B. G. 1989 Chromosome relationships and breeding barriers in New Zealand species of RanunculusNew Zeal. J. Bot 27 437CrossRefGoogle Scholar
Riley, R.Chapman, V. 1958 Genetic control of the cytologically diploid behaviour of hexaploid wheatNature 182 713CrossRefGoogle Scholar
Schmidt, A.Doudrick, R. J.Heslop-Harrison, J. S.Schmidt, T. 2000 The contribution of short repeats of low sequence complexity to large conifer genomesTheor. Appl. Genet. 101 7CrossRefGoogle Scholar
Shibata, F.Matsusaki, Y.Hizume, M. 2005 AT-rich sequences containing Arabidopsis-type telomere sequences and their chromosomal distribution in Pinus densifloraTheor. Appl. Genet. 110 1253CrossRefGoogle ScholarPubMed
Smissen, R. D.Breitwieser, I. 2008 Species relationships and genetic variation in the New Zealand endemic Leucogenes (Asteraceae: Gnaphalieae)New Zeal. J. Bot. 46 65CrossRefGoogle Scholar
Smissen, R. D.Breitwieser, I.Ward, J. M. 2004 Phylogenetic implications of trans-specific chloroplast DNA sequence polymorphism in New Zealand Gnaphalieae (Asteraceae)Plant Syst. Evol. 239 79CrossRefGoogle Scholar
Smith, A. C. 1996 Flora Vitiensis Nova – A New Flora of Fiji (Spermatophytes Only)HonoluluNational Tropical Botanical Garden, Heritage GraphicsGoogle Scholar
Stebbins, G. L. 1971 Chromosomal Evolution in Higher PlantsLondonArnoldGoogle Scholar
Stuessey, T. F.Crawford, D. J. 1998 Stuessey, T. F.Ono, M.Evolution and Speciation of Island PlantsCambridgeCambridge University PressCrossRefGoogle Scholar
Sykes, W. R. 2005 Notes on Euphorbia and Crassula with a revised key to the latter wild in New ZealandNew Zeal. Bot. Soc. Newslett. 79 8Google Scholar
Trewick, S. A.Paterson, A. M.Campbell, H. J. 2006 Guest Editorial: Hello New ZealandJ. Biogeogr. 34 1CrossRefGoogle Scholar
Wagner, W. L.Herbst, D. R.Sohmer, S. H. 1990 Manual of the Flowering Plants of Hawaii, Volume IHonoluluUniversity of Hawaii PressGoogle Scholar
Wagstaff, S. J.Garnock-Jones, P. J. 1998 Evolution and biogeography of the Hebe complex (Scrophulariaceae) inferred from ITS sequencesNew Zeal. J. Bot. 36 425CrossRefGoogle Scholar
Wagstaff, S. J.Bayly, M. J.Garnock-Jones, P. J.Albach, D. G. 2002 Classification, origin, and diversification of the New Zealand Hebes (Scrophulariaceae)Ann. Mo. Bot. Gard. 89 38CrossRefGoogle Scholar
Ward, J. M. 1997 Sheppard, J. S.Southern Alpines 1996. Conference ProceedingsNew Zeal. Gard.1: 40–44.Google Scholar
Webb, C. J.Sykes, W. R.Garnock-Jones, P. J. 1988 Flora of New Zealand. Volume IVChristchurchBotany Division, DSIRGoogle Scholar
Wichman, S. R.Wright, S. D.Cameron, E. K.Gardner, R. C. 2002 Elevated genetic heterogeneity and Pleistocene climatic instability: inferences from nrDNA in Coprosma (Rubiaceae)J. Biogeogr. 29 943CrossRefGoogle Scholar
Winkworth, R. C.Robertson, A. W.Ehrendorfer, F.Lockhart, P. J. 1999 The importance of dispersal and recent speciation in the flora of New ZealandJ. Biogeogr. 26 1323CrossRefGoogle Scholar
Winkworth, R. C.Wagstaff, S. J.Glenny, D.Lockhart, P. J. 2002 Plant dispersal NWS from New ZealandTrends Ecol. Evol. 17 514CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×