Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-19T11:18:17.891Z Has data issue: false hasContentIssue false

7 - Quantization in nanostructures

Published online by Cambridge University Press:  05 June 2012

Vladimir V. Mitin
Affiliation:
State University of New York, Buffalo
Dmitry I. Sementsov
Affiliation:
Ulyanovsk State University, Russia
Nizami Z. Vagidov
Affiliation:
State University of New York, Buffalo
Get access

Summary

In Chapters 3 and 4 we have discussed electron behavior in potential wells of various profiles and dimensionalities. We have established that localization of electrons in such potential wells, regardless of their form, leads to the discretization of the electron energy spectrum whereby the distance between energy levels substantially depends on the geometrical size of the potential wells. If this size is macroscopic then the distance between the energy levels is so small that we can consider the energy spectrum to be practically continuous (or quasicontinuous). Electrons in metallic samples of macroscopic sizes have this kind of energy spectrum. Another limiting case is that of small clusters consisting of just a few atoms, where the distance between energy levels is of the order of electron-volts. Gradual decrease of one or several geometrical dimensions of the potential well from macroscopic to about 1 μm practically does not change the form of the electron energy spectrum. Very often macroscopic materials (or macroscopic crystals) are referred to as bulk materials or bulk crystals. Changes happen only when the size of structures is of the order of or less than 100 nm. Such structures are called nanostructures. The change of the electron spectrum from quasicontinuous to discrete implies changes in most of the physical properties of nanostructures compared with those in bulk crystals. In this chapter we will consider the main peculiarities of the electron energy spectrum in nanostructures of various dimensionalities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×