Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T01:19:39.636Z Has data issue: false hasContentIssue false

5 - Meso-meteorology: Factor Separation examples in atmospheric meso-scale motions

Published online by Cambridge University Press:  03 May 2011

Pinhas Alpert
Affiliation:
Tel-Aviv University
Tatiana Sholokhman
Affiliation:
Tel-Aviv University
Get access

Summary

Here, we present three examples of the Alpert–Stein Factor Separation Methodology (hereafter, FS in short) on a medium scale in the atmosphere, often referred to as meso-scale or, in general, meso-meteorology. The first example is that of a deep Genoa cyclogenesis (Alpert et al., 1996a, b) that was observed during the Alpine Experiment (ALPEX) in March 1982, and then studied intensively by several research groups. The second example is that of a small-scale shallow short-lived meso-beta-scale – only tens of kilometers in diameter – cyclone over the Gulf of Antalya, Eastern Mediterranean (Alpert et al., 1999). The third example is that of a much smaller scale, of orographic wind, following Alpert and Tsidulko (1994). In each of these three examples, some factors relevant to the specific problem are selected, and special focus is given to the role played by the synergies as revealed by the FS approach.

A multi-stage evolution of an ALPEX cyclone: meso-alpha scale

A relatively large number of studies have been devoted to cyclogenesis, with particular attention given to the processes responsible for the lee cyclone generation. Early studies of lee cyclogenesis (henceforth LC) focused on observations, and indicated the regions with the highest frequencies (Petterssen, 1956).

More recently, several theories have been advanced to explain the LC features, and they are frequently separated for convenience into two groups, as follows: the modified (by the lower boundary layer) baroclinic instability approach, as reviewed by Tibaldi et al. (1990) and Pierrehumbert (1985), and the directional wind shear suggested by Smith (1984).

Type
Chapter
Information
Factor Separation in the Atmosphere
Applications and Future Prospects
, pp. 53 - 66
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×