Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T13:41:19.192Z Has data issue: false hasContentIssue false

References and further reading

Published online by Cambridge University Press:  05 June 2012

Joseph M. Hilbe
Affiliation:
Arizona State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1973). Information theory and extension of the maximum likelihood principle, in Second international Symposium on Information Theory, ed. Petrov, B. N. and Csaki, F., Budapest: Akademiai Kiado, pp. 267–281.Google Scholar
Allison, P. D. and Waterman, R (2002). Fixed-effects negative binomial regression models, unpublished manuscript.
Amemiya, T. (1984). Tobit models: A survey, Journal of Econometrics 24: 3–61.CrossRefGoogle Scholar
Anscombe, F. J. (1948). The transformations of Poisson, binomial, and negative binomial data, Biometrika 35: 246–254.CrossRefGoogle Scholar
Anscombe, F. J. (1949). The statistical analysis of insect counts based on the negative binomial distribution, Biometrics 5: 165–173.CrossRefGoogle ScholarPubMed
Anscombe, F. J. (1950), Sampling theory for the Negative Binomial and Logarithmic Series Distributions, Biometrika 37 (3/4): 368–382.CrossRefGoogle ScholarPubMed
Anscombe, F. J. (1972). Contribution to the discussion of H. Hotelling's paper, Journal of the Royal Statistical Society – Series B 15(1): 229–230.Google Scholar
Bartlett, M. S. (1947). The use of transformations, Biometrics 3: 39–52.CrossRefGoogle ScholarPubMed
Beall, G. (1942). The Transformation of data from entomological field experiments so that that analysis of variance becomes applicable, Biometrika 29: 243–262.CrossRefGoogle Scholar
Bliss, C. I. (1958). The analysis of insect counts as negative binomial distributions. Proceedings of the Tenth International Congress on. Entomology 2: 1015–1032.Google Scholar
Bliss, C. I., and Fisher, R. A. (1953). Fitting the negative binomial distribution to biological data and note on the efficient fitting of the negative binomial, Biometrics 9: 176–200.CrossRefGoogle Scholar
Bliss, C. I. and Owen, A. R. G. (1958). Negative binomial distributions with a common k, Biometricka 45: 37–58.CrossRefGoogle Scholar
Blom, G. (1954). Transformations of the binomial, negative binomial, Poisson, and χ2 distributions, Biometrika 41: 302–316.Google Scholar
Boswell, M. T. and Patil, G. P. (1970). Chance mechanisms generating the negative binomial distribution, in Random Counts in Models and Structures, Volume 1, ed. G. P. Patil, University Park, PA: Pennsylvania State University Press, pp. 1–22.Google Scholar
Bozdogan, H. (1987). Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions, Special Section, Psychometrika 52(3): 345–370.CrossRefGoogle Scholar
Breslow, N. E. (1984). Extra-Poisson variation in log-linear models, Applied Statistics 33 (1): 38–44.CrossRefGoogle Scholar
Bulmer, M. G. (1974). On Fitting The Poisson Lognormal Distribution to Species-Abundance Data, Biometrics 30:101–110.CrossRefGoogle Scholar
Cameron, A. C. and Trivedi, P. K. (1986). Econometric models based on count data: Comparisons and applications of some estimators, Journal of Applied Econometrics 1: 29–53.CrossRefGoogle Scholar
Cameron, A. C. and Trivedi, P. K. (1990). Regression-based tests for overdispersion in the Poisson model, Journal of Econometrics 46: 347–364.CrossRefGoogle Scholar
Cameron, A. C. and Trivedi, P. K. (1998). Regression Analysis of Count Data, New York: Cambridge University Press.CrossRefGoogle Scholar
Cameron, A. C. and Trivedi, P. K. (2010). Microeconometrics Using Stata, revised edition, College Station, TX: Stata Press.Google Scholar
Collett, D. (1989). Modelling Binary Data, London: Chapman & Hall.Google Scholar
Consul, P. and Jain, G (1973). A generalization of the Poisson distribution, Technometrics 15: 791–799.CrossRefGoogle Scholar
Consul, P. C. and Gupta, R. C. (1980). The generalized binomial distribution and its characterization by zero regression, SIAM Journal of Applied Mathematics 39(2): 231–237.CrossRefGoogle Scholar
Consul, P. and Famoye, F. (1992). Generalized Poisson regression model, Communications in statistics – Theory and Method 21: 89–109.CrossRefGoogle Scholar
Cui, J. (2007). QIC program and model selection in GEE analysis, Stata Journal 7(2): 209–220.Google Scholar
Dean, C. and Lawless, J. F. (1989). Tests for detecting overdispersion in Poisson regression models, Journal of the American Statistical Association 84: 467–472.CrossRefGoogle Scholar
Deb, P. and Trivedi, P. K. (2002), The structure of demand for medical care: latent class versus two-part models, Journal of Health Economics 21: 601–625.CrossRefGoogle Scholar
Deb, P. and Trivedi, P. K. (2006), Maximum simulated likelihood estimation of a negative binomial regression model with multinomial endogeneous treatment, Stata Journal 6: 246–255.Google Scholar
Dohoo, I., Martin, W. and Stryhn, H. (2010). Veterinary Epidemiologic Research, Charlottetown, Prince Edward island, CA: VER, Inc.Google Scholar
Drescher, D. (2005). Alternative distributions for observation driven count series models, Economics Working Paper No 2005–11, Christian-Albrechts-Universitat, Kiel, Germany.
Dunn, P.K. and Smyth, G.K. (1996). Randomized quantile residuals, Journal of Computational and Graphical Statistics 5(3): 236–244.Google Scholar
Edwards, A. W. F. (1972). Likelihood, Baltimore, MD: Johns Hopkins University Press.Google Scholar
Eggenberger, F. and Polya, G. (1923). Uber die Statistik Verketteter Vorgange, Journal of Applied Mathematics and Mechanics 1: 279–289.Google Scholar
Englin, J. and Shonkwiler, J. (1995). Estimating social welfare using count data models: An application under conditions of endogenous stratification and truncation, Review of Economics and Statistics 77: 104–112.CrossRefGoogle Scholar
Evans, D. A. (1953). Experimental evidence concerning contagious distributions in ecology, Biometrika 40: 186–211.CrossRefGoogle Scholar
Fair, R. (1978). A theory of extramarital affairs, Journal of Political Economy 86: 45–61.CrossRefGoogle Scholar
Famoye, F. (1995). Generalized binomial regression model, Biometrical Journal 37(5): 581–594.CrossRefGoogle Scholar
Famoye, F. and Singh, K. (2006). Zero-truncated generalized Poisson regression model with an application to domestic violence, Journal of Data Science 4: 117–130.Google Scholar
Faraway, J. (2006). Extending the Linear Model with R, Boca Raton, FL: Chapman & Hall/CRC Press.Google Scholar
Fisher, R. A. (1941). The negative binomial distribution, Annals of Eugenics, 11, 182–187.CrossRefGoogle Scholar
Frees, E. (2004). Longitudinal and Panel Data, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fridstrøm, L., Ifver, J., Ingebrigsten, S., Kulmala, R. and Thomsen, L. K. (1995). Measuring the contribution of randomness, exposure, weather, and daylight to the variation in the road accident counts, Accident Analysis and Prevention 27(1): 1–20.CrossRefGoogle ScholarPubMed
Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis, second edition, Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge: Cambridge University Press.Google Scholar
Gerdtham, U. G. (1997). Equity in health care utilization: Further tests based on hurdle models and Swedish micro data, Health Economics 6: 303–319.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Geweke, J.F. (2005). Contemporary Bayesian Econometrics and Statistics, New York: Wiley.CrossRefGoogle Scholar
Gill, J. (2002). Bayesian Methods, Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
Gill, J. (2010). Critical differences in Bayesian and non-Bayesian inference and why the former is better, in Statistics in the Social Sciences, ed. S. Kolenikov, D. Steinley and L. Thombs, New York: Wiley.Google Scholar
Goldberger, A. S. (1983). Abnormal selection bias, in Studies in Econometrics, Time Series, and Multivariate Statistics, ed. Karlin, S., Amemiya, T. and Goodman, L. A., New York: Academic Press, pp. 67–85.CrossRefGoogle Scholar
Gould, W., Pitblado, J. and Scribney, W. (2006). Maximum Likelihood Estimation with Stata, third edition, College Station, TX: Stata Press.Google Scholar
Gourieroux, C., Monfort, A. and Trognon, A. (1984). Pseudo maximum likelihood methods: theory, Econometrica 52: 681–700.CrossRefGoogle Scholar
Greene, W. H. (1992). Statistical Models for Credit Scoring, Working Paper, Department of Economics, Stern School of Business, New York University.
Greene, W. H. (1994). Accounting for excess zeros and sample selection in Poisson and negative binomial regression models, EC-94–10, Department of Economics, Stern School of Business, New York University.
Greene, W. H. (2006a). LIMDEP Econometric Modeling Guide, Version 9, Plainview, NY: Econometric Software Inc.Google Scholar
Greene, W. H. (2006b). A general approach to incorporating ‘selectivity’ in a model, Working Paper, Department of Economics, Stern School of Business, New York University.
Greene, W. H. (2007). Econometric Analysis, fifth edition, New York: Macmillan.Google Scholar
Greenwood, M. and Woods, H. M. (1919). On the Incidence of the Industrial Accidents upon Individuals with special Reference to Multiple Accidents. Report of the Industrial Fatigue Research Board. 4, 1–28. London: His Majesty's Stationery Office.Google Scholar
Greenwood, M. and Yule, G. U. (1920). An inquiry into the nature of frequency distributions of multiple happenings, with particular reference to the occurrence of multiple attacks of disease or repeated accidents, Journal of the Royal Statistical Society A, 83: 255–279.CrossRefGoogle Scholar
Gurmu, S. and Trivedi, P. K. (1992). Overdispersion tests for truncated Poisson regression models, Journal of Econometrics 54: 347–370.CrossRefGoogle Scholar
Hannan, E. J. and Quinn, B. G. (1979) The determination of the order of an autoregression, Journal of the Royal Statistical Society, B 41: 190–195.Google Scholar
Hardin, J. W. (2003). The sandwich estimate of variance, in Maximum Likelihood of Misspecified Models: Twenty Years Later, ed. Fomby, T. and Hill, C., Advances in Econometrics volume 17, Oxford: Elsevier, pp. 45–73.CrossRefGoogle Scholar
Hardin, J. W. and Hilbe, J. M. (2001). Generalized Linear Models & Extensions, College Station, TX: Stata Press.Google Scholar
Hardin, J. W. and Hilbe, J. M. (2002). Generalized Estimating Equations, Boca Raton, FL: Chapman & Hall/CRC Press.CrossRefGoogle Scholar
Hardin, J. W. and Hilbe, J. M. (2007). Generalized Linear Models & Extensions, second edition, College Station, TX: Stata Press.Google Scholar
Hausman, J., Hall, B. and Griliches, Z. (1984). Econometric models for count data with an application to the patents – R&D Relationship, Econometrica 52: 909–938.CrossRefGoogle Scholar
Heckman, J. (1979). Sample selection bias as a specification error, Econometrica 47: 153–161.CrossRefGoogle Scholar
Heilbron, D. (1989). Generalized linear models for altered zero probabilities and overdispersion in count data, Technical Report, Department of Epidemiology and Biostatistics, University of California, San Francisco.
Hilbe, J. M. (1993a). Log negative binomial regression as a generalized linear model, Technical Report COS 93/94–5-26, Department of Sociology, Arizona State University.
Hilbe, J. M. (1993b). Generalized linear models, Stata Technical Bulletin, STB-11, sg16.Google Scholar
Hilbe, J. M. (1993c). Generalized linear models using power links, Stata Technical Bulletin, STB-12, sg16.1.Google Scholar
Hilbe, J. M. (1994a). Negative binomial regression, Stata Technical Bulletin, STB-18, sg16.5.
Hilbe, J. M. (1994b). Generalized linear models, The American Statistician, 48(3): 255–265.Google Scholar
Hilbe, J. M. (2000). Two-parameter log-gamma and log-invese Gaussian models, in Stata Technical Bulletin Reprints, College Station,TX: Stata Press, pp. 118–121.Google Scholar
Hilbe, J. M. (2005a). CPOISSON: Stata module to estimate censored Poisson regression, Boston College of Economics, Statistical Software Components, http://ideas.repec.org/c/boc/bocode/s456411.html
Hilbe, J. M. (2005b), CENSORNB: Stata module to estimate censored negative binomial regression as survival model, Boston College of Economics, Statistical Software Components, http://ideas.repec.org/c/boc/bocode/s456508.html
Hilbe, J. M. (2005c), Censored negative binomial regression, EconPapers, RePec, Research Papers in Economics, Boston School of Economics, Nov 30, 2005. http://fmwww.bc.edu/repec/bocode/c/censornb.ado
Hilbe, J. M. (2009). Logistic Regression Models, Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
Hilbe, J. M. (2010a), Modeling count data, in International Encyclopedia of Statistical Science, ed. M. Lovric, New York: Springer.Google Scholar
Hilbe, J. M. (2010b), Generalized linear models, in International Encyclopedia of Statistical Science, ed. M. Lovric, New York: Springer.Google Scholar
Hilbe, J. M. (2010c), Creating synthetic discrete-response regression models, Stata Journal 10(1): 104–124.Google Scholar
Hilbe, J. M. (2011). Negative Binomial Regression Extensions. Cambridge University Press website for the text: www.cambridge.org/9780521857727.CrossRefGoogle Scholar
Hilbe, J. and Turlach, B. (1995). Generalized linear models, in XploRe: An Interactive Statistical Computing Environment, ed. Hardle, W., Klinke, S. and Tulach, B., New York: Springer-Verlag, pp. 195–222.CrossRefGoogle Scholar
Hilbe, J. and Judson, D. (1998). Right, left, and uncensored Poisson regression, in Stata Technical Bulletin Reprints, College Station, TX: Stata Press, pp. 186–189.Google Scholar
Hilbe, J. and Greene, W. (2007). Count response regression models, inEpidemiology and Medical Statistics, ed. Rao, C. R., Miller, J. P. and Rao, D. C., Elsevier Handbook of Statistics Series, London: Elsevier.Google Scholar
Hilbe, J.M and Robinson, A.P. (2011), Methods of Statistical Model Estimation, Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
Hin, L.-Y. and Wang, Y.-G. (2008). Working-correlation-structure identification in generalized estimating equations, Statistics in Medicine 28(4): 642–658.CrossRefGoogle Scholar
Hinde, J. and Demétrio, C. G. B (1998). Overdispersion: models and estimation, Computational Statistics & Data Analysis 27(2): 151–170CrossRefGoogle Scholar
Hoffman, J. (2004). Generalized Linear Models, Boston, MA: Allyn and Bacon.Google Scholar
Hosmer, D. and Lemeshow, S. (2000), Applied Logistic Regression, second edition, New York: Wiley.CrossRefGoogle Scholar
Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA: University of California Press, pp. 221–233.Google Scholar
Irwin, J. O. (1968). The generalized Waring distribution applied to accident theory, Journal of the Royal Statistical Society, A 131(2): 205–225.CrossRefGoogle Scholar
Iwasaki, M. and Tsubaki, H (2005a). A bivariate generalized linear model with an application to meteorological data analysis, Statistical Methodology 2: 175–190.CrossRefGoogle Scholar
Iwasaki, M. and Tsubaki, H. (2005b). A new bivariate distribution in natural exponential family, Metrika 61: 323–336CrossRefGoogle Scholar
Iwasaki, M. and Tsubaki, H. (2006). Bivariate negative binomial generalized linear models for environmental count data, Journal of Applied Statistics 33(9): 909–923.CrossRefGoogle Scholar
Jain, S. K. (1959). Fitting the negative binomial distribution to some data on asynaptic behaviour of chromosomes, Genetica 30: 108–122.CrossRefGoogle Scholar
Jain, G. C. and Consul, P. C. (1971). A generalized negative binomial distibution, SIAM Journal of Applied Mathematics, 21(4): 501–513.CrossRefGoogle Scholar
Johnson, N. L., Kemp, A. W. and Kotz, S. (2005). Univariate Discrete Distributions, third edition, New York: Wiley.CrossRefGoogle Scholar
Jones, A. M., Rice, N., d'Uva, T.B. and Balia, S. (2007). Applied Health Economics, New York & Oxford: Routledge, Taylor and Francis.Google Scholar
Jones, O., Maillardet, R. and Robinson, A. (2009). Scientific Programming and Simulation Using R, Boca Raton, FL: Chapman & Hall/CRCGoogle Scholar
Karim, M. R. and Zeger, S. (1989). A SAS macro for longitudinal data analysis, Department of Biostatistics, the Johns Hopkins University: Technical Report 674.
Katz, E. (2001). Bias in conditional and unconditional fixed effects logit estimation, Political Analysis 9(4): 379–384.CrossRefGoogle Scholar
King, G. (1988). Statistical models for political science event counts: Bias in conventional procedures and evidence for the exponential Poisson regression model. American Journal of Political Science 32: 838–863.CrossRefGoogle Scholar
King, G. (1989). Event count models for international relations: generalizations and applications, International Studies Quarterly 33: 123–147.CrossRefGoogle Scholar
Lambert, D. (1992). Zero-inflated Poisson regression with an application to defects in manufacturing, Technometrics, 34: 1–14.CrossRefGoogle Scholar
Lancaster, T. (2002). Orthogonal parameter and panel data, Review of Economic Studies 69: 647–666.CrossRefGoogle Scholar
Lawless, J. F. (1987). Negative binomial and mixed Poisson regression, Canadian Journal of Statistics 15(3): 209–225.CrossRefGoogle Scholar
Lee, Y., Nelder, J. and Pawitan, Y. (2006). Generalized Linear Models with Random Effects, Boca Raton, FL: Chapman & Hall/CRC Press.CrossRefGoogle Scholar
Leisch, F. and Gruen, B. (2010). Flexmix: Flexible Mixture Modeling, CRANGoogle Scholar
Liang, K.-Y. and Zeger, S. (1986). Longitudinal data analysis using generalized linear models, Biometrika 73: 13–22.CrossRefGoogle Scholar
Long, J. S. (1997). Regression Models for Categorical and Limited Dependent Variables, Thousand Oaks, CA: Sage.Google Scholar
Long, J. S. and Freese, J. (2006). Regression Models for Categorical Dependent Variables using Stata, second edition, College Station, TX: Stata Press.Google Scholar
Loomis, J. B. (2003). Travel cost demand model based river recreation benefit estimates with on-site and household surveys: Comparative results and a correction procedure, Water Resources Research 39(4): 1105.CrossRefGoogle Scholar
Machado, J. A. F. and Santos Silva, J. M. C. (2005), Quantiles for counts, Journal of the American Statistical Association 100: 1226–1237.CrossRef
Marquardt, D. W. (1963). An algorithm for least-squares estimation of non-linear parameters, Journal of the Society for Industrial and Applied Mathematics 11: 431–441.CrossRefGoogle Scholar
Martinez-Espiñeira, R., Amaoko-Tuffor, J., and Hilbe, J. M. (2006). Travel cost demand model-based river recreation benefit estimates with on-site and household surveys: comparative results and a correction procedure – revaluation, Water Resource Research 42.CrossRefGoogle Scholar
McCullagh, P. (1983). Quasi-likelihood functions, Annals of Statistics 11: 59–67.CrossRefGoogle Scholar
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, second edition, New York: Chapman & Hall.CrossRefGoogle Scholar
Melkersson, M. and Roth, D. (2000). Modeling of household fertility using inflated count data models, Journal of Population Economics 13: 189–204.CrossRefGoogle Scholar
Miaou, S.-P. (1996). Measuring the goodness-of-fit of accident prediction models, FHWA-RD-96–040, Federal Highway Administration, Washington, DC.Google Scholar
Muenchen, R. A. and Hilbe, J. M. (2010). R for Stata Users, New York: Springer.CrossRefGoogle Scholar
Mullahy, J. (1986). Specification and testing of some modified count data models, Journal of Econometrics 33: 341–365.CrossRefGoogle Scholar
Mundlak, Y. (1978). On the pooling of time series and cross section data, Econometrica 46: 69–85.CrossRefGoogle Scholar
Murphy, K. and Topel, R. (1985). Estimation and inference in two step econometric models, Journal of Business and Economic Statistics 3:370–379.Google Scholar
Mwalili, S., Lesaffre, E. and DeClerk, D. (2005). The zero-inflated negative binomial regresson model with correction for misclassification: an example in Caries Research, Technical Report 0462, LAP Statistics Network Interuniversity Attraction Pole. Catholic University of Louvain la Neuve, Belgium. www.stat.ucl.ac.be/IAP.
Nelder, J. A. (1994). Generalized linear models with negative binomial or beta-binomial errors, unpublished manuscript.
Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models, Journal of the Royal Statistical Society, A 135(3): 370–384.CrossRefGoogle Scholar
Nelder, J. A. and Pregibon, D. (1987). An extended quasi-likelihood function, Biometrika 74: 221–232.CrossRefGoogle Scholar
Nelder, J. A. and Lee, Y. (1992). Likelihood, quasi-likelihood, and pseudo-likelihood: some comparisons, Journal of the Royal Statistical Society, B 54: 273–284.Google Scholar
Nelson, D. L. (1975). Some remarks on generalized of negative binomial and Poisson distributions, Technometrics 17: 135–136.CrossRefGoogle Scholar
Newbold, E. M. (1927). Practical applications of the statistics of repeated events, particularly to industrial accidents. Journal of the Royal Statistical Society 90: 487–547.CrossRefGoogle Scholar
Neyman, J. and Scott, E. L. (1948). Consistent estimation from partially consistent observations, Econometrica, 16(1): 1–32CrossRefGoogle Scholar
Nylund, K. L, Asparouhov, T., and Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study, Structural Equation Modeling 14(4): 535–569.CrossRefGoogle Scholar
Pan, W. (2001a). Akaike's information criterion in generalized estimating equations, Biometrics 57: 120–125.CrossRefGoogle ScholarPubMed
Pan, W. (2001b). On the robust variance estimator in generalized estimating equations, Biometrika 88(3): 901–906.CrossRefGoogle Scholar
Piegorsch, W. W. (1990) Maximum likelihood estimation for the negative binomial dispersion parameter, Biometrics 46: 863–867.CrossRefGoogle ScholarPubMed
Pierce, D. A. and Schafer, D. W. (1986). Residuals in generalized linear models, Journal of the American Statistical Association 81: 977–986.
Rabe-Hesketh, S. and Skrondal, A. (2004). Generalized Latent Variable Modeling, Boca Raton, FL: Chapman & Hall/CRC Press.Google Scholar
Rabe-Hesketh, S. and Skrondal, A. (2005). Multilevel and Longitudinal Modeling Using Stata, College Station, TX: Stata Press.Google Scholar
Rigby, R. and Stasinopoulos, M (2008). A fexible regression approach using GAMLSS in R, Handout for a short course in GAMLSS given at International Workshop of Statistical Modelling, University of Utrecht.
Rodríguez-Avi, J., Conde-Sánchez, A., Sáez-Castillo, A. J., Olmo-Jiménez, M. J., and Martínez-Rodríguez, A. M. (2009), A generalized Waring regression model for count data, Computational Statistics & Data Analysis 53(10): 3717–3725.CrossRefGoogle Scholar
Rouse, D. M. (2005). Estimation of finite mixture models, Masters thesis, North Carolina State University.
,SAS/STAT 9.22User's Guide (2010), Cary, NC: SAS InstituteGoogle Scholar
Shaw, D. (1988). On-site samples' regression, Journal of Econometrics 37: 211–223.CrossRefGoogle Scholar
Shults, J., Sun, W., Tu, X., Kim, H., Amsterdam, J., Hilbe, J. M. and Ten-Have, T. (2009). Comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data, Statistics in Medicine 28: 2338–2355.CrossRefGoogle ScholarPubMed
Simon, L. J. (1960). The negative binomial and Poisson distributions compared, Proceedings of the Casuality and Actuarial Society 47: 20–24.Google Scholar
Simon, L. (1961). Fitting negative binomial distributions by the method of maximum likelihood, Proceedings of the Casuality and Actuarial Society 48: 45–53.Google Scholar
Stata Reference Manual, version 11 (2009), College Station, TX: Stata Press.
Student (1907). On the error of counting with a haemacytometer, Biometrika 5: 351–360.CrossRef
Terza, J. V. (1998). A tobit-type estimator for the censored Poisson regression model, Econometric Letters 18: 361–365.CrossRefGoogle Scholar
Thall, P. and Vail, S (1990). Some covariance models for longitudinal count data and overdispersion, Biometrika 46: 657–671.CrossRefGoogle ScholarPubMed
Twist, J. W. R. (2003). Applied Longitudinal Data Analysis for Epidemiology, Cambridge: Cambridge University Press.Google Scholar
Vadeby, A. (2002). Estimation in a model with incidental parameters, LiTH-MAT-R-2002–02 working paper.
Venables, W. and Ripley, B. (2002). Modern Applied Statistics with S, fourth edition, New York: Springer-Verlag.CrossRefGoogle Scholar
Vogt, A. and Bared, J. G. (1998). Accident models for two-lane rural roads: segments and intersections, publication No. FHWA-RD-98–133, Federal Highway Administration, Washington, DC, http://www.tfhrc.gov/safety/98133/ch05/ch05_01.html
Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses, Econometrica 57: 307–333.CrossRefGoogle Scholar
Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models and the Gauss–Newton method, Biometrika 61: 439–47.Google Scholar
White, H. (1980). A heteroskestasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity, Econometrica 48(4): 817–838.CrossRefGoogle Scholar
Williamson, E. and Bretherton, M. H. (1963). Tables of the Negative Binomial Distribution, New York:Wiley.Google Scholar
Winkelmann, R. (1995). Duration dependence and dispersion in count-data models, Journal of Business and Economic Statistics 13: 467–474.Google Scholar
Winkelmann, R. (2008). Econometric Analysis of Count Data, Fifth Edition, New York: Springer.Google Scholar
Winklemann, R. and Zimmermann, K. F. (1995). Recent developments in count data modelling, theory and application, Journal of Economic Surveys 9: 1–24.CrossRefGoogle Scholar
Woutersen, T. (2002). Robustness against incidental parameters, University of Western Ontario, Department of Economics Working papers, 20028.
Xekalaki, E. (1983). The univariate generalized Waring distribution in relation to accident theory: Proneness, spells or contagion?, Biometrics 39(3): 39–47.CrossRefGoogle ScholarPubMed
Xekalaki, E. (1984). The bivariate generalized Waring distribution and its application to accident theory, Journal of the Royal Statistical Society A 147(3): 488–498.CrossRefGoogle Scholar
Yang, Z., Hardin, J. and Abby, C. (2006). A score test for overdispersion based on generalized poisson model, Unpublished manuscript.
Yule, G. U. (1910). On the distribution of deaths with age when the causes of death act cumulatively, and similar frequency distributions, Journal of the Royal Statistical Society 73: 26–35.CrossRefGoogle Scholar
Zeger, S. L., Liang, K. -Y., and Albert, P. S. (1988). Models for longitudinal data: A generalized estimating equation approach, Biometrics 44: 1049–1060.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×