Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-14T02:12:43.531Z Has data issue: false hasContentIssue false

7 - Tipping elements: jokers in the pack

Published online by Cambridge University Press:  04 April 2011

Katherine Richardson
Affiliation:
University of Copenhagen
Will Steffen
Affiliation:
Australian National University, Canberra
Diana Liverman
Affiliation:
University of Arizona and University of Oxford
Get access

Summary

‘This is an externality like no other… there is a big probability of a devastating outcome’

Striking developments in the climate system in recent years have reinforced the view that anthropogenic global warming is unlikely to cause a smooth transition into the future. The record minimum area coverage of Arctic sea-ice in September 2007 drew widespread attention, as has the accelerating loss of water from the Greenland and West Antarctic ice sheets (Chapter 3). These large-scale components of the Earth System are among those that have been identified as potential ‘tipping elements’ – climate sub-systems that could exhibit a ‘tipping point’ where a small change in forcing (in particular, global temperature change) causes a qualitative change in their future state (Lenton et al., 2008). The resulting transition may be either abrupt or irreversible, or in the worst cases, both. The most ‘policy-relevant’ tipping elements have been defined as those that (i) have a tipping point that could be crossed this century, (ii) would undergo, as a consequence, a qualitative change within this millennium, thereby (iii) affecting (if not damaging) a large number of people. For a full definition of a tipping element and its tipping point, see Box 7.1 (and Lenton et al., 2008). In IPCC terms such changes are referred to as ‘large-scale discontinuities’ (Smith et al., 2009). Should they occur, they would surely qualify as dangerous climate changes (Schellnhuber et al., 2006) (although not all are equally dangerous, as we will explore further).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, D. (2007). Methane hydrate stability and anthropogenic climate change. Biogeosciences, 4, 521–44.CrossRefGoogle Scholar
Archer, D., Buffett, B. and Brovkin, V. (2009). Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences (USA), 106, 20596–601.CrossRefGoogle ScholarPubMed
Ashok, K. and Yamagata, T. (2009). Climate change: The El Niño with a difference. Nature, 461, 481–84.CrossRefGoogle ScholarPubMed
Bakke, J., Lie, O., Heegaard, E.et al. (2009). Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geoscience, 2, 202–05.CrossRefGoogle Scholar
Betts, R. A., Cox, P. M., Collins, M.et al. (2004). The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology, 78, 157–75.CrossRefGoogle Scholar
Biggs, R., Carpenter, S. R. and Brock, W. A. (2009). Turning back from the brink: Detecting an impending regime shift in time to avert it. Proceedings of the National Academy of Sciences (USA), 106, 826–31.CrossRefGoogle Scholar
Brovkin, V., Claussen, M., Petoukhov, V. and Ganopolski, A. (1998). On the stability of the atmosphere-vegetation system in the Sahara/Sahel region. Journal of Geophysical Research, 103, 31613–24.CrossRefGoogle Scholar
Burns, S. J., Fleitmann, D., Matter, A., Kramers, J. and Al-Subbary, A. A. (2003). Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science, 301, 1365–67.CrossRefGoogle ScholarPubMed
Chang, P., Zhang, R., Hazeleger, W.et al. (2008). Oceanic link between abrupt change in the North Atlantic Ocean and the African monsoon. Nature Geoscience, 1, 444–48.CrossRefGoogle Scholar
Claussen, M., Kubatzki, C., Brovkin, V.et al. (1999). Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophysical Research Letters, 26, 2037–40.CrossRefGoogle Scholar
Cofala, J., Amman, M., Klimont, Z., Kupiainen, K. and Höglund-Isaksson, L. (2007). Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmospheric Environment, 41, 8486–99.CrossRefGoogle Scholar
Cook, K. H. and Vizy, E. K. (2006). Coupled model simulations of the west African Monsoon System: Twentieth- and twenty-first-century simulations. Journal of Climate, 19, 3681–703.CrossRefGoogle Scholar
Cook, K. H. and Vizy, E. K. (2008). Effects of twenty-first-century climate change on the Amazon rain forest. Journal of Climate, 21, 542–60.CrossRefGoogle Scholar
Cook, K. H., Vizy, E. K., Launer, Z. S. and Patricola, C. M. (2008). Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first century. Journal of Climate, 21, 6321–40.CrossRefGoogle Scholar
Cox, P. M., Betts, R. A., Collins, M.et al. (2004). Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137–56.CrossRefGoogle Scholar
Cox, P. M., Harris, P. P., Huntingford, C.et al. (2008). Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 453, 212–15.CrossRefGoogle ScholarPubMed
Crutzen, P. J. (2006). Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?Climatic Change, 77, 211–19.CrossRefGoogle Scholar
Dakos, V., Scheffer, M., Nes, E. H.et al. (2008). Slowing down as an early warning signal for abrupt climate change. Proceedings of the National Academy of Sciences (USA), 105, 14308–12.CrossRefGoogle ScholarPubMed
Vries, P. and Weber, S. L. (2005). The Atlantic freshwater budget as a diagnostic for the existence of a stable shut-down of the meridional overturning circulation. Geophysical Research Letters, 32, L09606.CrossRefGoogle Scholar
Eisenman, I. and Wettlaufer, J. S. (2009). Nonlinear threshold behavior during the loss of Arctic sea ice. Proceedings of the National Academy of Sciences (USA), 106, 28–32.CrossRefGoogle ScholarPubMed
Gladwell, M. (2000). The Tipping Point: How Little Things Can Make a Big Difference. New York, NY: Little Brown.Google Scholar
Gregory, J. M. and Huybrechts, P. (2006). Ice-sheet contributions to future sea-level change. Philosophical Transactions of the Royal Society A – Mathematical, Physical & Engineering Sciences, 364, 1709–31.CrossRefGoogle ScholarPubMed
Guilyardi, E. (2006). El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dynamics, 26, 329–48.CrossRefGoogle Scholar
Guinotte, J. M., Orr, J., Cairns, S.et al. (2006). Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals?Frontiers in Ecology and the Environment, 4, 141–46.CrossRefGoogle Scholar
Gupta, A. K., Anderson, D. M. and Overpeck, J. T. (2003). Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 431, 354–57.CrossRefGoogle Scholar
Guttal, V. and Jayaprakash, C. (2008). Changing skewness: An early warning signal of regime shifts in ecosystems. Ecology Letters, 11, 450–60.CrossRefGoogle ScholarPubMed
Guttal, V., and Jayaprakash, C. (2009). Spatial variance and spatial skewness: Leading indicators of regime shifts in spatial ecological systems. Theoretical Ecology, 2, 3–12.CrossRefGoogle Scholar
Hagos, S. M. and Cook, K. H. (2007). Dynamics of the west African monsoon jump. Journal of Climate, 20, 5264–84.CrossRefGoogle Scholar
Hagos, S. M. and Cook, K. H. (2008). Ocean warming and late-twentieth-century Sahel drought and recovery. Journal of Climate, 21, 3797–814.CrossRefGoogle Scholar
Hansen, J. and Nazarenko, L. (2004). Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences (USA), 101, 423–28.CrossRefGoogle ScholarPubMed
Held, H. and Kleinen, T. (2004). Detection of climate system bifurcations by degenerate fingerprinting. Geophysical Research Letters, 31, L23207.CrossRefGoogle Scholar
Held, I. M. and Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19, 5686–99.CrossRefGoogle Scholar
Hofmann, M. and Rahmstorf, S. (2009). On the stability of the Atlantic meridional overturning circulation. Proceedings of the National Academy of Sciences (USA), 106, 20584–89.CrossRefGoogle ScholarPubMed
Hofmann, M. and Schellnhuber, H. J. (2009). Ocean acidification affects marine carbon pump and triggers extended marine oxygen holes. Proceedings of the National Academy of Sciences (USA), 106, 3017–22.CrossRefGoogle Scholar
Holland, D. M., Thomas, R. H., Young, B., Ribergaard, M. H. and Lyberth, B. (2008). Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geoscience, 1, 659–64.CrossRefGoogle Scholar
Holland, M. M., Bitz, C. M. and Tremblay, B. (2006). Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters, 33, L23503.CrossRefGoogle Scholar
Huybrechts, P. and Wolde, J. (1999). The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. Journal of Climate, 12, 2169–88.2.0.CO;2>CrossRefGoogle Scholar
,Intergovernmental Panel on Climate Change (IPCC) (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L.. Cambridge, UK and New York, NY: Cambridge University Press.Google Scholar
Jones, C., Lowe, J., Liddicoat, S. and Betts, R. (2009). Committed ecosystem change due to climate change. Nature Geoscience, 2, 484–87.CrossRefGoogle Scholar
Joughin, I., Das, S. B., King, M. A.et al. (2008). Seasonal speedup along the western flank of the Greenland Ice Sheet. Science, 320, 781–83.CrossRefGoogle ScholarPubMed
Kay, J. E., L'Ecuyer, T., Gettelman, A., Stephens, G. and O'Dell, C. (2008). The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophysical Research Letters, 35, L08503.CrossRefGoogle Scholar
Kayen, R. E. and Lee, H. J. (1991). Pleistocene slope instability of gas hydrate-laden sediment of Beaufort Sea margin. Marine Geotechnology, 10, 125–41.CrossRefGoogle Scholar
Keeling, R. F., Körtzinger, A. and Gruber, N. (2010). Ocean deoxygenation in a warming world. Annual Review of Marine Science, 2, 199–29.CrossRefGoogle Scholar
Khvorostyanov, D. V., Ciais, P., Krinner, G. and Zimov, S. A. (2008a). Vulnerability of east Siberia's frozen carbon stores to future warming. Geophysical Research Letters, 35, L10703.CrossRefGoogle Scholar
Khvorostyanov, D. V., Krinner, G., Ciais, P., Heimann, M. and Zimov, S. A. (2008b). Vulnerability of permafrost carbon to global warming. Part I: model description and the role of heat generated by organic matter decomposition. Tellus B, 60, 250–64.CrossRefGoogle Scholar
Kleinen, T., Held, H. and Petschel-Held, G. (2003). The potential role of spectral properties in detecting thresholds in the Earth system: Application to the thermohaline circulation. Ocean Dynamics, 53, 53–63.CrossRefGoogle Scholar
Kriegler, E., Hall, J. W., Held, H., Dawson, R. and Schellnhuber, H.-J. (2009). Imprecise probability assessment of tipping points in the climate system. Proceedings of the National Academy of Sciences (USA), 106, 5041–46.CrossRefGoogle ScholarPubMed
Kurz, W. A., Dymond, C. C., Stinson, G.et al. (2008). Mountain pine beetle and forest carbon feedback to climate change. Nature, 452, 987–90.CrossRefGoogle ScholarPubMed
Kwok, R. and Rothrock, D. A. (2009). Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters, 36, L15501.CrossRefGoogle Scholar
Latif, M. and Keenlyside, N. S. (2009). El Niño/Southern Oscillation response to global warming. Proceedings of the National Academy of Sciences (USA), 106, 20578–83.CrossRefGoogle ScholarPubMed
Lawrence, D. M. and Slater, A. G. (2005). A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters, 32, L24401.CrossRefGoogle Scholar
Lawrence, D. M., Slater, A. G., Tomas, R. A., Holland, M. M. and Deser, C. (2008). Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophysical Research Letters, 35, L11506.CrossRefGoogle Scholar
Quéré, C., Raupach, M. R., Canadell, J. G. and Marland, G. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geosciences, 2, 831–36.CrossRefGoogle Scholar
Lenton, T. M. and Schellnhuber, H.-J. (2007). Tipping the scales. Nature Reports Climate Change, 1, 97–98.CrossRefGoogle Scholar
Lenton, T. M., Held, H., Kriegler, E.et al. (2008). Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences (USA), 105, 1786–93.CrossRefGoogle ScholarPubMed
Lenton, T. M., Footitt, A. and Dlugolecki, A. (2009a). Major Tipping Points in the Earth's Climate System and Consequences for the Insurance Sector. n.p.: Tyndall Centre for Climate Change Research.Google Scholar
Lenton, T. M., Myerscough, R. J., Marsh, R.et al. (2009b). Using GENIE to study a tipping point in the climate system. Philosophical Transactions of the Royal Society A – Mathematical, Physical & Engineering Sciences, 367, 871–84.CrossRefGoogle ScholarPubMed
Lenton, T. M. and Vaughan, N. E. (2009). The radiative forcing potential of different climate geoengineering options. Atmospheric Chemistry and Physics Discussions, 9, 2559–608.CrossRefGoogle Scholar
Levermann, A., Schewe, J., Petoukhov, V. and Held, H. (2009). Basic mechanism for abrupt monsoon transitions. Proceedings of the National Academy of Sciences (USA), 106, 20572–77.CrossRefGoogle ScholarPubMed
Livina, V. N. and Lenton, T. M. (2007). A modified method for detecting incipient bifurcations in a dynamical system. Geophysical Research Letters, 34, L03712.CrossRefGoogle Scholar
Lu, J., Vecchi, G. A. and Reichler, T. (2007). Expansion of the Hadley cell under global warming. Geophysical Research Letters, 34, L06805.Google Scholar
Malhi, Y., Aragão, L. E. O. C., Galbraith, D.et al. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences (USA), 106, 20610–15.CrossRefGoogle ScholarPubMed
Maslanik, J., Drobot, S., Fowler, C., Emery, W. and Barry, R. (2007). On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophysical Research Letters, 34, L03711.CrossRefGoogle Scholar
Meehl, G. A., Arblaster, J. M. and Collins, W. D. (2008). Effects of black carbon aerosols on the Indian monsoon. Journal of Climate, 21, 2869–82.CrossRefGoogle Scholar
Mercer, J. H. (1978). West Antarctic ice sheet and CO2 greenhouse effect: A threat of disaster. Nature, 271, 321–25.CrossRefGoogle Scholar
Milly, P. C. D., Dunne, K. A. and Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347–50.CrossRefGoogle Scholar
Molina, M., Zaelke, D., Sarma, K. M.et al. (2009). Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions. Proceedings of the National Academy of Sciences (USA), 106, 20616–21.CrossRefGoogle ScholarPubMed
Mote, T. L. (2007). Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophysical Research Letters, 34, L22507.CrossRefGoogle Scholar
Naish, T., Powell, R., Levy, R.et al. (2009). Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458, 322–28.CrossRefGoogle ScholarPubMed
Nghiem, S. V., Rigor, I. G., Perovich, D. K.et al. (2007). Rapid reduction of Arctic perennial sea ice. Geophysical Research Letters, 34, L19504.CrossRefGoogle Scholar
Notz, D. (2009). The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss. Proceedings of the National Academy of Sciences (USA), 106, 20590–95.CrossRefGoogle ScholarPubMed
Oyama, M. D. and Nobre, C. A. (2003). A new climate-vegetation equilibrium state for tropical South America. Geophysical Research Letters, 30, CLM5.1–CLM5.4.CrossRefGoogle Scholar
Patricola, C. M. and Cook, K. H. (2008). Atmosphere/vegetation feedbacks: A mechanism for abrupt climate change over northern Africa. Journal of Geophysical Research, 113, D18102.CrossRefGoogle Scholar
Perovich, D. K., Light, B., Eicken, H.et al. (2007). Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophysical Research Letters, 34, L19505.CrossRefGoogle Scholar
Perovich, D. K., Richter-Menge, J. A., Jones, K. F. and Light, B. (2008). Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophysical Research Letters, 35, L11501.CrossRefGoogle Scholar
Pfeffer, W. T., Harper, J. T. and O'Neel, S. (2008). Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321, 1340–43.CrossRefGoogle ScholarPubMed
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L.et al. (2009). Drought sensitivity of the Amazon rainforest. Science, 323, 1344–47.CrossRefGoogle ScholarPubMed
Pollard, D. and DeConto, R. M. (2009). Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458, 329–32.CrossRefGoogle ScholarPubMed
Prentice, I. C., Cramer, W., Harrison, S. P.et al. (1992). A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19, 117–34.CrossRefGoogle Scholar
Pritchard, H. D., Arthern, R. J., Vaughan, D. G. and Edwards, L. A. (2009). Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461, 971–75.CrossRefGoogle ScholarPubMed
Ramanathan, V., Chung, C., Kim, D.et al. (2005). Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences (USA), 102, 5326–33.CrossRefGoogle ScholarPubMed
Ramanathan, V. and Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1, 221–27.CrossRefGoogle Scholar
Ramanathan, V. and Feng, Y. (2008). On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proceedings of the National Academy of Sciences (USA), 105, 14245–50.CrossRefGoogle ScholarPubMed
Riebesell, U., Körtzinger, A. and Oschlies, A. (2009). Sensitivities of marine carbon fluxes to ocean change. Proceedings of the National Academy of Sciences (USA), 106, 20602–09.CrossRefGoogle ScholarPubMed
Rignot, E., Box, J. E., Burgess, E. and Hanna, E. (2008). Mass balance of the Greenland ice sheet from 1958 to 2007. Geophysical Research Letters, 35, L20502.CrossRefGoogle Scholar
Rigor, I. G. and Wallace, J. M. (2004). Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophysical Research Letters, 31, L09401.CrossRefGoogle Scholar
Robock, A., Oman, L. and Stenchikov, G. L. (2008). Regional climate responses to geoengineering with tropical and Arctic SO2 injections. Journal of Geophysical Research, 113, D16101.CrossRefGoogle Scholar
Rohling, E. J., Grant, K., Hemleben, Ch.et al. (2008). High rates of sea-level rise during the last interglacial period. Nature Geoscience, 1, 38–42.CrossRefGoogle Scholar
Rohling, E. J., Grant, K., Bolshaw, M.et al. (2009). Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geoscience, 2, 500–04.CrossRefGoogle Scholar
Salazar, L. F., Nobre, C. A. and Oyama, M. D. (2007). Climate change consequences on the biome distribution in tropical South America. Geophysical Research Letters, 34, L09708.CrossRefGoogle Scholar
Saleska, S. R., Didan, K., Huete, A. R. and da Rocha, H. R. (2007). Amazon forests green-up during 2005 drought. Science, 318, 612.CrossRefGoogle ScholarPubMed
Scheffer, M., Bacompte, J., Brock, W. A.et al. (2009). Early warning signals for critical transitions. Nature, 461, 53–59.CrossRefGoogle ScholarPubMed
Schellnhuber, H. J. (2009). Tipping elements in the Earth System. Proceedings of the National Academy of Sciences (USA), 106, 20561–63.CrossRefGoogle ScholarPubMed
Schellnhuber, H. J., Cramer, W., Nakicenovic, N., Wigley, T. and Yohe, G. (2006). Avoiding Dangerous Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Schellnhuber, H. J. et al. (2009). Solving the climate dilemma: the budget approach. WBGU Special Report, WBGU, Berlin.Google Scholar
Scholze, M., Knorr, W., Arnell, N. W. and Prentice, I. C. (2006). A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences (USA), 103, 13116–20.CrossRefGoogle ScholarPubMed
Schoof, C. (2007). Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research, 112, F03S28.CrossRefGoogle Scholar
Seager, R., Ting, M., Held, I.et al. (2007). Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 1181–84.CrossRefGoogle ScholarPubMed
Shanahan, T. M., Overpeck, J. T., Anchukaitis, K. J.et al. (2009). Atlantic forcing of persistent drought in west Africa. Science, 324, 377–80.CrossRefGoogle ScholarPubMed
Shimada, K., Kamoshida, T., Itoh, M.et al. (2006). Pacific ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophysical Research Letters, 33, L08605.CrossRefGoogle Scholar
Shindell, D. and Faluvegi, G. (2009). Climate response to regional radiative forcing during the twentieth century. Nature Geoscience, 2, 294–300.CrossRefGoogle Scholar
Sitch, S., Huntingford, C., Gedney, N.et al. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015–39.CrossRefGoogle Scholar
Smith, J. B., Schneider, S. H., Oppenheimer, M.et al. (2009). Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) ‘reasons for concern’. Proceedings of the National Academy of Sciences (USA), 106, 4133–37.CrossRefGoogle Scholar
Steig, E. J., Schneider, D. P., Rutherford, S. D.et al. (2009). Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459–62.CrossRefGoogle ScholarPubMed
Stirling, A. (2003). Risk, uncertainty and precaution: Some instrumental implications from the social sciences. In Negotiating Environmental Change: New Perspectives from Social Science, eds. Berkhout, F., Leach, M. and Scoones, I.. London: Edward Elgar, pp. 33–76.Google Scholar
Stroeve, J., Holland, M. M., Meier, W., Scambos, T. and Serreze, M. (2007). Arctic sea ice decline: Faster than forecast. Geophysical Research Letters, 34, L09501.CrossRefGoogle Scholar
Sultan, B. and Janicot, S. (2003). The West African monsoon dynamics Part II: The preonset and onset of the summer monsoon. Journal of Climate, 16, 3407–27.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. and Dai, A. (2007). Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophysical Research Letters, 34, L15702.CrossRefGoogle Scholar
Wal, R. S. W., Boot, W., Broeke, M. R.et al. (2008). Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science, 321, 111–13.Google ScholarPubMed
Vaughan, D. G. (2008). West Antarctic Ice Sheet collapse: The fall and rise of a paradigm. Climatic Change, 91, 65–79.CrossRefGoogle Scholar
Vecchi, G. A., Soden, B. J., Wittenberg, A. T.et al. (2006). Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76.CrossRefGoogle ScholarPubMed
Veron, J. E. N., Hoegh-Guldberg, O., Lenton, T. M.et al. (2009). The coral reef crisis: The critical importance of <350 p.p.m. CO2. Marine Pollution Bulletin, 58, 1428–36.CrossRefGoogle Scholar
Washington, R., Bouet, C., Cautenet, G.et al. (2009). Dust as a tipping element: The Bodélé Depression, Chad. Proceedings of the National Academy of Sciences (USA), 106, 20564–71.CrossRefGoogle Scholar
Weber, S. L., Drijfhout, S. S., Abe-Ouchi, A.et al. (2007). The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Climate of the Past, 3, 51–64.CrossRefGoogle Scholar
Weertman, J. (1974). Stability of the junction of an ice sheet and an ice shelf. Journal of Glaciology, 13, 3–13.CrossRefGoogle Scholar
Weijer, W., Ruijter, W. P. M., Dijkstra, H. A. and Leeuwen, P. J. (1999). Impact of interbasin exchange on the Atlantic overturning circulation. Journal of Physical Oceanography, 29, 2266–84.2.0.CO;2>CrossRefGoogle Scholar
Wigley, T. M. L. (1995). Global mean-temperature and sea level consequences of greenhouse gas concentration stabilization. Geophysical Research Letters, 22, 45–48.CrossRefGoogle Scholar
Wigley, T. M. L. (2006). A combined mitigation/geoengineering approach to climate stabilization. Science, 314, 452–54.CrossRefGoogle ScholarPubMed
Winton, M. (2006). Does the Arctic sea ice have a tipping point?Geophysical Research Letters, 33, L23504.CrossRefGoogle Scholar
Woodgate, R. A., Aagaard, K. and Weingartner, T. J. (2006). Interannual changes in the Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004. Geophysical Research Letters, 33, L15609.CrossRefGoogle Scholar
Yeh, S.-W., Kug, J.-S., Dewitte, B.et al. (2009). El Niño in a changing climate. Nature, 461, 511–14.CrossRefGoogle Scholar
Yin, J., Schlesinger, M. E. and Stouffer, R. J. (2009). Model projections of rapid sea-level rise on the northeast coast of the United States. Nature Geoscience, 2, 262–66.CrossRefGoogle Scholar
Zickfeld, K., Knopf, B., Petoukhov, V. and Schellnhuber, H. J. (2005). Is the Indian summer monsoon stable against global change?Geophysical Research Letters, 32, L15707.CrossRefGoogle Scholar
Zimov, S. A., Schuur, E. A. G. and Chapin, F. S. (2006). Permafrost and the global carbon budget. Science, 312, 1612–13.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×