Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-02T08:57:58.755Z Has data issue: false hasContentIssue false

Chapter 5 - Voltage-gated ion channels

Published online by Cambridge University Press:  05 June 2012

Richard D. Keynes
Affiliation:
University of Cambridge
David J. Aidley
Affiliation:
University of East Anglia
Christopher L.-H. Huang
Affiliation:
University of Cambridge
Get access

Summary

Both voltage-gated and ligand-gated ion channels are large protein molecules, as is the sodium pump Na,K-ATPase. In recent years the primary structure of a number of them has been determined, and by combining this information with the biophysical evidence, major advances have been made in our understanding of how they work at the molecular and submolecular levels.

cDNA sequencing studies

A protein consists of a long chain built up of 20 different amino acids (Table 5.1), folded on itself in a rather complicated way. Its properties depend critically on the arrangement of the folds, which is determined by the exact order in which its constituent amino acids are strung together. This in turn is specified by the sequence of the nucleotide bases that make up the DNA molecules which constitute the genetic material of the cell. There are only four different bases, and each of the 20 amino acids corresponds according to a universally obeyed triplet code to a specific group of three of them. The information embodied in the base sequence of a DNA molecule is transcribed on to an intermediary messenger RNA, and is then translated during the synthesis of the protein to yield the correct sequence of amino acids. Rapid sequencing methods for nucleotides were perfected by Sanger and his colleagues, and modern recombinant DNA technology makes possible the cloning of DNA so that the quantity required for the determination can be prepared from a single gene.

Type
Chapter
Information
Nerve and Muscle , pp. 49 - 62
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×