Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-14T18:41:21.080Z Has data issue: false hasContentIssue false

5 - Properties of IF logic

Published online by Cambridge University Press:  01 June 2011

Allen L. Mann
Affiliation:
University of Tampere, Finland
Gabriel Sandu
Affiliation:
University of Helsinki
Merlijn Sevenster
Affiliation:
Philips Research Laboratories, The Netherlands
Get access

Summary

Many basic properties of IF logic were observed by Hodges while he was developing trump semantics [32, 33]. Subsequently, Caicedo and Krynicki attempted to prove a prenex normal form theorem for IF logic [10], but they failed to properly account for the subtleties of signaling. Later Caicedo, Dechesne, and Janssen succeeded in proving many logical equivalences for IF logic, including a prenex normal form theorem [9]. Additional equivalences and entailments first appeared in [39] and were later published in [40]. Basic model-theoretic properties of IF logic have been investigated in [24, 49–51].

Basic properties

A team of assignments encodes a player's knowledge about the current assignment. When we write, ℕ, X+ ϕ we are asserting that Eloise has a winning strategy for the semantic game for ϕ as long as she knows the initial assignment belongs to X. Now imagine that, at the beginning of the game, an oracle informs Eloise that the initial assignment belongs to a subteam YX. Then Eloise gains an advantage because she has fewer possibilities to consider. Thus smaller teams represent more information about the current assignment. At the extremes, a singleton team represents having perfect information about the current assignment, while the team of all possible assignments with a given domain represents having no information about the current assignment.

The following propositions record two important properties of assignment teams: (1) every subteam of a winning team of assignments is winning, and every subteam of a losing team of assignments is losing; (2) the empty team of assignments is both winning and losing for every IF formula, and it is the only team of assignments that can be both winning and losing for the same formula.

Type
Chapter
Information
Independence-Friendly Logic
A Game-Theoretic Approach
, pp. 87 - 133
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×