Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-01T18:11:22.405Z Has data issue: false hasContentIssue false

4 - Hematopoietic stem cells and their niches

from Part I - Introduction to stem cells and regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Geeta Mehta
Affiliation:
University of Michigan
Yusuke Shiozawa
Affiliation:
University of Michigan
Russell Taichman
Affiliation:
University of Michigan
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Hematopoietic stem cells (HSCs) are a type of adult stem cell that give rise to all cells in the blood lineage. In adult mammals, they reside in the spongy bone marrow of the long bones. HSCs are not only the most widely studied stem cells, but also the most common cells used in transplantation in the clinic. Since blood is the most commonly transplanted tissue in clinical settings, this makes HSCs an important candidate in establishing better treatments for hematological malignancies.

They have been widely studied for the last 40 years, and the literature on HSCs covers a diverse range of topics. Since it is impossible to cover all aspects of HSC biology in one chapter, here we will focus briefly on the origins of HSCs and their microenvironments, or niches, the isolation methods of HSCs, the standard assays for detection of HSC activity, in-vitro expansion of HSCs, their clinical relevance, and the potential role of the HSC niches in cancer metastases.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Giebel, B., Zhang, T., Beckmann, J. et al. 2006. Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division. Blood, 107(5), 2146–52.CrossRefGoogle ScholarPubMed
Kiel, M. J., He, S., Ashkenazi, R. et al. 2007. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature, 449(7159), 238–42.CrossRefGoogle ScholarPubMed
Punzel, M., Liu, D., Zhang, T. et al. 2003. The symmetry of initial divisions of human hematopoietic progenitors is altered only by the cellular microenvironment. Exp. Hematol., 31(4), 339–47.CrossRefGoogle ScholarPubMed
Ema, H., Takano, H., Sudo, K. and Nakauchi, H. 2000. In vitro self-renewal division of hematopoietic stem cells. J. Exp. Med., 192(9), 1281–8.CrossRefGoogle ScholarPubMed
Morrison, S. J. and Weissman, I. L. 1995. Heterogeneity of hematopoietic stem cells: implications for clinical applications. Proc. Assoc. Am. Physicians, 107(2), 187–94.Google ScholarPubMed
Sieburg, H. B., Cho, R. H., Dykstra, B. et al. 2006. The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood, 107(6), 2311–16.CrossRefGoogle ScholarPubMed
Muller-Sieburg, C. E., Cho, R. H., Karlsson, L., Huang, J. F. and Sieburg, H. B. 2004. Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood, 103(11), 4111–18.CrossRefGoogle ScholarPubMed
Muller-Sieburg, C. E., Cho, R. H., Thoman, M., Adkins, B. and Sieburg, H. B. 2002. Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood, 100(4), 1302–9.Google ScholarPubMed
Dykstra, B., Kent, D., Bowie, M. et al. 2007. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell, 1(2), 218–29.CrossRefGoogle ScholarPubMed
Challen, G. A., Boles, N. C., Chambers, S. M. and Goodell, M. A. 2010. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1. Cell Stem Cell, 6(3), 265–78.CrossRefGoogle ScholarPubMed
Moore, M. A. S. 2004. Ontogeny of the hematopoietic system. In Lanza, R. P., Weissman, I., Thomas, J. et al., editors. Handbook of Stem Cells. Boston, MA: Elsevier Academic.Google Scholar
Jaffredo, T., Nottingham, W., Liddiard, K. et al. 2005. From hemangioblast to hematopoietic stem cell: an endothelial connection?Exp. Hematol., 33(9), 1029–40.CrossRefGoogle Scholar
Kennedy, M., Firpo, M., Choi, K. et al. 1997. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature, 386(6624), 488–93.CrossRefGoogle ScholarPubMed
Muller, A. M., Medvinsky, A., Strouboulis, J., Grosveld, F. and Dzierzak, E. 1994. Development of hematopoietic stem cell activity in the mouse embryo. Immunity, 1(4), 291–301.CrossRefGoogle ScholarPubMed
Cumano, A., Ferraz, J. C., Klaine, M., Di Santo, J. P. and Godin, I. 2001. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity, 15(3), 477–85.CrossRefGoogle Scholar
Yoder, M. C., Hiatt, K., Dutt, P. et al. 1997. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity, 7(3), 335–44.CrossRefGoogle ScholarPubMed
Palis, J., Robertson, S., Kennedy, M., Wall, C. and Keller, G. 1999. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development, 126(22), 5073–84.Google ScholarPubMed
Wolf, N. S., Bertoncello, I., Jiang, D. and Priestley, G. 1995. Developmental hematopoiesis from prenatal to young-adult life in the mouse model. Exp. Hematol., 23(2), 142–6.Google ScholarPubMed
Harrison, D. E., Zhong, R. K., Jordan, C. T., Lemischka, I. R. and Astle, C. M. 1997. Relative to adult marrow, fetal liver repopulates nearly five times more effectively long-term than short-term. Exp. Hematol., 25(4), 293–7.Google ScholarPubMed
Kurata, H., Mancini, G. C., Alespeiti, G., Migliaccio, A. R. and Migliaccio, G. 1998. Stem cell factor induces proliferation and differentiation of fetal progenitor cells in the mouse. Br. J. Haematol., 101(4), 676–87.CrossRefGoogle ScholarPubMed
Grossi, C. E., Velardi, A. and Cooper, M. D. 1985. Postnatal liver hemopoiesis in mice: generation of pre-B cells, granulocytes, and erythrocytes in discrete colonies. J. Immunol., 135(4), 2303–11.Google ScholarPubMed
de Bruijn, M. F., Speck, N. A., Peeters, M. C. and Dzierzak, E. 2000. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J., 19(11), 2465–74.CrossRefGoogle ScholarPubMed
Medvinsky, A. L. and Dzierzak, E. A. 1998. Development of the definitive hematopoietic hierarchy in the mouse. Dev. Comp. Immunol., 22(3), 289–301.CrossRefGoogle ScholarPubMed
Tavian, M. and Peault, B. 2005. Embryonic development of the human hematopoietic system. Int. J. Dev. Biol., 49(2–3), 243–50.CrossRefGoogle ScholarPubMed
Marshall, C. 2006. Intraembryonic development of hematopoietic stem cells during human ontogeny: expression analysis. In Godin, I. and Cumano, A., editors. Hematopoietic Stem Cell Development. Georgetown, TX; New York: Landes Bioscience/Eurekah.com; Kluwer Academic/Plenum Publishers, pp. 142–53.CrossRefGoogle Scholar
Tavian, M., Biasch, K., Sinka, L., Vallet, J. and Peault, B. 2010. Embryonic origin of human hematopoiesis. Int. J. Dev. Biol., 54(6–7), 1061–5.CrossRefGoogle ScholarPubMed
Robin, C., Ottersbach, K., de Bruijn, M. et al. 2003. Developmental origins of hematopoietic stem cells. Oncol. Res. 13(6–10), 315–21.CrossRefGoogle ScholarPubMed
Morrison, S. J., Wright, D. E. and Weissman, I. L. 1997. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc. Nat. Acad. Sci. USA, 94(5), 1908–13.CrossRefGoogle ScholarPubMed
Taichman, R. S. 2005. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood, 105(7), 2631–9.CrossRefGoogle ScholarPubMed
Han, J., Koh, Y. J., Moon, H. R. et al. 2010. Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood, 115(5), 957–64.CrossRefGoogle ScholarPubMed
Cardier, J. E. and Barbera-Guillem, E. 1997. Extramedullary hematopoiesis in the adult mouse liver is associated with specific hepatic sinusoidal endothelial cells. Hepatology, 26(1), 165–75.CrossRefGoogle ScholarPubMed
McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D. et al. 2002. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc. Nat. Acad. Sci. USA, 99(3), 1341–6.CrossRefGoogle ScholarPubMed
Kawada, H. and Ogawa, M. 2001. Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle. Blood, 98(7), 2008–13.CrossRefGoogle ScholarPubMed
Massberg, S., Schaerli, P., Knezevic-Maramica, I. et al. 2007. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell, 131(5), 994–1008.CrossRefGoogle ScholarPubMed
Adams, G. B. and Scadden, D. T. 2006. The hematopoietic stem cell in its place. Nature Immunol., 7(4), 333–7.CrossRefGoogle ScholarPubMed
Jang, J. H. and Schaffer, D. V. 2006. Microarraying the cellular microenvironment. Molec. Syst. Biol., 2, 39.CrossRefGoogle ScholarPubMed
Yin, T. and Li, L. 2006. The stem cell niches in bone. J. Clin. Invest., 116(5), 1195–201.CrossRefGoogle ScholarPubMed
Song, J., Kiel, M. J., Wang, Z. et al. 2010. An in vivo model to study and manipulate the hematopoietic stem cell niche. Blood, 115(13), 2592–600.CrossRefGoogle Scholar
Purton, L. E. and Scadden, D. T. 2008. The Hematopoietic Stem Cell Niche. Cambridge, MA: StemBook.Google ScholarPubMed
Mendez-Ferrer, S., Michurina, T. V., Ferraro, F. et al. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308), 829–34.CrossRefGoogle Scholar
Li, Z. and Li, L. 2006. Understanding hematopoietic stem-cell microenvironments. Trends Biochem. Sci., 31(10), 589–95.CrossRefGoogle ScholarPubMed
Kirouac, D. C. and Zandstra, P. W. 2006. Understanding cellular networks to improve hematopoietic stem cell expansion cultures. Curr. Opin. Biotechnol., 17(5), 538–47.CrossRefGoogle ScholarPubMed
Fliedner, T. M., Graessle, D., Paulsen, C. and Reimers, K. 2002. Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure. Cancer Biother. Radiopharm., 17(4), 405–26.CrossRefGoogle ScholarPubMed
Levesque, J. P., Winkler, I. G., Hendy, J. et al. 2007. Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells, 25(8), 1954–65.CrossRefGoogle ScholarPubMed
Eliasson, P. and Jonsson, J. I. 2010. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J. Cell Physiol., 222(1), 17–22.CrossRefGoogle ScholarPubMed
Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R. and Down, J. D. 2007. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Nat. Acad. Sci. USA, 104(13), 5431–6.CrossRefGoogle ScholarPubMed
Winkler, I. G., Barbier, V., Wadley, R. et al. 2010. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood, 116(3), 375–85.CrossRefGoogle ScholarPubMed
Ehninger, A. and Trumpp, A. 2011. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J. Exp. Med., 208(3), 421–8.CrossRefGoogle ScholarPubMed
Wilson, A. and Trumpp, A. 2006. Bone-marrow haematopoietic-stem-cell niches. Nature Rev. Immunol., 6(2), 93–106.CrossRefGoogle ScholarPubMed
Scadden, D. T. 2006. The stem-cell niche as an entity of action. Nature, 441(7097), 1075–9.CrossRefGoogle Scholar
Kopp, H. G., Avecilla, S. T., Hooper, A. T. and Rafii, S. 2005. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda), 20, 349–56.Google ScholarPubMed
Rafii, S., Mohle, R., Shapiro, F., Frey, B. M. and Moore, M. A. 1997. Regulation of hematopoiesis by microvascular endothelium. Leuk. Lymphoma, 27(5–6), 375–86.CrossRefGoogle ScholarPubMed
Feugier, P., Jo, D. Y., Shieh, J. H. et al. 2002. Ex vivo expansion of stem and progenitor cells in co-culture of mobilized peripheral blood CD34+ cells on human endothelium transfected with adenovectors expressing thrombopoietin, c-kit ligand, and Flt-3 ligand. J. Hematother. Stem Cell Res., 11(1), 127–38.CrossRefGoogle Scholar
Rookmaaker, M. B., Verhaar, M. C., Loomans, C. J. et al. 2005. CD34+ cells home, proliferate, and participate in capillary formation, and in combination with CD34− cells enhance tube formation in a 3-dimensional matrix. Arterioscler. Thromb. Vasc. Biol., 25(9), 1843–50.CrossRefGoogle Scholar
Braccini, A., Wendt, D., Jaquiery, C. et al. 2005. Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts. Stem Cells, 23(8), 1066–72.CrossRefGoogle ScholarPubMed
Takagi, M. 2005. Cell processing engineering for ex-vivo expansion of hematopoietic cells. J. Biosci. Bioeng., 99(3), 189–96.CrossRefGoogle ScholarPubMed
Kim, H. S., Lim, J. B., Min, Y. H. et al. 2003. Ex vivo expansion of human umbilical cord blood CD34+ cells in a collagen bead-containing 3-dimensional culture system. Int. J. Hematol., 78(2), 126–32.CrossRefGoogle Scholar
Li, Y., Ma, T., Kniss, D. A., Yang, S. T. and Lasky, L. C. 2001. Human cord cell hematopoiesis in three-dimensional nonwoven fibrous matrices: in vitro simulation of the marrow microenvironment. J. Hematother. Stem Cell Res., 10(3), 355–68.CrossRefGoogle ScholarPubMed
Banu, N., Rosenzweig, M., Kim, H., Bagley, J. and Pykett, M. 2001. Cytokine-augmented culture of haematopoietic progenitor cells in a novel three-dimensional cell growth matrix. Cytokine, 13(6), 349–58.CrossRefGoogle Scholar
Tun, T., Miyoshi, H., Ema, H., Nakauchi, H. and Ohshima, N. 2000. New type of matrix support for bone marrow cell cultures: in vitro culture and in vivo transplantation experiments. Asaio J., 46(5), 522–6.CrossRefGoogle ScholarPubMed
Bagley, J., Rosenzweig, M., Marks, D. F. and Pykett, M. J. 1999. Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device. Exp. Hematol., 27(3), 496–504.CrossRefGoogle Scholar
Rosenzweig, M., Pykett, M., Marks, D. F. and Johnson, R. P. 1997. Enhanced maintenance and retroviral transduction of primitive hematopoietic progenitor cells using a novel three-dimensional culture system. Gene Ther., 4(9), 928–36.CrossRefGoogle ScholarPubMed
Wang, T. Y., Brennan, J. K. and Wu, J. H. 1995. Multilineal hematopoiesis in a three-dimensional murine long-term bone marrow culture. Exp. Hematol., 23(1), 26–32.Google Scholar
Bagley, J., Rosenzweig, M., Marks, D. F. and Pykett, M. J. 1999. Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device. Exp. Hematol., 27(3), 496–504.CrossRefGoogle Scholar
de Barros, A. P., Takiya, C. M., Garzoni, L. R. et al. 2010. Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model. PLoS One, 5(2), e9093.CrossRefGoogle ScholarPubMed
Konstantinov, S. M., Mindova, M. M., Gospodinov, P. T. and Genova, P. I. 2004. Three-dimensional bioreactor cultures: a useful dynamic model for the study of cellular interactions. Ann. NY Acad. Sci., 1030, 103–15.CrossRefGoogle Scholar
Rossi, M. I., Barros, A. P., Baptista, L. S. et al. 2005. Multicellular spheroids of bone marrow stromal cells: a three-dimensional in vitro culture system for the study of hematopoietic cell migration. Braz. J. Med. Biol. Res., 38(10), 1455–62.CrossRefGoogle Scholar
Tun, T., Miyoshi, H., Ema, H., Nakauchi, H. and Ohshima, N. 2000. New type of matrix support for bone marrow cell cultures: in vitro culture and in vivo transplantation experiments. Asaio J., 46(5), 522–6.CrossRefGoogle ScholarPubMed
Wang, T. Y., Brennan, J. K. and Wu, J. H. 1995. Multilineal hematopoiesis in a three-dimensional murine long-term bone marrow culture. Exp. Hematol., 23(1), 26–32.Google Scholar
Campbell, A. D. and Wicha, M. S. 1988. Extracellular matrix and the hematopoietic microenvironment. J. Lab. Clin. Med., 112(2), 140–6.Google ScholarPubMed
Dao, M. A., Hashino, K., Kato, I. and Nolta, J. A. 1998. Adhesion to fibronectin maintains regenerative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells. Blood, 92(12), 4612–21.Google ScholarPubMed
Campbell, A. D., Long, M. W. and Wicha, M. S. 1987. Haemonectin, a bone marrow adhesion protein specific for cells of granulocyte lineage. Nature, 329(6141), 744–6.CrossRefGoogle ScholarPubMed
Weinstein, R., Riordan, M. A., Wenc, K. et al. 1989. Dual role of fibronectin in hematopoietic differentiation. Blood, 73(1), 111–16.Google ScholarPubMed
Greenberger, J. S. 1991. The hematopoietic microenvironment. Crit. Rev. Oncol. Hematol., 11(1), 65–84.CrossRefGoogle ScholarPubMed
Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R. and Down, J. D. 2007. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Nat. Acad. Sci. USA, 104(13), 5431–6.CrossRefGoogle ScholarPubMed
Sipkins, D. A., Wei, X., Wu, J. W. et al. 2005. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 435(7044), 969–73.CrossRefGoogle ScholarPubMed
Taichman, R. S. and Emerson, S. G. 1994. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J. Exp. Med., 179(5), 1677–82.CrossRefGoogle ScholarPubMed
Taichman, R. S., Reilly, M. J., Emerson, S. G. 1996. Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood, 87(2), 518–24.Google ScholarPubMed
Taichman, R. S. and Emerson, S. G. 1998. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells, 16(1), 7–15.CrossRefGoogle ScholarPubMed
Calvi, L. M., Adams, G. B., Weibrecht, K. W. et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425(6960), 841–6.CrossRefGoogle ScholarPubMed
Zhang, J., Niu, C., Ye, L. et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425(6960), 836–41.CrossRefGoogle ScholarPubMed
Visnjic, D., Kalajzic, Z., Rowe, D. W. et al. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood, 103(9), 3258–64.CrossRefGoogle ScholarPubMed
Omatsu, Y., Sugiyama, T., Kohara, H. et al. 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity, 33(3), 387–99.CrossRefGoogle ScholarPubMed
Sugiyama, T., Kohara, H., Noda, M. and Nagasawa, T. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25(6), 977–88.CrossRefGoogle ScholarPubMed
Sacchetti, B., Funari, A., Michienzi, S. et al. 2007. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131(2), 324–36.CrossRefGoogle ScholarPubMed
Adams, G. B., Chabner, K. T., Alley, I. R. et al. 2006. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature, 439(7076), 599–603.CrossRefGoogle ScholarPubMed
Jung, Y., Wang, J., Havens, A. et al. 2005. Cell-to-cell contact is critical for the survival of hematopoietic progenitor cells on osteoblasts. Cytokine, 32(3–4), 155–62.CrossRefGoogle ScholarPubMed
Seita, J. and Weissman, I. L. 2010. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med., 2(6), 640–53.CrossRefGoogle ScholarPubMed
Ito, K., Hirao, A., Arai, F. et al. 2004. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature, 431(7011), 997–1002.CrossRefGoogle ScholarPubMed
Arai, F., Hirao, A., Ohmura, M. et al. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 118(2), 149–61.CrossRefGoogle ScholarPubMed
Morrison, S. J. and Spradling, A. C. 2008. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598–611.CrossRefGoogle ScholarPubMed
Wilson, A. and Trumpp, A. 2006. Bone-marrow haematopoietic-stem-cell niches. Nature Rev. Immunol., 6(2), 93–106.CrossRefGoogle ScholarPubMed
Yin, T. and Li, L. 2006. The stem cell niches in bone. J. Clin. Invest., 116(5), 1195–201.CrossRefGoogle ScholarPubMed
Broxmeyer, H. E. 2008. Cord Blood Hematopoietic Stem Cell Transplantation. Cambridge, MA: StemBook.Google ScholarPubMed
Hofmeister, C. C., Zhang, J., Knight, K. L., Le, P. and Stiff, P. J. 2007. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant. 39(1), 11–23.CrossRefGoogle ScholarPubMed
Hoggatt, J. and Pelus, L. M. 2011. Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment. Stem Cell Res. Ther., 2(2), 13.CrossRefGoogle ScholarPubMed
Kessans, M. R., Gatesman, M. L. and Kockler, D. R. 2010. Plerixafor: a peripheral blood stem cell mobilizer. Pharmacotherapy, 30(5), 485–92.CrossRefGoogle ScholarPubMed
Devine, H., Tierney, D. K., Schmit-Pokorny, K. and McDermott, K. 2010. Mobilization of hematopoietic stem cells for use in autologous transplantation. Clin. J. Oncol. Nurs., 14(2), 212–22.CrossRefGoogle ScholarPubMed
Okada, S., Nakauchi, H., Nagayoshi, K. et al. 1992. In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood, 80(12), 3044–50.Google ScholarPubMed
Osawa, M., Nakamura, K., Nishi, N. et al. 1996. In vivo self-renewal of c-Kit+ Sca-1+ Lin(low/−) hemopoietic stem cells. J. Immunol., 156(9), 3207–14.Google ScholarPubMed
Morrison, S. J., Lagasse, E. and Weissman, I. L. 1994. Demonstration that Thy(lo) subsets of mouse bone marrow that express high levels of lineage markers are not significant hematopoietic progenitors. Blood, 83(12), 3480–90.Google Scholar
Osawa, M., Hanada, K., Hamada, H. and Nakauchi, H. 1996. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 273(5272), 242–5.CrossRefGoogle ScholarPubMed
Christensen, J. L. and Weissman, I. L. 2001. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Nat. Acad. Sci. USA, 98(25), 14541–6.CrossRefGoogle ScholarPubMed
Goodell, M. A., Rosenzweig, M., Kim, H. et al. 1997. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Med., 3(12), 1337–45.CrossRefGoogle ScholarPubMed
Balazs, A. B., Fabian, A. J., Esmon, C. T. and Mulligan, R. C. 2006. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood, 107(6), 2317–21.CrossRefGoogle ScholarPubMed
Chen, C. Z., Li, M., de Graaf, D. et al. 2002. Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells. Proc. Nat. Acad. Sci. USA, 99(24), 15468–73.CrossRefGoogle ScholarPubMed
Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. and Morrison, S. J. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121(7), 1109–21.CrossRefGoogle ScholarPubMed
Chen, J., Ellison, F. M., Keyvanfar, K. et al. 2008. Enrichment of hematopoietic stem cells with SLAM and LSK markers for the detection of hematopoietic stem cell function in normal and Trp53 null mice. Exp. Hematol., 36(10), 1236–43.CrossRefGoogle ScholarPubMed
Jung, Y., Wang, J., Song, J. et al. 2007. Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood, 110(1), 82–90.CrossRefGoogle ScholarPubMed
Hao, Q. L., Shah, A. J., Thiemann, F. T., Smogorzewska, E. M. and Crooks, G. M. 1995. A functional comparison of CD34+CD38− cells in cord blood and bone marrow. Blood, 86(10), 3745–53.Google ScholarPubMed
Mayani, H., Dragowska, W. and Lansdorp, P. M. 1993. Characterization of functionally distinct subpopulations of CD34+ cord blood cells in serum-free long-term cultures supplemented with hematopoietic cytokines. Blood, 82(9), 2664–72.Google ScholarPubMed
Baum, C. M., Weissman, I. L., Tsukamoto, A. S., Buckle, A. M. and Peault, B. 1992. Isolation of a candidate human hematopoietic stem-cell population. Proc. Nat. Acad. Sci. USA, 89(7), 2804–8.CrossRefGoogle ScholarPubMed
Craig, W., Kay, R., Cutler, R. L. and Lansdorp, P. M. 1993. Expression of Thy-1 on human hematopoietic progenitor cells. J. Exp. Med., 177(5), 1331–42.CrossRefGoogle ScholarPubMed
Majeti, R., Park, C. Y. and Weissman, I. L. 2007. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell, 1(6), 635–45.CrossRefGoogle ScholarPubMed
Notta, F., Doulatov, S., Laurenti, E. et al. 2011. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science, 333(6039), 218–21.CrossRefGoogle ScholarPubMed
McKenzie, J. L., Takenaka, K., Gan, O. I., Doedens, M. and Dick, J. E. 2007. Low rhodamine 123 retention identifies long-term human hematopoietic stem cells within the Lin-CD34+CD38− population. Blood, 109(2), 543–5.CrossRefGoogle ScholarPubMed
Dexter, T. M., Allen, T. D., and Lajtha, L. G. 1977. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell Physiol., 91(3), 335–44.CrossRefGoogle ScholarPubMed
Coulombel, L., Eaves, A. C. and Eaves, C. J. 1983. Enzymatic treatment of long-term human marrow cultures reveals the preferential location of primitive hemopoietic progenitors in the adherent layer. Blood, 62(2), 291–7.Google ScholarPubMed
Ploemacher, R. E., van der Sluijs, J. P., Voerman, J. S. and Brons, N. H. 1989. An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood, 74(8), 2755–63.Google Scholar
Breems, D. A., Blokland, E. A., Neben, S. and Ploemacher, R. E. 1994. Frequency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia, 8(7), 1095–104.Google ScholarPubMed
Purton, L. E. and Scadden, D. T. 2007. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell, 1(3), 263–70.CrossRefGoogle ScholarPubMed
Matsuzaki, Y., Kinjo, K., Mulligan, R. C. and Okano, H. 2004. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity, 20(1), 87–93.CrossRefGoogle ScholarPubMed
Benveniste, P., Cantin, C., Hyam, D. and Iscove, N. N. 2003. Hematopoietic stem cells engraft in mice with absolute efficiency. Nature Immunol., 4(7), 708–13.CrossRefGoogle ScholarPubMed
Zhang, C. C. and Lodish, H. F. 2005. Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood, 105(11), 4314–20.CrossRefGoogle ScholarPubMed
Sharma, S., Gurudutta, G. U., Satija, N. K. et al. 2006. Stem cell c-KIT and HOXB4 genes: critical roles and mechanisms in self-renewal, proliferation, and differentiation. Stem Cells Dev., 15(6), 755–78.CrossRefGoogle ScholarPubMed
Mikkola, H. K. and Orkin, S. H. 2006. The journey of developing hematopoietic stem cells. Development, 133(19), 3733–44.CrossRefGoogle ScholarPubMed
Kirouac, D. C. and Zandstra, P. W. 2006. Understanding cellular networks to improve hematopoietic stem cell expansion cultures. Curr. Opin. Biotechnol., 17(5), 538–47.CrossRefGoogle ScholarPubMed
Cheung, A. M., Kwong, Y. L., Liang, R. and Leung, A. Y. 2006. Stem cell model of hematopoiesis. Curr. Stem Cell Res. Ther., 1(3), 305–15.CrossRefGoogle ScholarPubMed
Sorrentino, B. P. 2004. Clinical strategies for expansion of haematopoietic stem cells. Nature Rev. Immunol., 4(11), 878–88.CrossRefGoogle ScholarPubMed
Bellantuono, I. 2004. Haemopoietic stem cells. Int. J. Biochem. Cell. Biol., 36(4), 607–20.CrossRefGoogle ScholarPubMed
Sauvageau, G. and Iscove, N. N. and Humphries, R. K. 2004. In vitro and in vivo expansion of hematopoietic stem cells. Oncogene, 23(43), 7223–32.CrossRefGoogle ScholarPubMed
Uher, F., Hajdu, M. and Vas, V. 2003. Self-renewal and differentiation of hematopoietic stem cells: a molecular approach. Acta Microbiol. Immunol. Hung., 50(1), 3–21.CrossRefGoogle ScholarPubMed
Madlambayan, G. J., Rogers, I., Casper, R. F. and Zandstra, P. W. 2001. Controlling culture dynamics for the expansion of hematopoietic stem cells. J. Hematother. Stem Cell Res., 10(4), 481–92.CrossRefGoogle ScholarPubMed
Dahlberg, A., Delaney, C. and Bernstein, I. D. 2011. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood, 117(23), 6083–90.CrossRefGoogle ScholarPubMed
Huang, G. P., Pan, Z. J., Jia, B. B. et al. 2007. Ex vivo expansion and transplantation of hematopoietic stem/progenitor cells supported by mesenchymal stem cells from human umbilical cord blood. Cell Transplant., 16(6), 579–85.CrossRefGoogle ScholarPubMed
Rose-John, S. 2006. Designer cytokines for human haematopoietic progenitor cell expansion: impact for tissue regeneration. Handb. Exp. Pharmacol. 174, 229–47.Google Scholar
Dolznig, H., Kolbus, A., Leberbauer, C. et al. 2005. Expansion and differentiation of immature mouse and human hematopoietic progenitors. Methods Molec. Med., 105, 323–44.Google ScholarPubMed
Kelly, S. S., Sola, C. B., de Lima, M. and Shpall, E. 2009. Ex vivo expansion of cord blood. Bone Marrow Transplant., 44(10), 673–81.CrossRefGoogle ScholarPubMed
Robb, L. 2007. Cytokine receptors and hematopoietic differentiation. Oncogene, 26(47), 6715–23.CrossRefGoogle ScholarPubMed
Cabrita, G. J., Ferreira, B. S., da Silva, C. L. et al. 2003. Hematopoietic stem cells: from the bone to the bioreactor. Trends Biotechnol., 21(5), 233–40.CrossRefGoogle ScholarPubMed
Koller, M. R., Emerson, S. G. and Palsson, B. O. 1993. Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood, 82(2), 378–84.Google ScholarPubMed
Palsson, B. O., Paek, S. H., Schwartz, R. M. et al. 1993. Expansion of human bone marrow progenitor cells in a high cell density continuous perfusion system. Biotechnology (NY), 11(3), 368–72.CrossRefGoogle Scholar
Didwania, M., Didwania, A., Mehta, G. et al. 2011. Artificial hematopoietic stem cell niche: bioscaffolds to microfluidics to mathematical simulations. Curr. Top. Med. Chem., 11(13), 1599–605.Google ScholarPubMed
Mehta, G. 2008. Microenvironmental Control in Microfluidic Bioreactors for Long Term Culture of Bone Marrow Cells. Ann Arbor, MI: University of Michigan.Google Scholar
Mehta, G., Torisawa, Y. and Takayama, S. 2008. Engineering cellular microenvironments with microfluidics. In Gomez, F. A., editor. Biological Applications of Microfluidics. Hoboken, NJ: John Wiley and Sons, pp. 87–114.Google Scholar
Shim, J., Bersano-Begey, T. F., Zhu, X. et al. 2003. Micro- and nanotechnologies for studying cellular function. Curr. Top. Med. Chem., 3(6), 687–703.CrossRefGoogle ScholarPubMed
Walker, G. M., Zeringue, H. C. and Beebe, D. J. 2004. Microenvironment design considerations for cellular scale studies. Lab. Chip, 4(2), 91–7.CrossRefGoogle ScholarPubMed
Meissner, P., Schroder, B., Herfurth, C. and Biselli, M. 1999. Development of a fixed bed bioreactor for the expansion of human hematopoietic progenitor cells. Cytotechnology, 30(1–3), 227–34.CrossRefGoogle ScholarPubMed
Sandstrom, C. E., Bender, J. G., Miller, W. M. and Papoutsakis, E. T. 1996. Development of novel perfusion chamber to retain nonadherent cells and its use for comparison of human “mobilized” peripheral blood mononuclear cell cultures with and without irradiated bone marrow stroma. Biotechnol Bioeng., 50(5), 493–504.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Zandstra, P. W., Eaves, C. J. and Piret, J. M. 1994. Expansion of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells. Biotechnology (NY), 12(9), 909–14.Google ScholarPubMed
Cross, M., Alt, R. and Niederwieser, D. 2008. The case for a metabolic stem cell niche. Cells Tissues Organs, 188(1–2), 150–9.CrossRefGoogle ScholarPubMed
de la Morena, M. T. and Gatti, R. A. 2010. A history of bone marrow transplantation. Immunol. Allergy Clin. North Am., 30(1), 1–15.CrossRefGoogle ScholarPubMed
Pulsipher, M. A. and Woolfrey, A. 2001. Nonmyeloablative transplantation in children. Current status and future prospects. Hematol. Oncol. Clin. North Am., 15(5), 809–34 and vii–viii.CrossRefGoogle ScholarPubMed
Mehta, P., Locatelli, F., Stary, J. and Smith, F. O. 2010. Bone marrow transplantation for inherited bone marrow failure syndromes. Pediatr. Clin. North Am., 57(1), 147–70.CrossRefGoogle ScholarPubMed
Boelens, J. J., Prasad, V. K., Tolar, J., Wynn, R. F. and Peters, C. 2010. Current international perspectives on hematopoietic stem cell transplantation for inherited metabolic disorders. Pediatr. Clin. North Am., 57(1), 123–45.CrossRefGoogle ScholarPubMed
Eide, M. B., Lauritzsen, G. F., Kvalheim, G. et al. 2011. High dose chemotherapy with autologous stem cell support for patients with histologically transformed B-cell non-Hodgkin lymphomas. A Norwegian multi-centre phase II study. Br. J. Haematol., 152(5), 600–10.CrossRefGoogle ScholarPubMed
Weissman, I. L. and Shizuru, J. A. 2008. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood, 112(9), 3543–53.CrossRefGoogle ScholarPubMed
Orlovskaya, I., Schraufstatter, I., Loring, J. and Khaldoyanidi, S. 2008. Hematopoietic differentiation of embryonic stem cells. Methods, 45(2), 159–67.CrossRefGoogle ScholarPubMed
Sakamoto, H., Tsuji-Tamura, K. and Ogawa, M. 2010. Hematopoiesis from pluripotent stem cell lines. Int. J. Hematol., 91(3), 384–91.CrossRefGoogle ScholarPubMed
Huber, T. L. 2010. Dissecting hematopoietic differentiation using the embryonic stem cell differentiation model. Int. J. Dev. Biol., 54(6–7), 991–1002.CrossRefGoogle ScholarPubMed
Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. and Speck, N. A. 2009. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature, 457(7231), 887–91.CrossRefGoogle Scholar
Bendre, M., Gaddy, D., Nicholas, R. W. and Suva, L. J. 2003. Breast cancer metastasis to bone: it is not all about PTHrP. Clin. Orthop. Relat. Res., 415(Suppl.), S39–S45.CrossRefGoogle Scholar
Sweeney, K. J., Boland, P. J. and King, T. 2007. The management of asymptomatic skeletal breast cancer: a paradigm shift. Ann. Surg. Oncol., 14(9), 2430–1.CrossRefGoogle ScholarPubMed
Coleman, R. E. 2006. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res., 12(20, Part 2), 6243s–9s.CrossRefGoogle ScholarPubMed
Sun, Y. X., Wang, J., Shelburne, C. E. et al. 2003. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J. Cell Biochem., 89(3), 462–73.CrossRefGoogle ScholarPubMed
Sun, Y. X., Schneider, A., Jung, Y. et al. 2005. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J. Bone Miner. Res., 20(2), 318–29.CrossRefGoogle ScholarPubMed
Shiozawa, Y., Havens, A. M., Pienta, K. J. and Taichman, R. S. 2008. The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia, 22(5), 941–50.CrossRefGoogle ScholarPubMed
Mishra, A., Shiozawa, Y., Pienta, K. J. and Taichman, R. S. 2011. Homing of cancer cells to the bone. Cancer Microenviron., 4(3), 221–235.CrossRefGoogle ScholarPubMed
Shiozawa, Y., Pienta, K. J. and Taichman, R. S. 2011. Hematopoietic stem cell niche is a potential therapeutic target for bone metastatic tumors. Clin. Cancer Res., 17(17), 5553–8.CrossRefGoogle ScholarPubMed
Alix-Panabieres, C., Riethdorf, S. and Pantel, K. 2008. Circulating tumor cells and bone marrow micrometastasis. Clin. Cancer Res., 14(16), 5013–21.CrossRefGoogle ScholarPubMed
Morrissey, C. and Vessella, R. L. 2007. The role of tumor microenvironment in prostate cancer bone metastasis. J. Cell Biochem., 101(4), 873–86.CrossRefGoogle ScholarPubMed
Wikman, H., Vessella, R. and Pantel, K. 2008. Cancer micrometastasis and tumour dormancy. Apmis, 116(7–8), 754–70.CrossRefGoogle ScholarPubMed
Reddi, A. H., Roodman, D., Freeman, C. and Mohla, S. 2003. Mechanisms of tumor metastasis to the bone: challenges and opportunities. J. Bone Miner. Res., 18(2), 190–4.CrossRefGoogle ScholarPubMed
Psaila, B., Kaplan, R. N., Port, E. R. and Lyden, D. 2006. Priming the “soil” for breast cancer metastasis: the pre-metastatic niche. Breast Dis., 26, 65–74.CrossRefGoogle ScholarPubMed
Keller, E. T., Zhang, J., Cooper, C. R. et al. 2001. Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastasis Rev., 20(3–4), 333–49.CrossRefGoogle Scholar
Shiozawa, Y., Pedersen, E. A., Havens, A. M. et al. 2011. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest., 121(4), 1298–312.CrossRefGoogle ScholarPubMed
Jung, Y., Song, J., Shiozawa, Y. et al. 2008. Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells, 26(8), 2042–51.CrossRefGoogle ScholarPubMed
Huang, X., Cho, S. and Spangrude, G. J. 2007. Hematopoietic stem cells: generation and self-renewal. Cell Death Differ., 14(11), 1851–9.CrossRefGoogle ScholarPubMed
Larsson, J. and Karlsson, S. 2005. The role of Smad signaling in hematopoiesis. Oncogene, 24(37), 5676–92.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×