Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-31T23:58:34.107Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 January 2014

Omar El-Fallah
Affiliation:
Université Mohammed V-Agdal, Rabat, Morocco
Karim Kellay
Affiliation:
Université de Bordeaux
Javad Mashreghi
Affiliation:
Université Laval, Québec
Thomas Ransford
Affiliation:
Université Laval, Québec
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Adams, D. R., and Hedberg, L. I. 1996. Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften, vol. 314. Berlin: Springer-Verlag.
[2] Agler, J. 1988. Some interpolation theorems of Nevanlinna-Pick type. Unpublished manuscript.
[3] Agler, J. 1990. A disconjugacy theorem for Toeplitz operators. Amer. J. Math., 112(1), 1–14.Google Scholar
[4] Agler, J., and McCarthy, J. E. 2002. Pick Interpolation and Hilbert Function Spaces. Graduate Studies in Mathematics, vol. 44. Providence, RI: American Mathematical Society.
[5] Ahlfors, L. V. 1973. Conformai Invariants: Topics in Geometric Function Theory. McGraw-Hill Series in Higher Mathematics. New York: McGraw-Hill.
[6] Aikawa, H., and Essen, M. 1996. Potential Theory—Selected Topics. Lecture Notes in Mathematics, vol. 1633. Berlin: Springer-Verlag.
[7] Aleman, A. 1993. The multiplication operator on Hilbert spaces of analytic functions. Habilitationsschrift, Fern Universität, Hagen.
[8] Arazy, J., and Fisher, S. D. 1985. The uniqueness of the Dirichlet space among Mobius-invariant Hilbert spaces. Illinois J. Math., 29(3), 449–462.Google Scholar
[9] Arcozzi, N., Rochberg, R., and Sawyer, E. T. 2002. Carleson measures for analytic Besov spaces. Rev. Mat. Iberoamericana, 18(2), 443–510.Google Scholar
[10] Arcozzi, N., Rochberg, R., and Sawyer, E. T. 2008. Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls. Adv. Math., 218(4), 1107–1180.Google Scholar
[11] Arcozzi, N., Rochberg, R., Sawyer, E. T., and Wick, B. D. 2011. The Dirichlet space: a survey. New York J. Math., 17A, 45–86.Google Scholar
[12] Armitage, D. H., and Gardiner, S. J. 2001. Classical Potential Theory. Springer Monographs in Mathematics. London: Springer-Verlag.
[13] Bénéteau, C., Condori, A., Liaw, C., Seco, D., and Sola, A.Cyclicity in Dirichlet-type spaces and extremal polynomials. J. Anal. Math. To appear.
[14] Berenstein, C. A., and Gay, R. 1991. Complex Variables. Graduate Texts in Mathematics, vol. 125. New York: Springer-Verlag.
[15] Beurling, A. 1933. Etudes sur un problème de majoration. Doctoral thesis, Uppsala University.
[16] Beurling, A. 1940. Ensembles exceptionnels. Acta Math., 72, 1–13.Google Scholar
[17] Bishop, C. J. 1994. Interpolating sequences for the Dirichlet space and its multipliers. Unpublished manuscript.
[18] Bøe, B. 2005. An interpolation theorem for Hilbert spaces with Nevanlinna-Pick kernel. Proc. Amer. Math. Soc., 133(7), 2077–2081.Google Scholar
[19] Bogdan, K. 1996. On the zeros of functions with finite Dirichlet integral. Kodai Math. J., 19(1), 7–16.Google Scholar
[20] Borichev, A. 1993. A note on Dirichlet-type spaces. Uppsala University Department of Mathematics Report 11.
[21] Borichev, A. 1994. Boundary behavior in Dirichlet-type spaces. Uppsala University Department of Mathematics Report 3.
[22] Bourdon, P. S. 1986. Cellular-indecomposable operators and Beurling's theorem. Michigan Math J., 33(2), 187–193.Google Scholar
[23] Brown, L., and Cohn, W. 1985. Some examples of cyclic vectors in the Dirichlet space. Proc. Amer. Math. Soc., 95(1), 42–46.Google Scholar
[24] Brown, L., and Shields, A. L. 1984. Cyclic vectors in the Dirichlet space. Trans. Amer. Math. Soc., 285(1), 269–303.Google Scholar
[25] Carleson, L. 1952a. On the zeros of functions with bounded Dirichlet integrals. Math. Z., 56, 289–295.Google Scholar
[26] Carleson, L. 1952b. Sets of uniqueness for functions regular in the unit circle. Acta Math., 87, 325–345.Google Scholar
[27] Carleson, L. 1960. A representation formula for the Dirichlet integral. Math. Z., 73, 190–196.Google Scholar
[28] Carleson, L. 1962. Interpolations by bounded analytic functions and the corona problem. Ann. Math. (2), 76, 547–559.Google Scholar
[29] Carleson, L. 1967. Selected Problems on Exceptional Sets. Van Nostrand Mathematical Studies, No. 13. Princeton, NJ: Van Nostrand.
[30] Carlsson, M. 2008. On the Cowen-Douglas class for Banach space operators. Integral Equations Operator Theory, 61(4), 593–598.Google Scholar
[31] Caughran, J. G. 1969. Two results concerning the zeros of functions with finite Dirichlet integral. Canad. J. Math., 21, 312–316.Google Scholar
[32] Caughran, J. G. 1970. Zeros of analytic functions with infinitely differentiable boundary values. Proc. Amer. Math. Soc., 24, 700–704.Google Scholar
[33] Chacón, G. R. 2011. Carleson measures on Dirichlet-type spaces. Proc. Amer. Math. Soc., 139(5), 1605–1615.Google Scholar
[34] Chang, S.-Y. A., and Marshall, D. E. 1985. On a sharp inequality concerning the Dirichlet integral. Amer. J. Math., 107(5), 1015–1033.Google Scholar
[35] Chartrand, R. 2002. Toeplitz operators on Dirichlet-type spaces. J. Operator Theory, 48(1), 3–13.Google Scholar
[36] Cowen, C. C., and MacCluer, B. D. 1995. Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. Boca Raton, FL: CRC Press.
[37] Cowen, M. J., and Douglas, R. G. 1978. Complex geometry and operator theory. Acta Math., 141(3–4), 187–261.Google Scholar
[38] Doob, J. L. 1984. Classical Potential Theory and its Probabilistic Counterpart. Grundlehren der Mathematischen Wissenschaften, vol. 262. New York: Springer-Verlag.
[39] Douglas, J. 1931. Solution of the problem of Plateau. Trans. Amer. Math. Soc., 33(1), 263–321.Google Scholar
[40] Duren, P. L. 1970. Theory of Hp Spaces. Pure and Applied Mathematics, Vol. 38. New York: Academic Press.
[41] Dyn′kin, E. M. 1972. Extensions and integral representations of smooth functions of one complex variable. Dissertation, Leningrad.
[42] El-Fallah, O., Kellay, K., Mashreghi, J., and Ransford, T.One-box conditions for Carleson measures for the Dirichlet space. Proc. Amer. Math. Soc. To appear.
[43] El-Fallah, O., Kellay, K., and Ransford, T. 2006. Cyclicity in the Dirichlet space. Ark. Mat., 44(1), 61–86.Google Scholar
[44] El-Fallah, O., Kellay, K., and Ransford, T. 2009. On the Brown-Shields conjecture for cyclicity in the Dirichlet space. Adv. Math., 222(6), 2196–2214.Google Scholar
[45] El-Fallah, O., Kellay, K., Shabankhah, M., and Youssfi, H. 2011. Level sets and composition operators on the Dirichlet space. J. Funct. Anal., 260(6), 1721–1733.Google Scholar
[46] El-Fallah, O., Kellay, K., Mashreghi, J., and Ransford, T. 2012. A self-contained proof of the strong-type capacitary inequality for the Dirichlet space. Pages 1–20 of: Complex Analysis and Potential Theory. CRM Proc. Lecture Notes, vol. 55. Providence, RI: American Mathematical Society.
[47] Essén, M. 1987. Sharp estimates of uniform harmonic majorants in the plane. Ark. Mat., 25(1), 15–28.Google Scholar
[48] Frostman, O. 1935. Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Thesis. Meddel. Lunds Univ. Mat. Sem., 3, 1–118.Google Scholar
[49] Gallardo-Gutiérrez, E. A., and González, M. J. 2003. Exceptional sets and Hilbert-Schmidt composition operators. J. Funct. Anal., 199(2), 287–300.Google Scholar
[50] Garnett, J. B. 2007. Bounded Analytic Functions. revised first edn. Graduate Texts in Mathematics, vol. 236. New York: Springer.
[51] Garnett, J. B., and Marshall, D. E. 2005. Harmonic Measure. New Mathematical Monographs, vol. 2. Cambridge: Cambridge University Press.
[52] Guillot, D. 2012a. Blaschke condition andzero sets in weighted Dirichlet spaces. Ark. Mat., 50(2), 269–278.Google Scholar
[53] Guillot, D. 2012b. Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces. Complex Anal. Operator Theory, 6(6), 1211–1230.Google Scholar
[54] Hansson, K. 1979. Imbedding theorems of Sobolev type in potential theory. Math. Scand., 45(1), 77–102.Google Scholar
[55] Hardy, G. H. 1949. Divergent Series. Oxford: Clarendon Press.
[56] Hastings, W. W. 1975. A Carleson measure theorem for Bergman spaces. Proc. Amer. Math. Soc., 52, 237–241.Google Scholar
[57] Hayman, W. K., and Kennedy, P. B. 1976. Subharmonic Functions, vol. 1. London Mathematical Society Monographs, No. 9. London: Academic Press [Harcourt Brace Jovanovich Publishers].
[58] Hedenmalm, H., and Shields, A. L. 1990. Invariant subspaces in Banach spaces of analytic functions. Michigan Math. J., 37(1), 91–104.Google Scholar
[59] Helms, L. L. 1975. Introduction to Potential Theory. Pure and Applied Mathematics, vol. 22. Huntington, NY: Robert E. Krieger.
[60] Hille, E. 1962. Analytic Function Theory, vol. II. Introductions to Higher Mathematics. Boston, MA: Ginn and Co.
[61] Kahane, J.-P., and Salem, R. 1994. Ensembles parfaits et séries trigono-métriques. Second edn. Paris: Hermann.
[62] Kellay, K. 2011. Poincaré type inequality for Dirichlet spaces and application to the uniqueness set. Math. Scand., 108(1), 103–114.Google Scholar
[63] Kellay, K., and Mashreghi, J. 2012. On zero sets in the Dirichlet space. J. Geom. Anal., 22(4), 1055–1070.Google Scholar
[64] Kerman, R., and Sawyer, E. T. 1988. Carleson measures and multipliers of Dirichlet-type spaces. Trans. Amer. Math. Soc., 309(1), 87–98.Google Scholar
[65] Koosis, P. 1992. The Logarithmic Integral II. Cambridge Studies in Advanced Mathematics, vol. 21. Cambridge: Cambridge University Press.
[66] Koosis, P. 1998. Introduction to Hp Spaces. Second edn. Cambridge Tracts in Mathematics, vol. 115. Cambridge: Cambridge University Press.
[67] Korenblum, B. I. 1972. Invariant subspaces of the shift operator in a weighted Hilbert space. Math. USSR-Sb., 18, 111–138.Google Scholar
[68] Korenblum, B. I. 2006. Blaschke sets for Bergman spaces. Pages 145–152 of: Bergman Spaces and Related Topics in Complex Analysis. Contemp. Math., vol. 404. Providence, RI: American Mathematical Society.
[69] Korolevič, V. S. 1970. A certain theorem of Beurling and Carleson. Ukrainian Math. J., 22(6), 710–714.Google Scholar
[70] Landkof, N. S. 1972. Foundations of Modern Potential Theory. Grundlehren der mathematischen Wissenschaften, vol. 180. New York: Springer-Verlag.
[71] Lefèvre, P., Li, D., Queffélec, H., and Rodríguez-Piazza, L. 2013. Compact composition operators on the Dirichlet space and capacity of sets of contact points. J. Funct. Anal., 264(4), 895–919.Google Scholar
[72] Luecking, D. H. 1987. Trace ideal criteria for Toeplitz operators. J. Funct. Anal., 73(2), 345–368.Google Scholar
[73] MacCluer, B. D., and Shapiro, J. H. 1986. Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canad. J. Math., 38(4), 878–906.Google Scholar
[74] Malliavin, P. 1977. Sur l'analyse harmonique de certaines classes de séries de Taylor. Pages 71–91 of: Symposia Mathematica, Vol. XXII (Convegno sull'Analisi Armonica e Spazi di Funzioni su Gruppi Localmente Compatti, IN-DAM, Rome, 1976). London: Academic Press.
[75] Marshall, D. E. 1989. A new proof of a sharp inequality concerning the Dirichlet integral. Ark. Mat., 27(1), 131–137.Google Scholar
[76] Marshall, D. E., and Sundberg, C. 1989. Interpolating sequences for the multipliers ofthe Dirichlet space. Unpublished manuscript.
[77] Mashreghi, J. 2009. Representation Theorems in Hardy Spaces. London Mathematical Society Student Texts, vol. 74. Cambridge: Cambridge University Press.
[78] Mashreghi, J., Ransford, T., and Shabankhah, M. 2010. Arguments of zero sets in the Dirichlet space. Pages 143–148 of: Hilbert Spaces ofAnalytic Functions. CRM Proc. Lecture Notes, vol. 51. Providence, RI: American Mathematical Society.
[79] Maz′ya, V. G., and Havin, V. P. 1973. Application of the (p, l)-capacity to certain problems of the theory of exceptional sets. Mat. Sb. (N.S.), 90(132), 558–591, 640.Google Scholar
[80] Meyers, N. G. 1970. A theory of capacities for potentials of functions in Lebesgue classes. Math. Scand., 26, 255–292 (1971).Google Scholar
[81] Monterie, M. A. 1997. Capacities of certain Cantor sets. Indag. Math. (N.S.), 8(2), 247–266.Google Scholar
[82] Nagel, A., and Stein, E. M. 1984. On certain maximal functions and approach regions. Adv. Math., 54(1), 83–106.Google Scholar
[83] Nagel, A., Rudin, W., and Shapiro, J. H. 1982. Tangential boundary behavior of functions in Dirichlet-type spaces. Ann. Math. (2), 116(2), 331–360.Google Scholar
[84] Nagel, A., Rudin, W., and Shapiro, J. H. 1983. Tangential boundary behavior of harmonic extensions of Lp potentials. Pages 533–548 of: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, IL, 1981). Wadsworth Math. Ser. Belmont, CA: Wadsworth.
[85] Nehari, Z. 1975. Conformai Mapping. New York: Dover Publications.
[86] Novinger, W. P. 1971. Holomorphic functions with infinitely differentiable boundary values. Illinois J. Math., 15, 80–90.Google Scholar
[87] Ohtsuka, M. 1957. Capacité d'ensembles de Cantor généralisés. Nagoya Math. J., 11, 151–160.Google Scholar
[88] Olin, R. F., and Thomson, J. E. 1984. Cellular-indecomposable subnormal operators. Integral Equations Operator Theory, 7(3), 392–430.Google Scholar
[89] Parrott, S. 1978. On a quotient norm and the Sz.-Nagy–Foia lifting theorem. J. Funct. Anal., 30(3), 311–328.Google Scholar
[90] Peller, V. V., and Hruscev, S. V. 1982. Hankel operators, best approximations and stationary Gaussian processes. Russian Math. Surveys, 37(1), 61–144.Google Scholar
[91] Pommerenke, Ch. 1975. Univalent Functions. Göttingen: Vandenhoeck & Ruprecht.
[92] Pommerenke, Ch. 1992. Boundary Behaviour ofConformal Maps. Grundlehren der Mathematischen Wissenschaften, vol. 299. Berlin: Springer-Verlag.
[93] Ransford, T. 1995. Potential Theory in the Complex Plane. London Mathematical Society Student Texts, vol. 28. Cambridge: Cambridge University Press.
[94] Ransford, T., and Selezneff, A. 2012. Capacity and covering numbers. Potential Anal., 36, 223–233.Google Scholar
[95] Richter, S. 1988. Invariant subspaces of the Dirichlet shift. J. Reine Angew. Math., 386, 205–220.Google Scholar
[96] Richter, S. 1991. A representation theorem for cyclic analytic two-isometries. Trans. Amer. Math. Soc., 328(1), 325–349.Google Scholar
[97] Richter, S., and Shields, A. L. 1988. Bounded analytic functions in the Dirichlet space. Math. Z., 198(2), 151–159.Google Scholar
[98] Richter, S., and Sundberg, C. 1991. A formula for the local Dirichlet integral. Michigan Math. J., 38(3), 355–379.Google Scholar
[99] Richter, S., and Sundberg, C. 1992. Multipliers and invariant subspaces in the Dirichlet space. J. Operator Theory, 28(1), 167–186.Google Scholar
[100] Richter, S., and Sundberg, C. 1994. Invariant subspaces of the Dirichlet shift and pseudocontinuations. Trans. Amer. Math. Soc., 341(2), 863–879.Google Scholar
[101] Richter, S., Ross, W. T., and Sundberg, C. 2004. Zeros of functions with finite Dirichlet integral. Proc. Amer. Math. Soc., 132(8), 2361–2365.Google Scholar
[102] Rochberg, R., and Wu, Z. J. 1992. Toeplitz operators on Dirichlet spaces. Integral Equations Operator Theory, 15(2), 325–342.Google Scholar
[103] Ross, W. T. 2006. The classical Dirichlet space. Pages 171–197 of: Recent Advances in Operator-Related Function Theory. Contemp. Math., vol. 393. Providence, RI: American Mathematical Society.
[104] Rudin, W. 1987. Real and Complex Analysis. Third edn. New York: McGraw-Hill.
[105] Rudin, W. 1992. Power series with zero-sum on countable sets. Complex Variables Theory Appl., 18(3–4), 283–284.Google Scholar
[106] Saff, E. B., and Totik, V. 1997. Logarithmic Potentials with External Fields. Grundlehren der Mathematischen Wissenschaften, vol. 316. Berlin: Springer-Verlag.
[107] Sarason, D. 1986. Doubly shift-invariant spaces in H2. J. Operator Theory, 16(1), 75–97.Google Scholar
[108] Sarason, D. 1997. Local Dirichlet spaces as de Branges-Rovnyak spaces. Proc. Amer. Math. Soc., 125(7), 2133–2139.Google Scholar
[109] Seip, K. 2004. Interpolation and Sampling in Spaces of Analytic Functions. University Lecture Series, vol. 33. Providence, RI: American Mathematical Society.
[110] Shapiro, H. S., and Shields, A. L. 1962. On the zeros of functions with finite Dirichlet integral and some related function spaces. Math. Z., 80, 217–229.Google Scholar
[111] Shapiro, J. H. 1980. Cauchy transforms and Beurling-Carleson-Hayman thin sets. Michigan Math. J., 27(3), 339–351.Google Scholar
[112] Shapiro, J. H. 1987. The essential norm of a composition operator. Ann. Math. (2), 125(2), 375–404.Google Scholar
[113] Shapiro, J. H. 1993. Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics. New York: Springer-Verlag.
[114] Shields, A. L. 1983. An analogue of the Fejér-Riesz theorem for the Dirichlet space. Pages 810–820 of: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, IL, 1981). Wadsworth Math. Ser. Belmont, CA: Wadsworth.
[115] Shimorin, S. M. 1998. Reproducing kernels and extremal functions in Dirichlet-type spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 255 (Issled. po Linein. Oper. i Teor. Funkts. 26), 198–220, 254. Translation in J. Math. Sci. (New York) 107(4) (2001), 4108–4124.Google Scholar
[116] Shimorin, S. M. 2002. Complete Nevanlinna-Pick property of Dirichlet-type spaces. J. Funct. Anal., 191(2), 276–296.Google Scholar
[117] Stegenga, D. A. 1980. Multipliers of the Dirichlet space. Illinois J. Math., 24(1), 113–139.Google Scholar
[118] Taylor, B. A., and Williams, D. L. 1970. Ideals in rings of analytic functions with smooth boundary values. Canad. J. Math., 22, 1266–1283.Google Scholar
[119] Taylor, G. D. 1966. Multipliers on Dα. Trans. Amer. Math. Soc., 123, 229–240.Google Scholar
[120] Tsuji, M. 1975. Potential Theory in Modern Function Theory. New York: Chelsea.
[121] Twomey, J. B. 1989. Tangential limits for certain classes of analytic functions. Mathematika, 36(1), 39–49.Google Scholar
[122] Twomey, J. B. 2002. Tangential boundary behaviour of harmonic and holomorphic functions. J. London Math. Soc. (2), 65(1), 68–84.Google Scholar
[123] Wojtaszczyk, P. 1991. Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics, vol. 25. Cambridge: Cambridge University Press.
[124] Wynn, A. 2011. Sufficient conditions for weighted admissibility of operators with applications to Carleson measures and multipliers. Q. J. Math., 62(3), 747–770.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×