Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-01T10:05:11.165Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

8 - Technicolor: a first attempt to explain hierarchies

from Part 1 - Effective field theory: the StandardModel, supersymmetry, unification

Michael Dine
Affiliation:
University of California, Santa Cruz
Get access

Summary

In Chapter 5 we learned a great deal about quantum chromodynamics. In Section 4.5 we argued that the hierarchy problem is one of the puzzles of the Standard Model. The grand unified models of Chapter 6 provided a quite stark realization of the hierarchy problem. In an SU(5) grand unified model we saw that it is necessary to adjust carefully the couplings in the Higgs potential in order to obtain light doublet and heavy color triplet Higgs. This is already true at tree level; loop effects will correct these relations, requiring further delicate adjustments.

Attempts to understand the hierarchy problem in a manner consistent with 't Hooft's naturalness principle fall into three broad categories: the dynamical breaking of electroweak symmetry, supersymmetry (in which it is still possible that the breaking of electroweak symmetry is dynamical), geometric approaches (large extra dimensions or warped space– times) and supersymmetry. The present chapter gives a brief introduction to dynamical models; Chapters 9–16 will deal with supersymmetry both as a possible new symmetry of nature and a possible solution to the hierarchy problem. We will discuss geometric solutions in Chapter 29 after we have learned about theories of space–time, i.e. general relativity and string theory.

The first proposal to resolve the hierarchy problem goes by the name technicolor. The technicolor hypothesis exploits our understanding of QCD dynamics. It elegantly explains the breaking of the electroweak symmetry. It has more difficulty accounting for the masses of the quarks and leptons, and simple versions seem incompatible with precision studies of the W and Z particles and now the discovery of a Standard-Model-like Higgs boson. In this chapter we will introduce the basic features of the technicolor hypothesis. We will not attempt to review the many models that have been developed to try to address the difficulties of flavor and precision electroweak experiments. It is probably safe to say that, as of this writing, none is totally successful nor particularly plausible. But it should be kept in mind that this may reflect the limitations of theorists; experiment may yet reveal that nature has chosen this path. In any case, the study of these theories will deepen our understanding of the Standard Model and of strongly coupled quantum field theories and will open our eyes to possibilities for new physics.

Type
Chapter
Information
Supersymmetry and String Theory
Beyond the Standard Model
, pp. 126 - 132
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×