Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-08T00:40:39.200Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 December 2014

Henry McKean
Affiliation:
New York University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Probability , pp. 447 - 457
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlfors, L. V. 1979. Complex Analysis (3rd ed.). McGraw-Hill, New York.Google Scholar
Andréief, C. 1883. Note sur une relation entre les intégrales définies des produits des fonctions. Mem. Soc. Sci., Bordeaux, 2, 1–14.Google Scholar
Arnold, V.I. 1978. Mathematical Methods of Classical Mechanics. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Artin, E. 1924. Ein mechanisches System mit quasi-ergodischen Bahnen. Abh. aus dem Math. Seminar Hamburg, 3, 170–175.Google Scholar
Ash, R. 1965. Information Theory. Interscience, J. Wiley & Sons, New York.Google Scholar
Baik, J., Deift, P., and Johansson, K. 1999. On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc., 12, 1119–1178.CrossRefGoogle Scholar
Baik, J., Deift, P., and Suidan, T. 2014. Some Combinatorial Problems and Random Matrix Theory. AMS, Providence RI.Google Scholar
Berry, A.C. 1941. The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Amer. Math. Soc., 49, 122–136.CrossRefGoogle Scholar
Bateman, H., 1953. Higher Transcendental Functions (2). McGraw-Hill, New York.Google Scholar
Billingsley, P. 1960. Hausdorff dimension in probability theory, Illinois J. Math., 4, 187–209.Google Scholar
Billingsley, P. 1965. Ergodic Theory and Information. J. Wiley & Sons, New York.Google Scholar
Billingsley, P. 1974. The probability theory of additive arithmetic functions. Ann. Probability, 2, 749–791.CrossRefGoogle Scholar
Billingsley, P. 1979. Probability and Measure. J. Wiley & Sons, New York.Google Scholar
Birkhoff, G.D. 1931. Proof of the ergodic theorem. Proc. Nat. Acad. Sci. U.S.A., 17, 656–660.CrossRefGoogle ScholarPubMed
Boltzmann, L. 1872. Weitere Studienüber das Wöarmegleichgewicht unter Gasmolekülen. Sitzungsberichter Akad. Wiss., 66, 275–370.Google Scholar
Boltzmann, L. 1912. Vorlesungenüber Gastheorie. Ambrosius Barth, Leipzig. See also Lectures on Gas Theory. U. Calif. Press, Berkeley, CA (1964) & Dover, New York (1995).Google Scholar
Breiman, L. 1957. The individual ergodic theorem of information theory. Ann. Math. Stat., 28, 809–811.CrossRefGoogle Scholar
Breiman, L. 1967. Introduction to Measure and Integral. Addison-Wesley Co., Reading MA.Google Scholar
Breiman, L. 1968. Probability. Addison-Wesley Co., Reading MA.Google Scholar
Cameron, R.H. and Martin, W.T. 1944. A transformation of Wiener integrals. Ann. Math. 45, 380–386.CrossRefGoogle Scholar
Cameron, R.H. and Martin, W.T. 1947. The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals. Ann. Math. 48, 385–392.CrossRefGoogle Scholar
Carleman, T. 1922. Sur les fonctions quasi-analytiques. 5ème Congrès des Math. Scand., Helsinfors, 181–196.Google Scholar
Carleman, T. 1957. Problèmes Mathématiques dans la Théorie Cinétique des Gaz. Almqvist-Wiksells, Uppsala, reprinted in Édition Complète des Articles de Torsten Carleman. Inst. Mittag-Leffler, Uppsala (1960).Google Scholar
Carlen, E., Carvalho, M.C., and Gabetta, E. 2000. Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Comm. Pure Appl. Math. 53, 370–397.3.0.CO;2-0>CrossRefGoogle Scholar
Cercignani, C. 1969. Mathematical Methods in Kinetic Theory. Plenum Press, New York.CrossRefGoogle Scholar
Cercignani, C., Illner, R., and Pulvirenti, M. 1994. The Mathematical Theory of Dilute Gases. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Chapman, S. 1916. On the law of distribution of molecular velocities. Publ. Trans. Royal Soc. London, 216, 279–348.Google Scholar
Choquet, G. 1956. Existence des représentations intégrales au moyen des points extrémaux dans les cônes convexes. C.R. Acad. Sci. Paris, 243, 699–702; 736–737.Google Scholar
Chung, K-L. 1973. Probabilistic approach in potential theory to the equilibrium problem. Ann. Inst. Fourier (Grenoble), 23, 313–322.CrossRefGoogle Scholar
Ciesielski, Z. 1961. Hölder conditions for realizations of Gaussian processes. Trans. Amer. Math. Soc., 99, 403–413.Google Scholar
Conrey, J.B. 2003. The Riemann hypothesis. Notices Amer. Math. Soc., 50, 341–353.Google Scholar
Courant, R. and Robbins, A. 1951. What is Mathematics?Oxford University Press, Oxford/London/New York.Google Scholar
Cover, T.M. and Thomas, J.A. 1991. Elements of Information Theory. J. Wiley & Sons, New York.CrossRefGoogle Scholar
Cramér, H. 1936. Über eine Eigenschaft der normalen Verteilungsfunktion. Math. Zeit., 41, 405–414.CrossRefGoogle Scholar
Cramér, H. 1938. Sur un nouveau théorème-limite de la théorie des probabilités. Actualités Scientifiques et Industrielles, 736, 5–33, Hermann & Cie, Paris.Google Scholar
Deift, P. 1999. Orthogonal Polynomials and Random Matrices: a Riemann– Hilbert Approach. Courant Lecture Notes in Mathematics, 3, Courant Institute of Mathematical Sciences, New York, Amer. Math. Soc., Providence RI.Google Scholar
Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., and Zhou, X. 1999. Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math., 52, 1335–1425.Google Scholar
Dobrushin, R.-L. 1965. Existence of a phase transition in the two-dimensional and three-dimensional Ising models, Theory Probab. Appl., 10, 193–213.CrossRefGoogle Scholar
Donsker, M.D. 1951. An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc., 6, 1–12.Google Scholar
Donsker, M.D. and Varadhan, S.R.S. 1975. Asymptotic evaluation of certain Markov process expectations for large time, I & II. Comm. Pure Appl. Math., 28, 1–47; 279–301.CrossRefGoogle Scholar
Donsker, M.D. and Varadhan, S.R.S. 1976. Asymptotic evaluation of certain Markov process expectations for large time, III. Comm. Pure Appl. Math., 29, 389–461.CrossRefGoogle Scholar
Doob, J.L. 1949. Heuristic approach to the Kolmogorov–Smirnov theorems. Ann. Math. Statistics, 20, 393–403.CrossRefGoogle Scholar
Doob, J.L. 1953. Stochastic Processes. J. Wiley & Sons, New York.Google Scholar
Doyle, P.G. and Snell, J.L. 1984. Random Walks and Electrical Networks. Math. Assoc. of America, Washington, D.C.Google Scholar
Dresden, M. 1956. Kinetic Theory Applied to Hydrodynamics. Magnolia Petroleum Co., Dallas, TX.Google Scholar
Durrett, R. 1991. Probability: Theory and Examples. Wadsworth and Brooks/Cole Advanced Books & Software, Pacific Grove CA.Google Scholar
Dvoretsky, A. and Erd˝os, P. 1950. Some problems on random walk in space. Proc. 2nd Berkeley Symp. on Math. Statist. and Prob. (1950), California University Press, Berkeley CA, pp. 360–367.Google Scholar
Dym, H. and McKean, H.P. 1972. Fourier Series and Integrals. Academic Press, New York.Google Scholar
Dynkin, E.B. 1965. Markov Processes. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Dyson, F.J. 1962. A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys., 3, 1191–1198.CrossRefGoogle Scholar
Edwards, H.M. 2001. Riemann's Zeta Function. Dover, Mineola NY.Google Scholar
Eggleston, H.G. 1949. The fractional dimension of a set defined by decimal properties. Quart. J. Math. Oxford Ser., 20, 31–36.Google Scholar
Einstein, A. 1956. Investigations on the Theory of the Brownian Movement. Fürth, R. and Cowper, A.D., eds., Dover, New York.Google Scholar
Elias, P. 1961. Coding and decoding. In Lectures on Communication System Theory, E.J., Baghdady (ed), McGraw-Hill, Chapter 13, pp. 321–344.Google Scholar
Ellis, R.S. 1985. Entropy, Large Deviations, and Statistical Mechanics. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Enskog, D. 1917. Kinetische Theorie der Vorgöange in möassig verdünnten Gasen. Amlqvist-Wiksells, Uppsala.Google Scholar
Erd˝os, P. 1942. On the law of the iterated logarithm. Ann. Math. 43, 419–436.Google Scholar
Erd˝os, P. 1949. On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. USA., 35, 374–384.Google Scholar
Erd˝os, P. and Kac, M. 1940. The Gaussian law of error in the theory of additive number-theoretic functions. Amer. J. Math. 62, 728–742.Google Scholar
Erd˝os, P. and Kac, M. 1947. On the number of positive sums of n independent random variables, Bull. Amer. Math. Soc. 53, 1011–1020.Google Scholar
Esseen, C.-G. (1942). On the Liapunoff limit of error in the theory of probability. Arkiv för Mat., Astr. & Fys, A28, 1–19.Google Scholar
Fano, R.M. 1961. Transmission of Information: A Statistical Theory of Communications. MIT Press, Cambridge MA.Google Scholar
Feinstein, A. 1954. A new basic theorem of information theory. Trans. Inst. Radio Eng., 4, 2–22B.Google Scholar
Feller, W. 1948. On the Kolmogorov–Smirnov limit theorems for empirical distributions. Ann. Math. Statistics, 19, 177–189.CrossRefGoogle Scholar
Feller, W. 1966. An Introduction to Probability Theory and its Applications, II (2nd ed.). John Wiley & Sons, New York.Google Scholar
Feller, W. 1968. An Introduction to Probability Theory and its Applications, I. (2nd ed.). John Wiley & Sons, New York.Google Scholar
Fenchel, W. 1949. On conjugate convex functions. Canadian J. Math., 1, 73–77.CrossRefGoogle Scholar
Fermi, E. 1956. Thermodynamics. Dover, New York.Google Scholar
Feynman, R. 1963. Lectures on Physics, vol. 1. Addison-Wesley Co., Reading MA.Google Scholar
Feynman, R. 1964. Lectures on Physics, vol. 2. Addison-Wesley Co., Reading MA.Google Scholar
Feynman, R. 1965. Lectures on Physics, vol. 3. Addison-Wesley Co., Reading MA.Google Scholar
Flanders, M. and Swan, D. 1963. The second law of thermodynamics, in At the Drop of another Hat, Angel Records, #PMC1216.Google Scholar
Fokas, A.S., Its, A.R., Kapaev, A.A., and Novokshenov, V.Y. 2006. Painlevé Transcendents. The Riemann–Hilbert Approach. Mathematical Surveys and Monographs, 128, American Mathematical Society, Providence RI.CrossRefGoogle Scholar
Garsia, A. 1965. A simple proof of E. Hopf's maximal ergodic theorem. J. Math. Mech., 14, 381–382.Google Scholar
Gauss, C.F. 1827. Arithmetisch Geometriches Mittel. Werke, Bd 3, 361–432, Teubner, Leipzig.Google Scholar
Gauss, C.F. 1884. Allgemeine Lehrsöatze in Beziehung auf die im verkehrten Verhöaltnisse des Quadrats der Entfernung wirkenden Anziehungs- und Abstossungskröafte. Ostwalds Klassiker der exacten Wissenschaften, no 2, Teubner, Leipzig.Google Scholar
Gibbs, J.W. 1902. Elementary Principles in Statistical Mechanics. Yale University Press, New Haven CT, Dover, New York (1960).Google Scholar
Goldstein, S. 1951. Diffusion by discontinuous movement and on the telegraph equation. Quart. J. Math. (Oxford), 4, 129–156.Google Scholar
Glasser, M.L. and Zucker, I.J. 1977. Extended Watson integrals for the cubic lattices. Proc. Nat. Acad. Sci. USA, 74, 1800–1801.CrossRefGoogle ScholarPubMed
Gosnell, M. 2007. Ice. University of Chicago Press, Chicago.Google Scholar
Grad, H. 1958. Principles of the Kinetic Theory of Gases. Handbuch der Physik, 12, Springer-Verlag, Berlin.Google Scholar
Griffiths, R.B. 1964. Peierls’ proof of spontaneous magnetization in a two-dimensional Ising ferromagnet. Phys. Rev., 136, A437–A439.CrossRefGoogle Scholar
Griffiths, R.B. 1967 (a). Correlations in Ising ferromagnets, I, II. J. Math. Phys., 8, 418–483; 484–489.Google Scholar
Griffiths, R.B. 1967 (b). Correlations in Ising ferromagnets, III. Comm. Math. Phys., 6, 121–127.CrossRefGoogle Scholar
Grünbaum, F.A. 1971. Propagation of chaos for the Boltzmann equation. Arch.Rat.Mech. &Anal., 42, 323–345.Google Scholar
Grünbaum, F.A. 1972. Linearization for the Boltzmann equation. Trans. Amer. Math. Soc., 165, 425–449.CrossRefGoogle Scholar
Halmos, P. and von Neumann, J. 1942. Operator methods in classical mechanics. II. Ann. Math., 43, 332–350.CrossRefGoogle Scholar
Hardy, G.H. and Ramanujan, S. 1917. The normal number of prime factors of a numbern. Quart. J. Math., 48, 76–92.Google Scholar
Hedlund, G.A. 1934. On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature. Ann. Math., 35, 787–808.CrossRefGoogle Scholar
Hedlund, G.A. 1937. A metrically transitive group defined by the modular groups. Amer. J. Math., 57, 668–678.Google Scholar
Hemmer, P., Kac, M. and Uhlenbeck, G.E. 1963. On the van der Waals theory of the vapor–liquid equilibrium. I, II. J. Mathematical Phys., 4, 216–228; 229–247.Google Scholar
Hemmer, P., Kac, M. and Uhlenbeck, G.E. 1964. On the van der Waals theory of the vapor–liquid equilibrium. III. J. Mathematical Phys., 5, 60–74.CrossRefGoogle Scholar
Hewitt, E. & Savage, L.J. 1955. Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80, 470–501.CrossRefGoogle Scholar
Hilbert, D. 1912. Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen. Teubner-Verlag, Leipzig.Google Scholar
Hopf, E. 1937. Ergodentheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete, no. 5, Springer, Berlin; Chelsea, New York (1948).CrossRefGoogle Scholar
Householder, A.S. 1965. The Theory of Matrices in Numerical Analysis. Blaisdell, New York.Google Scholar
Ising, E. 1925. Beitrag zur Theorie des Ferromagnetismus. Zeit. Phys., 31, 253–258.CrossRefGoogle Scholar
Itô, K. 1951. Multiple Wiener integral. J.Math.Soc.Japan, 3, 157–169.CrossRefGoogle Scholar
Itô, K. and McKean, H.P. 1960. Potentials and the random walk. Illinois J. Math., 4, 119–132.Google Scholar
Its, A. 2003. The Riemann–Hilbert problem and integrable systems. Notices Amer. Math. Soc., 50, 1389–1400.Google Scholar
Jain, N.C. and Pruitt, W.E. 1970. The range of recurrent random walk in the plane. Z. Wahrschein. und Verw. Geb., 16, 279–292.CrossRefGoogle Scholar
Jellinek, R. 1968. Probabilistic Information Theory. McGraw-Hill, New York.Google Scholar
Jimbo, M., Miwa, T., Môri, Y. and Sato, M. 1980. Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Physica D, 1, 80–158.CrossRefGoogle Scholar
Kac, M. 1947. Random walk and the theory of Brownian motion. Amer. Math. Monthly, 54, 369–391.CrossRefGoogle Scholar
Kac, M. 1947. On the notion of recurrence in discrete stochastic processes. Bull. AMS, 53, 1002–1010.CrossRefGoogle Scholar
Kac, M. 1949. On the distribution of certain Wiener functionals. Trans. Amer. Math. Soc., 65, 1–13.CrossRefGoogle Scholar
Kac, M. 1956. Foundations of kinetic theory. Proc. Berkeley Symp. Math. Stat. Prob. (1954–1955), 3, 171–197.Google Scholar
Kac, M. 1959a. Probability and Related Topics in the Physical Sciences. Interscience, London & New York.Google Scholar
Kac, M. 1959b. Statistical Independence in Probability, Analysis, and Number Theory. Carus Math. Monographs, no. 23, Math. Assoc. of America. J. Wiley & Sons, New York.Google Scholar
Kac, M. 1974. A stochastic model related to the telegrapher's equation. Rocky Mountain Math. J., 4, 491–509.CrossRefGoogle Scholar
Kac, M. 1980. Integration in Function Spaces and some of its Applications. Lezioni Fermiane, Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa.Google Scholar
Kac, M. and Ward, J.C. 1952. A combinatorial solution of the two-dimensional Ising model. Phys. Rev., 88, 1332–1337.CrossRefGoogle Scholar
Kallianpur, G. and Robbins, H. 1953. Ergodic property of the Brownian motion. Proc. Nat. Acad. Sci. USA, 39, 525–533.CrossRefGoogle ScholarPubMed
van Kampen, N.G. 1964. Condensation of a classical gas with long-range attraction. Phys. Rev., 135, A362–A369.CrossRefGoogle Scholar
Karlin, S. and McGregor, J. 1959. Coincidence probabilities. Pacific. J. Math., 2, 1141–1164.Google Scholar
Kauffman, B. 1949. Crystal statistics. II. Partition function evaluated by spinor analysis. Phys. Rev., 76, 1232–1243.Google Scholar
Kaufman, B. and Onsager, J. 1949. Crystal statistics. III. Short-range order in a binary Ising lattice, Phys. Rev., 76, 1244–252.CrossRefGoogle Scholar
Kellogg, O.D. 1929. Foundations of Potential Theory. Grundlehren der Math. Wiss., no. 31, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Kelly, D.E. and Sherman, S. 1968. General Griffiths's inequalities on correlations in Ising ferromagnets. J. Math. Phys., 9, 460–484.CrossRefGoogle Scholar
Kelly, J. 1956. A new interpretation of information rate. Bell Syst. Tech. J., 35, 917–926.CrossRefGoogle Scholar
Khinchine, A. 1923. Über dyadische Brüche. Math. Zeit., 18, 109–116.Google Scholar
Khinchine, A. 1924. Über einen Satz der Wahrscheinlichkeitsrechnung. Fund. Math., 6, 9–20.Google Scholar
Khinchine, A. 1933. Asymptotische Gesetze der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und ihrer Grenzgebiete, no. 2, Springer, Berlin; Chelsea, New York (1948).CrossRefGoogle Scholar
Knight, F. 1962. On the random walk and Brownian motion. Trans. Amer. Math. Soc., 108, 218–228.Google Scholar
Knight, F. 1963. Random walks and a sejourn density process of Brownian motion. Trans. Amer. Math. Soc., 109, 58–89.CrossRefGoogle Scholar
Kolmogorov, A.N. 1933a. Sulla determinazione empirica di una legge di distribuzione. Giorn. 1st. Ital. Attuari, 4, 83–91.Google Scholar
Kolmogorov, A.N. 1933b. Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und ihrer Grenzgebiete, no. 3, Springer, Berlin; Chelsea, New York (1950).CrossRefGoogle Scholar
Kramers, H.A. and Wannier, G.H. 1941. Statistics of the two-dimensional ferromagnet. Phys. Rev., 60, 252–276.Google Scholar
Landau, L. and Lifshitz, E. 1938. Statistical Physics. Oxford University Press, Oxford.Google Scholar
Lanford, O.E. 1975. Time evolution in large classical systems. Dynamical Systems, Theory and Applications, Lecture Notes in Phys., vol. 38, Springer-Verlag, Berlin, pp. 1–111.Google Scholar
Lax, P. 2002. Functional Analysis. J. Wiley & Sons, New York.Google Scholar
Lebowitz, J. and Penrose, O. 1966. Rigorous treatment of the van der Waals–Maxwell theory of the liquid-vapor transition. J. Math. Phys., 7, 98–113.CrossRefGoogle Scholar
Le Jan, Y. 1994. The central limit theorem for the geodesic flow on noncompact manifolds of constant negative curvature. Duke Math. J., 74, 159–175.CrossRefGoogle Scholar
Levinson, N. 1974. At least one-third of zeroes of Riemann's zeta-function are on σ = 1/2. Proc. Nat. Acad. Sci. USA, 71, 1013–1015.CrossRefGoogle Scholar
Lévy, P. 1937. Théorie de l'addition des variables aléatoires. Gauthier-Villars, Paris.Google Scholar
Lévy, P. 1939. Sur certains processus stochastiques homogènes. Compositio Math., 7, 283–339.Google Scholar
Lévy, P. 1948. Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris.Google Scholar
Lévy, P. 1951. Problèmes Concrets d'Analyse Fonctionnelle. Gauthier-Villars, Paris.Google Scholar
Linnik, Yu.V. 1949. On the theory of nonuniform Markov chains. Izv. Akad. Nauk SSSR Ser. Mat., 13, 65–94.Google Scholar
Malliavin, P. 1997. Stochastic Analysis. Grundlehren der Math. Wiss., no. 137, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Maxwell, J.C. 1861. On the dynamical theory of gases. Phil. Trans. Royal Soc. London, 157, 49–88.Google Scholar
Maxwell, J.C. 1873. The Scientific Letters and Papers of James Clerk Maxwell: 1862–1873, vol. 2. Cambridge University Press, Cambridge (1995).Google Scholar
Maxwell, J.C. 1892. A Treatise on Electricity and Magnetism. Clarendon Press, London & New York.Google Scholar
McCoy, B., Tracy, C., and Wu, F. T. 1977. Painlevé functions of the third kind. J. Math. Phys., 18, 1058–1072.CrossRefGoogle Scholar
McKean, H.P. 1960. The Bessel motion and a singular integral equation. Mem. Coll. Sci. Kyoto, 33, 317–322.Google Scholar
McKean, H.P. 1963. Entropy is the only increasing functional of Kac's one-dimensional caricature of a Maxwellian gas. Z. Wahrschein. und Verw. Geb., 2, 167–172.CrossRefGoogle Scholar
McKean, H.P. 1966a. Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rat. Mech. Anal., 21, 343–367.CrossRefGoogle Scholar
McKean, H.P. 1966b. A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. USA, 56, 1907–1911.CrossRefGoogle ScholarPubMed
McKean, H.P. 1967. Chapman–Enskog–Hilbert expansion of a class of solutions of the telegraph equation. J. Math. Phys., 8, 547–552.
McKean, H.P. 1969. Stochastic Integrals. Academic Press, New York; AMS-Chelsea, Providence RI (2005).Google Scholar
McKean, H.P. 1973. Geometry of differential space. Ann. Probability, 1, 197–206.CrossRefGoogle Scholar
McKean, H.P. 1975. The central limit theorem for Carleman's equation. Israel J. Math., 21, 54–92.CrossRefGoogle Scholar
McKean, H.P. 1975b. Fluctuations in the kinetic theory of gases. Comm. Pure Appl. Math., 28, 435–455.CrossRefGoogle Scholar
McKean, H.P. 2011. Fredholm determinants. Cent. Eur. J. Math., 9, 205–243.CrossRefGoogle Scholar
McKean, H.P. and Moll, V. 1997. Elliptic Curves. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
McMillan, B. 1952. Two inequalities implied by unique decipherability. IEEE Trans. Information Theory, 2, 115–116.Google Scholar
Mehler, F.G.Über die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung. J. Reine Angew. Math., 66, 161–176.
Mehta, M.L. 1967. Random Matrices. Academic Press, Boston MA and Elsevier/Academic Press, Amsterdam (2004).Google Scholar
Milnor, J.W. (1963). Topology from the Differentiable Viewpoint. University of Virginia Press, Charlottesville, VA.Google Scholar
Mischler, S. and Mouhot, C. 2013. Kac's program in kinetic theory. Invent. Math. 193, 1–147.CrossRefGoogle Scholar
Munroe, M.E. 1953. Introduction to Measure and Integration. Addison-Wesley, Cambridge MA.Google Scholar
Münster, A. 1956. Statistical Theromodynamics. Springer-Verlag, Berlin.Google Scholar
Nagell, T. 1964. Introduction to Number Theory. Chelsea Publ. Co., New York.Google Scholar
Needham, T. 1997. Visual Complex Analysis. Oxford University Press, Oxford.Google Scholar
Nirenberg, L. 1959. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, 13, 115–162.Google Scholar
Odlyzko, A.M. 2001. The 1022-nd zero of the Riemann zeta function. In Dynamical, Spectral, and Arithmetic Zeta Functions, van Frankenhuysen, M. and Lapidus, M.L., eds., Contemporary Math., 290, Amer. Math. Soc., Providence RI, pp. 139–144.Google Scholar
Onsager, L. 1944. Crystal statistics. I. A two-dimensional model of an order-disorder transition. Phys. Rev., 65, 117–149.CrossRefGoogle Scholar
Onsager, L. 1949. Discussion remark: spontaneous magnetization of the two-dimensional Ising model. Nuovo Cimento Suppl., 6, 261.Google Scholar
Ornstein, L.S. and Uhlenbeck, G.E. 1930. On the theory of Brownian motion. Phys. Rev., 36, 823–841.Google Scholar
Pólya, G.Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math. Ann., 84, 149–160.
Peierls, R.F. 1936. On Ising's model of ferromagnetism. Proc. Camb. Phil. Soc., 32, 477–481.CrossRefGoogle Scholar
Pogorelov, A.V. 1967. Differential Geometry. Nordhoff, Groningen.Google Scholar
Pollard, H. 1976. Celestial Mechanics. Carus Mathematical Monographs, no. 18, Math. Assoc. America, J. Wiley & Sons, New York.Google Scholar
Ratner, M. 1973. The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature. Israel J. Math., 16, 181–197.CrossRefGoogle Scholar
Ray, D. 1963. Sojourn times of a diffusion processes. Illinois J. Math., 7, 615–630.Google Scholar
Riesz, F. 1945. Sur la théorie ergodique. Comm. Math. Helv., 17, 221–239.Google Scholar
Rogers, L.C.G. and Williams, D. 1979. Diffusions, Markov Processes, and Martingales. Vol. 1. J. Wiley & Sons, Chichester.Google Scholar
Rogers, L.C.G. and Williams, D. 1987. Diffusions, Markov Processes, and Martingales. Vol.2. J. Wiley&Sons, NewYork.Google Scholar
Rukeyser, M. 1942. Willard Gibbs: American Genius, Doubleday, New York. Reprinted 1988 Ox Bow Press, Woodbridge CT.Google Scholar
Ryll-Nardzewski, C. 1951. On the ergodic theorem II, Studia Math., 12, 74–79.Google Scholar
Seeley, A. 1966. Introduction to Fourier Series and Integrals. W.A. Benjamin, New York.Google Scholar
Selberg, A. 1949. An elementary proof of the prime-number theorem, Ann. Math. 50, 305–313.Google Scholar
Shannon, C.E. 1948. A mathematical theory of communication. Bell System Tech. J., 27, 379–423; 623–656.CrossRefGoogle Scholar
Shannon, C.E. and Weaver, W. 1949. The Mathematical Theory of Communication. The University of Illinois Press, Urbana IL.
Sinai, Y.G. 1960. The central limit theorem for geodesic flows on manifolds of constant negative curvature. Dokl. Akad. Nauk., 133, 1303–1306.Google Scholar
Smirnov, N.V. 1939. On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Mat. Sbornik, 48, 3–26; and Bull. Math. Univ. Moscou2, 3–14.Google Scholar
Sparre-Andersen, E. 1953. On the fluctuations of sums of random variables, I. Math. Scand. 1, 263–285.Google Scholar
Sparre-Andersen, E. 1954. On the fluctuations of sums of random variables, II. Math. Scand. 2, 195–223.Google Scholar
Spitzer, F. 1956. A combinatorial lemma and its applications to probability theory. Trans. Amer. Math. Soc., 82, 323–339.CrossRefGoogle Scholar
Spitzer, F. 1957. The Wiener–Hopf equation whose kernel is a probability density. Duke Math. J., 24, 327–343.CrossRefGoogle Scholar
Spitzer, F. 1964. Electrostatic capacity, heat flow, and Brownian motion. Z. Wahrschein. und Verw. Geb., 3, 110–121.CrossRefGoogle Scholar
Strassen, V. 1964. An invariance principle for the law of the iterated logarithm. Z. Wahrschein. und Verw. Gebiete, 3, 211–226.CrossRefGoogle Scholar
Stroock, D. 1981. The Malliavin calculus and its applications. In Stochastic integrals. Lecture Notes in Math., 851, pp. 394–432.Google Scholar
Stroock, D.W. 1993. Probability Theory, an Analytic View. Cambridge University Press, Cambridge.Google Scholar
Sullivan, D. 1982. Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics. Acta Math., 149, 215–237.CrossRefGoogle Scholar
Sylvester, G.S. 1976. Continuous-spin inequalities for Ising ferromagnets. J. Stat. Phys., 15, 327–342.CrossRefGoogle Scholar
Szegö, G. 1939. Orthogonal Polynomials. AMS Colloquium. Publ., vol. 23, Amer. Math. Soc., Providence RI (1975).Google Scholar
Tanaka, H. 1973a. On Markov process corresponding to Boltzmann's equation of Maxwellian gas. Lect. Notes Math., 330, 478–489. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
Tanaka, H. 1973b. An inequality for a functional of probability distributions and its applications to Kac's one-dimensional model of a Maxwellian gas. Z. Wahrschein. und Verw. Geb., 27, 47–52.CrossRefGoogle Scholar
Tanaka, H. 1978. Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrschein. und Verw. Gebiete, 46, 67–105.CrossRefGoogle Scholar
Thompson, C.J. 1972. Mathematical Statistical Mechanics. Macmillan Co., New York.Google Scholar
Titchmarsh, E.C. 1959. The Theory of the Riemann Zeta Function. Oxford University Press, Oxford.Google Scholar
Tracy, C. and Widom, H. 1993. Introduction to random matrices. In Geometric and Quantum Aspects of Integrable Systems (Scheveningen, 1992), Lecture Notes in Phys., 424, Springer, Berlin, pp. 103–130.
Tracy, C. and Widom, H. 1994. Level spacing distributions and the Airy kernel. Comm. Math. Phys., 159, 151–174.CrossRef
Trotter, H.F. 1958. Approximation of semi-groups of operators. Pacific J. Math., 8, 887–919.CrossRefGoogle Scholar
Trotter, H.F. 1959. An elementary proof of the central limit theorem. Arch. Math., 10, 226–234.CrossRefGoogle Scholar
Trotter, H.F. 1984. Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö. Adv. Math., 54, 67–82.CrossRefGoogle Scholar
Varadhan, S.R.S. 1984. Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics, 46, SIAM, Philadelphia PA.
Vedenyapin, V.V. 1988. Differential forms in spaces without a norm. A theorem on the uniqueness of Boltzmann's H-function. Uspekhi Mat. Nauk, 43, 159–179, Russian Math. Surveys, 43, 193–219.Google Scholar
Villani, C. 2002. A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam, pp. 71–305.Google Scholar
van der Waerden, B.L. 1941. Die lange Reichweite der regelmassigen Atomanordnung in Mischkristallen. Z. Phys., 118, 473.CrossRefGoogle Scholar
Watson, G.N. 1939. Three triple integrals. Quart. J. Math. (Oxford), 10, 266–276.Google Scholar
Wendel, J.G. 1958. Spitzer's formula: a short proof. Proc. Amer. Math. Soc., 9, 905–908.Google Scholar
Wennberg, B. 1993. Stability and Exponential Convergence for the Boltzmann Equation. Thesis. Chalmers University of Technology, Sweden.
Weyl, H. 1916. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann., 77, 313–352.CrossRefGoogle Scholar
Weyl, H. 1939. The Classical Groups. Princeton University Press, Princeton NJ.Google Scholar
Wielandt, H. 1950. Unzerlegbare, nicht-negative Matrizen. Math. Zeit., 52, 642–648.CrossRefGoogle Scholar
Wiener, N. 1923. Differential space. J. Math. Phys. Mass. Inst. Tech., 2, 131–174.Google Scholar
Wiener, N. 1930. Generalized harmonic analysis. Acta Math., 55, 117–258.CrossRefGoogle Scholar
Wiener, N. 1938. The homogeneous chaos. Amer. J. Math. 60, 897–936.CrossRefGoogle Scholar
Wiener, N. 1948. Cybernetics. J. Wiley & Sons, New York, and Hermann et Cie, Paris.Google ScholarPubMed
Wigner, E. 1958. On the distribution of roots of certain symmetric matrices, Ann. Math., 67, 325–327.CrossRefGoogle Scholar
Wigner, E. 1967. Random matrices in physics. SIAM Rev., 9, 1–23.CrossRefGoogle Scholar
Wild, E. 1951. On Boltzmann's equation in the kinetic theory of gases. Proc. Camb. Phil. Soc., 41, 602–609.Google Scholar
Wishart, J. 1928. Generalized product moment distribution in samples. Biometrika, 20A, 32–52.CrossRefGoogle Scholar
Wolfowitz, J. 1978. Coding Theorems of Information Theory (3rd ed.). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Yang, C.N. and Lee, T.D. 1952. Statistical theory of equations of state and phase transitions, I. Theory of condensation. Phys. Rev., 87, 404–409.CrossRefGoogle Scholar
Yau, H.-T. 1998. Asymptotic solutions to dynamics of many body systems and classical continuum equations. Current Developments in Mathematics. Internat. Press, Somerville, MA, 155–236.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Henry McKean, New York University
  • Book: Probability
  • Online publication: 05 December 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107282032.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Henry McKean, New York University
  • Book: Probability
  • Online publication: 05 December 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107282032.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Henry McKean, New York University
  • Book: Probability
  • Online publication: 05 December 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107282032.016
Available formats
×