Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-lntk7 Total loading time: 0 Render date: 2024-04-30T07:44:19.229Z Has data issue: false hasContentIssue false

6 - Measurements with local helioseismology

from Part II - Data and physical parameters

Published online by Cambridge University Press:  05 July 2015

D. C. Braun
Affiliation:
NorthWest Research Associates
Vincent C. H. Tong
Affiliation:
Birkbeck College, University of London
Rafael A. García
Affiliation:
Centre Commissariat à l'Energie Atomique (CEA), Saclay
Get access

Summary

Introduction

Local helioseismology encompasses remote observations, data analysis, and theoretical modeling of solar oscillations to infer the three-dimensional structure within localized regions of the solar interior. What defines a region as “local” is relative, however, since targets of interest have included sunspots and convective elements with spatial scales ∼10−2R as well as large-scale plasma flows spanning much of a solar hemisphere. As a relatively new discipline first explored in the 1980s, local helioseismology has two main components: first, a research component to understand the interaction of solar oscillations (acoustic and surface gravity) with perturbations within the Sun and, second, the design and application of methods to infer the properties of the perturbations by modeling the measurements of those waves. Successful applications require a thorough understanding of the physics of the waves and their interaction with in homogeneities inside the Sun. The research component is particularly critical. For example, the types of perturbations found in the Sun can include magnetic fields for which the wave interactions can be quite complicated. Currently, the types of structures most amenable to modeling using local helioseismic measurements consist of isotropic wave-speed perturbations and the three components of plasma flows. Assessing the subsurface magnetic field directly is a challenging, but largely unrealized, goal of the field. While the status of the field is evolving, the determination of plasma flows in the first few tens of Mm below the solar surface remains one of the primary practical applications.

We outline in this chapter the practical applications of, and resulting measurements made with, common local helioseismic methods. Broadly speaking, local helioseismology can be roughly divided into Fourier methods (which operate in the frequency–wave number domain) and cross-covariance based methods (which operate in the space–time domain). The former (Section 6.3) can be considered in many ways as extensions of the analysis of global oscillations (Chapter 5) to localized regions of the Sun.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×