Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-03T13:39:56.166Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2014

Roger Ohayon
Affiliation:
Conservatoire National des Arts et Métiers (CNAM), Paris
Christian Soize
Affiliation:
Université Paris-Est
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Advanced Computational Vibroacoustics
Reduced-Order Models and Uncertainty Quantification
, pp. 99 - 110
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amini, S., and Harris, P. J. 1990. A comparison between various boundary integral formulations of the exterior acoustic problem. Computer Methods in Applied Mechanics and Engineering, 84, 59-75.Google Scholar
Amini, S., Harris, P. J., and Wilton, D. T. 1992. Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem. Lecture Notes in Eng., Vol 77. New York: Springer.
Andrianarison, O., and Ohayon, R. 2006. Reduced models for modal analysis of fluid-structure systems taking into account compressibility and gravity effects. Computer Methods in Applied Mechanics and Engineering, 195, 5656-5672.Google Scholar
Angelini, J. J., and Hutin, P. M. 1983. Exterior Neumann problem for Helmholtz equation. Problem of irregular frequencies. La Recherche Aerospatiale, 3, 43-52 (English edition).Google Scholar
Angelini, J. J., Soize, C., and Soudais, P. 1993. Hybrid numerical method for harmonic 3D Maxwell equations: scattering by mixed conducting and inhomogeneous-anisotropic dielectric media. IEEE Transaction on Antennas and Propagation, 41(1), 66-76.Google Scholar
Arnst, M., Clouteau, D., Chebli, H., Othman, R., and Degrande, G. 2006. A nonparametric probabilistic model for ground-borne vibration sin buildings. Probabilistic Engineering Mechanics, 21(1), 18-34.
Astley, R. J. 2000. Infinite elements for wave problems: a review of current formulations and assessment of accuracy. Internationaljournal of Numerical Methods in Engineering, 49(7), 951-976.Google Scholar
Bagley, R., and Torvik, P. 1983. Fractional calculus: a different approach to the analysis of viscoelastically damped struture. AIAA journal, 5(5), 741-748.Google Scholar
Baker, B. B., and Copson, E. T. 1949. The Mathematical Theory of Huygens Principle.Oxford: Clarendon Press. 99
Batchelor, G. K. 2000. An Introduction to Fluid Dynamics.Cambridge: Cambridge University Press.
Bathe, K. J., and Wilson, E. L. 1976. Numerical Methods in Finite Element Analysis.New York: Prentice-Hall.
Batou, A., and Soize, C. 2009a. Experimental identification of turbulent fluid forces applied to fuel assemblies using an uncertain model and fretting-wear estimation. Mechanical Systems and Signal Processing, 23(7), 2141-2153.Google Scholar
Batou, A., and Soize, C. 2009b. Identification of stochastic loads applied to a non-linear dynamical system using an uncertain computational model and experimental responses. Computational Mechanics, 43(4), 559-571.Google Scholar
Batou, A., Soize, C., and Corus, M. 2011. Experimental identification of an uncertain computational dynamical model representing a family of structures. Computer and Structures, 89(13-14), 1440-1448.Google Scholar
Bazilevs, Y., Takizawa, K., and Tezduyar, T. E. 2013. Computational Fluid-Structure Interaction. Wiley Series in Computational Mechanics. Chichester: John Wiley & Sons.
Beck, J. L., and Au, S. K. 2002. Bayesian updating of structural modelsand reliability using Markov chain Monte Carlo simulation. journal of Engineering Mechanics-ASCE, 128(4), 380-391.Google Scholar
Beck, J. L., and Katafygiotis, L. S. 1998. Updating models and their uncertainties. I: Bayesian statistical framework. journal of Engineering Mechanics – ASCE, 124(4), 455-461.Google Scholar
Beltman, W. M. 1999. Viscothermal wave propagation including acousto-elastic interaction, Part I: Theory. Part II: Application. journal of Sound and Vibration, 227(3), 555-586, 587-609.Google Scholar
Bergen, B., Van Genechten, B., Vandepitte, D., and Desmet, W. 2010. An efficient Trefftz-based method for three-dimensional Helmholtz in unbounded domain. Computer Modeling in Engineering & sciences, 61(2), 155-175.Google Scholar
Blackstock, D. T. 2000. Fundamentals in Physical Acoustics.New York: John Wiley & Sons.
Bland, D. R. 1960. The Theory of Linear Viscoelasticity.London: Pergamon.
Bonnet, M. 1999. Boundary Integral Equation Methods for Solids and Fluids.New York: John Wiley & Sons.
Bonnet, M., Chaillat, S., and Semblat, J. F. 2009. Multi-level fast multipole BEM for 3-D elastodynamics. Pages 15-27 of: Manomis, G. D., and Polyzos, D. (eds), Recent Advances in Boundary Element Methods.Heidelberg: Springer.
Brebbia, C. A., and Dominguez, J. 1992. Boundary Elements: An Introductory Course.New York: McGraw-Hill.
Bruneau, M. 2006. Fundamentals of Acoustics.Newport Beach: ISTE USA.
Brunner, D., Junge, M., and Gaul, L. 2009. A comparison of FE-BE coupling schemes for large scale problems with fluid-structure interaction. International journal of Numerical Methods in Engineering, 77(5), 664-688.Google Scholar
Burton, A. J., and Miller, G. F. 1971. The application of integral equation methods to the numerical solution of some exterior boundary value problems. Proceeding of the Royal Society of London. Series A, 323, 201-210.Google Scholar
Capiez-Lernout, E., and Soize, C. 2004. Nonparametric modeling of random uncertainties for dynamic response of mistuned bladed disks. journal of Engineering for Gas Turbines and Power, 126(3), 600-618.Google Scholar
Capiez-Lernout, E., and Soize, C. 2008a. Design optimization with an uncertain vibroacoustic model. Journal of Vibration and Acoustics, 130(2), 021001-1 -021001-8.Google Scholar
Capiez-Lernout, E., and Soize, C. 2008b. Robust design optimization in computational mechanics. Journal of Applied Mechanics – Transactions of the ASME, 75(2), 021001-1 -021001-11.Google Scholar
Capiez-Lernout, E., and Soize, C. 2008c. Robust updating of uncertain damping models in structural dynamics for low- and medium-frequency ranges. Mechanical Systems and Signal Processing, 22(8), 1774-1792.Google Scholar
Capiez-Lernout, E., Soize, C., Lombard, J.-P., Dupont, C., and Seinturier, E. 2005. Blade manufacturing tolerances definition for a mistuned industrial bladed disk. Journal of Engineering for Gas Turbines and Power, 127(3), 621-628.Google Scholar
Capiez-Lernout, E., Pellissetti, M., Pradlwarter, H. J., Schueller, G. I., and Soize, C. 2006. Data and model uncertainties in complex aerospace engineering systems. Journal of Sound and Vibration, 295(3-5), 923-938.Google Scholar
Capiez-Lernout, E., Soize, C., and Mignolet, M. P. 2012. Computational stochastic statics of an uncertain curved structure with geometrical non-linearity in three-dimensional elasticity. Computational Mechanics, 49(1), 87-97.Google Scholar
Chebli, H., and Soize, C. 2004. Experimental validation of a nonparametric probabilistic model of non homogeneous uncertainties for dynamical systems. Journal of the Acoustical Society of America, 115(2), 697-705.Google Scholar
Chen, H., and Chan, C. T. 2007. Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91, 183518 (3 pp).Google Scholar
Chen, G., and Zhou, J. 1992. Boundary Element Methods.New York: Academic Press.
Chen, C., Duhamel, D., and Soize, C. 2006. Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: case of composite sandwich panels. Journal of Sound and Vibration, 294(1-2), 64-81.Google Scholar
Cheng, Y., Yang, F., Xu, J. Y., and Liu, X. J. 2008. A multilayer structured acoustic cloak with homogeneous isotropic materials. Applied Physics Letters, 92, 151913 (3 pp).Google Scholar
Coleman, B. D. 1964. On the thermodynamics, strain impulses and viscoelasticity. Archive for Rational Mechanics and Analysis, 17, 230-254.Google Scholar
Colton, D. L., and Kress, R. 1992. Integral Equation Methods in Scattering Theory.Malabar, Florida: Krieger Publishing Company.
Costabel, M., and Stephan, E. 1985. A direct boundary integral equation method for transmission problems. Journal of Mathematical Analysis and Applications, 106, 367-413.Google Scholar
Cotoni, V., Shorter, P. J., and Langley, R. S. 2007. Numerical and experimental validation of a hybrid finite element-statistical energy analysis method. Journal of the Acoustical Society of America, 122(1), 259-270.Google Scholar
Cottereau, R., Clouteau, D., and Soize, C. 2007. Construction of a probabilistic model for impedance matrices. Computer Methods in Applied Mechanics and Engineering, 196(17-20), 2252-2268.Google Scholar
Cremer, L., Heckl, M., and Ungar, E. E. 1988. Structure-Born Sound.Berlin: Springer-Verlag.
Crighton, D. G., Dowling, A. P., Ffowcs-Williams, J. E., Heckl, M., and Leppington, F. G. 1992. Modern Methods in Analytical Acoustics.Berlin: Springer-Verlag.
Das, S., and Ghanem, R. 2009. A bounded random matrix approach for stochastic upscaling. Multiscale Modeleling and Simulation. A SIAM Interdisciplinary Journal, 8(1), 296-325.Google Scholar
Dautray, R., and Lions, J.-L. 1992. Mathematical Analysis and Numerical Methods for Science and Technology.Berlin: Springer-Verlag.
David, J. M., and Menelle, M. 2007. Validation of a modal method by use of an appropriate static potential for a plate coupled to a water-filled cavity. Journal of Sound and Vibration, 301(3-5), 739-759.Google Scholar
Deodatis, G., and Spanos, P. D. 2008. 5th International Conferenceon Computational Stochastic Mechanics. Special issue of the Probabilistic Engineering Mechanics, 23(2-3), 103-346.Google Scholar
Desceliers, C., Soize, C., and Cambier, S. 2004. Non-parametric – parametric model for random uncertainties in nonlinear structural dynamics: application to earthquake engineering. Earthquake Engineering and Structural Dynamics, 33(3), 315-327.Google Scholar
Desceliers, C., Soize, C., Grimal, Q., Talmant, M., and Naili, S. 2009. Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: model and experiments. Journal of the Acoustical Society of America, 125(4), 2027-2034.Google Scholar
Deu, J.-F., and Matignon, D. 2010. Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme. Computers and Mathematics with Applications, 59, 1745-1753.Google Scholar
Deu, J.-F., Larbi, W., and Ohayon, R. 2008. Vibration and transient response for structural acoustics interior coupled systems with dissipative interface. Computer Methods in Applied Mechanics and Engineering, 197(51-52), 4894-4905.Google Scholar
Dovstam, K. 1995. Augmented Hooke's law in frequency domain: three dimensional material damping formulation. International Journal of Solids and Structures, 32(19), 2835-2852.Google Scholar
Duchereau, J., and Soize, C. 2006. Transient dynamics in structures with non-homogeneous uncertainties induced by complex joints. Mechanical Systems and Signal Processing, 20(4), 854-867.Google Scholar
Durand, J.-F., Soize, C., and Gagliardini, L. 2008. Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation. Journal of the Acoustical Society of America, 124(3), 1513-1525.Google Scholar
Fahy, F. J., and Gardonio, P. 2007. Sound and Structural Vibration, Second Edition: Radiation, Transmission and Response.Oxford: Academic Press.
Fang, N., Xi, D., Xu, J., Ambati, M., and Srituravanich, W. 2006. Ultrasonic metamaterials with negative modulus. Nature materials, 5(6), 452-456.Google Scholar
Farhat, C., Harari, I., and Hetmaniuk, U. 2003. A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Computer Methods in Applied Mechanics and Engineering, 192(11-12), 1389-1419.Google Scholar
Farhat, C., Wiedemann-Goiran, P., and Tezaur, R. 2004. A discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of short wave exterior Helmholtz problems on unstructured meshes. Wave Motion, 39(4), 307-317.Google Scholar
Feldman, M. 2011. Hilbert Transform Applications in Mechanical Vibration.New York: John Wiley & Sons.
Fernandez, C., Soize, C., and Gagliardini, L. 2009. Fuzzy structure theory modeling of sound-insulation layers in complex vibroacoustic uncertain systems: theory and experimental validation. Journal of the Acoustical Society of America, 125(1), 138-153.Google Scholar
Fernandez, C., Soize, C., and Gagliardini, L. 2010. Sound-insulation layer modelling in car computational vibroacoustics in the medium-frequency range. Acta Acustica united with Acustica (AAUWA), 96(3), 437-444.Google Scholar
Fishman, G.S. 1996. Monte Carlo: Concepts, algorithms, and applications.New York: Springer-Verlag.
Fung, Y. C. 1968. Foundations of Solid Mechanics.Englewood Cliffs, New Jersey: Prentice Hall.
Gaul, L., Kögl, M., and Wagner, M. 2003. Boundary Element Methods for Engineers and Scientists.Heidelberg, New York: Springer-Verlag.
Geers, T. L., and Felippa, C. A. 1983. Doubly asymptotic approximations for vibration analysis of submerged structures. Journal of the Acoustical Society of America, 173(4), 1152-1159.Google Scholar
Geradin, M., and Rixen, D. 1997. Mechanical Vibrations, Second Edition: Theory and Applications to Structural Dynamics.Chichester: Wiley.
Ghanem, R., and Sarkar, A. 2003. Reduced models for the medium-frequency dynamics of stochastic systems. Journal of the Acoustical Society of America, 113(2), 834-846.Google Scholar
Ghanem, R., and Spanos, P. D. 1991. Stochastic Finite Elements: a Spectral Approach.New York: Springer-Verlag.
Ghanem, R., and Spanos, P. D. 2003. Stochastic Finite Elements: A Spectral Approach.New York: Dover Publications.
Givoli, D. 1992. Numerical Methods for Problems in Infinite Domains.Amsterdam, London, New York, Tokyo: Elsevier.
Golla, D. F., and Hughes, P. C. 1985. Dynamics of viscoelastic structures: a time domain, finite element formulation. Journal of Applied Mechanics – Transactions of the ASME, 52, 897-906.Google Scholar
Goller, B., Pradlwarter, H. J., and Schueller, G. I. 2009. Robust model updating with insufficient data. Computer Methods in Applied Mechanics and Engineering, 198(37-40), 3096-3104.Google Scholar
Golub, G. H., and Van Loan, C. F. 1989. Matrix Computations.Baltimore and London: The Johns Hopkins University Press.
Greengard, L., and Rokhlin, V. 1987. A fast algoritm for particle simulations. Journal of Computational Physics, 73(2), 325-348.Google Scholar
Gumerov, N. A., and Duraiswami, R. 2004. Fast Multipole Methods for the Helmholtz Equation in Three Dimension.Amsterdam: Elsevier.
Gurtin, M. E., and Herrera, I. 1965. On dissipation inequalities and linear viscoelasticity. Quarterly of Applied Mathematics, 23(3), 235-245.Google Scholar
Hackbusch, W. 1995. Integral Equations, Theory and Numerical Treatment.Basel: Birkhauser Verlag.
Hahn, S. L. 1996. Hilbert transformsin signal processing.Boston: Artech House Signal Processing Library.
Harari, I., Grosh, K., Hughes, T. J. R., Malhotra, M., Pinsky, P. M., Stewart, J. R., and Thompson, L. L. 1996. Recent development in finite element methods for structural acoustics. Archives of Computational Methods in Engineering, 3(2-3), 131-309.Google Scholar
Howe, M. S. 2008. Acoustics of Fluid-Structure Interactions. Cambridge Monographs on Mechanics. Cambridge: Cambridge University Press.
Hsiao, G. C., and Wendland, W. L. 2008. Boundary Integral Equations.Berlin, Heidelberg: Springer-Verlag.
Hughes, T. J. R. 2000. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.New York: Dover Publications.
Hughes, T. J. R., Cottrell, J. A., and Bazilevs, Y. 1996. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194, 4135-4195.Google Scholar
Jaynes, E. T. 1957. Information theory and statistical mechanics. Physical Review, 108(2), 171-190.Google Scholar
Jentsch, L., and Natroshvili, D. 1999. Non-local approach in mathematical problems of fluid-structure interaction. Mathematical Methods in Applied Sciences, 22(1), 13-42.Google Scholar
Jones, D. S. 1974. Integral equations for the exterior acoustic problem. Quarterly Journal of Mechanics and Applied Mathematics, 1(27), 129-142.Google Scholar
Jones, D. S. 1983. Low-frequency scattering by a body in lubricated contact. Quarterly Journal of Mechanics and Applied Mathematics, 36, 111-137.Google Scholar
Jones, D. S. 1986. Acoustic and Electromagnetic Waves.New York: Oxford University Press.
Junger, M. C., and Feit, D. 1993. Sound, Structures and Their Interaction.Woodbury, NY: Acoust. Soc. Am. Publications on Acoustics. (Originally published in 1972, MIT Press, Cambridge.)
Kaipio, J., and Somersalo, E. 2005. Statistical and Computational Inverse Problems.New York: Springer-Verlag.
Kassem, M., Soize, C., and Gagliardini, L. 2009. Energy density field approach forlow-and medium-frequency vibroacoustic analysis of complex structures using a stochastic computational model. Journal of Sound and Vibration, 323(3-5), 849-863.Google Scholar
Kassem, M., Soize, C., and Gagliardini, L. 2011. Structural partitioning of complex structures in the medium-frequency range: an application to an automotive vehicle. Journal of Sound and Vibration, 330(5), 937-946.Google Scholar
King, F. W. 2009. Hilbert Transforms. Vol 1 and Vol 2. Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press.
Kramers, H. A. 1927. La diffusion de la lumiere par les atomes. Pages 545-557 of: Atti del Congresso Internazionale dei Fisica, vol. 2. Como, Italy: Transactions of Volta Centenary Congress.
Kress, R. 1989. Linear Integral Equations.New York: Springer.
Kronig, R. D. 1926. On the theory of dispersion of X-rays. Journal of Optical Society of America, 12(6), 547-557.Google Scholar
Landau, L., and Lifchitz, E. 1992. Fluid Mechanics.Oxford: Pergamon Press.
Le Maître, O.P., and Knio, O.M. 2010. Spectral Methods for Uncerainty Quantification with Applications to Computational Fluid Dynamics.Heidelberg: Springer.
Lee, M., Park, Y. S., Park, Y., and Park, K. C. 2009. New approximations of external acoustic-structural interactions: derivation and evaluation. Computer Methods in Applied Mechanics and Engineering, 198(15-16), 1368-1388.Google Scholar
Lesieutre, G. A. 2010. Damping in structural dynamics. In: Blockley, R., and Shyy, W. (eds), Encyclopedia of Aerospace Engineering.New York: John Wiley & Sons. doi: 10.1002/9780470686652.eae146
Lesieutre, G. A., and Mingori, D.L. 1990. Finite element modeling of frequency-dependent material damping using augmenting thermodynamic fields. Journal of Guidance, Control, and Dynamics, 13,1040-1050.Google Scholar
Lighthill, J. 1978. Waves in Fluids.Cambridge: Cambridge University Press.
Luke, C. J., and Martin, P. A. 1995. Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle. SIAM Journal on Applied Mathematics, 55(4), 904-922.Google Scholar
Mace, B., Worden, W., and Manson, G. 2005. Uncertainty in structural dynamics. Special issue of the Journal of Sound and Vibration, 288(3), 431-790.Google Scholar
Mathews, I. C. 1986. Numerical techniques for three-dimensional steady-state fluid-structure interaction. Journal of the Acoustical Society of America, 79, 1317-1325.Google Scholar
McTavish, D. J., and Hughes, P. C. 1993. Modeling oflinear viscoelasticspace structures. Journal of Vibration and Acoustics, 115, 103-113.Google Scholar
Mehta, M. L. 1991. Random Matrices, Revised and Enlarged Second Edition.New York: Academic Press.
Mignolet, M. P., and Soize, C. 2008a. Nonparametric stochastic modeling of linear systems with prescribed variance of several natural frequencies. Probabilistic Engineering Mechanics, 23(2-3), 267-278.Google Scholar
Mignolet, M. P., and Soize, C. 2008b. Stochastic reduced order models for uncertain nonlinear dynamical systems. Computer Methods in Applied Mechanics and Engineering, 197(45-48), 3951-3963.Google Scholar
Mignolet, M. P., Soize, C., and Avalos, J. 2013. Nonparametric stochastic modeling of structures with uncertain boundary conditions\coupling between substructures. AIAA Journal, 51(6), 1296-1308.Google Scholar
Milton, G. W., Briane, M., and Willis, J. R. 2006. On cloaking for elasticity and physical equations with a transformation invariant form. New Journal of Physics, 8, 248 (20pp).Google Scholar
Morand, H. J.-P., and Ohayon, R. 1995. Fluid Structure Interaction. Chichester: John Wiley & Sons.
Morse, P. M., and Ingard, K. U. 1968. Theoretical Acoustics.New York: McGraw-Hill.
Nedelec, J. C. 2001. Acoustic and Electromagnetic Equations. Integral representation for harmonic Problems.New York: Springer.
Oden, J. T., Prudhomme, S., and Demkowicz, L. 2005. A posteriori error estimation for acoustic wave propagation. Archives of Computational Methods in Engineering, 12(4), 343-389.Google Scholar
Ohayon, R. 2004a. Fluid-structure interaction problems. Pages 683-693 of: Stein, E., de Borst, R., and Hughes, T.J.R. (eds), Encyclopedia of Computational Mechanics. Vol. 2: Solids and Structures. Chichester: John Wiley & Sons.
Ohayon, R. 2004b. Reduced models for fluid-structure interaction problems. International Journal of Numerical Methods in Engineering, 60(1), 139-152.Google Scholar
Ohayon, R., and Sanchez-Palencia, E. 1983. On the vibration problem for an elastic body surrounded by a slightly compressible fluid. R.A.I.R.O. Analyse numrique/Numerical Analysis, 17(3), 311-326.Google Scholar
Ohayon, R., and Soize, C. 1998. Structural Acoustics and Vibration.London: Academic Press.
Ohayon, R., and Soize, C. 2012. Advanced computational dissipative structural acoustics and fluid-structure interaction in low- and medium-frequency domains. International Journal of Aeronautical and Space Sciences, 13(2), 14-40.Google Scholar
Ohayon, R., Sampaio, R., and Soize, C. 1997. Dynamic substructuring of damped structures using singular value decomposition. Journal of Applied Mechanics – Transactions of the ASME, 64(2), 292-298.Google Scholar
Pandey, J. N. 1996. The Hilbert Transform of Schwartz Distributions and Applications.New York: John Wiley & Sons.
Panich, O. I. 1965. On the question of solvability of the exterior boundary value problems for the wave equation and Maxwell's equations. Russian Math. Surv., 20, 221-226.Google Scholar
Papadimitriou, C., Beck, J. L., and Katafygiotis, L. S. 2001. Updating robust reliability using structural test data. Probabilistic Engineering Mechanics, 16(2), 103-113.Google Scholar
Papoulis, A. 1977. Signal Analysis.New York: McGraw-Hill.
Pellissetti, M., Capiez-Lernout, E., Pradlwarter, H. J., Soize, C., and Schueller, G. I. 2008. Reliability analysis of a satellite structure with a parametric and a non-parametric probabilistic model. Computer Methods in Applied Mechanics and Engineering, 198(2), 344-357.Google Scholar
Pendry, J. B., and Li, J. 2008. An acoustic metafluid: realizing a broadband acoustic cloak. New Journal of Physics, 10(2), 115032 (9pp).Google Scholar
Pierce, A. D. 1989. Acoustics: An Introduction to its Physical Principles and Applications.Woodbury, NY: Acoust. Soc. Am. Publications on Acoustics. (Originally published in 1981, McGraw-Hill, New York.)
Pinkus, A., and Zafrany, S. 1997. Fourier Series and Integral Transforms.Cambridge: Cambridge University Press.
Ritto, T. G., Soize, C., and Sampaio, R. 2009. Nonlinear dynamics of a drill-string with uncertainty model of the bit-rock interaction. International Journal of Non-Linear Mechanics, 44(8), 865-876.Google Scholar
Ritto, T. G., Soize, C., and Sampaio, R. 2010. Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model. Computational Mechanics, 45(5), 415-427.Google Scholar
Roach, G. F. 1982. Green's Functions. 2nd ed. Cambridge: Cambridge University Press.
Rubinstein, R. Y., and Kroese, D. P. 2008. Simulation and the Monte Carlo Method. 2nd ed. New York: John Wiley & Sons.
Sampaio, R., and Soize, C. 2007a. On measures of non-linearity effects for uncertain dynamical systems: application to a vibro-impact system. Journal of Sound and Vibration, 303(3-5), 659-674.Google Scholar
Sampaio, R., and Soize, C. 2007b. Remarks on the efficiency of POD for model reduction in nonlinear dynamics of continuous elastic systems. International Journal for Numerical Methods in Engineering, 72(1), 22-45.Google Scholar
Sanchez-Hubert, J., and Sanchez-Palencia, E. 1989. Vibration and Coupling of Continuous Systems. Asymptotic Methods.Berlin: Springer-Verlag.
Schanz, M., and Steinbach, O. (Eds.). 2007. Boundary Element Analysis.Berlin, Heidelberg, New York: Springer.
Schenck, H. A. 1968. Improved integral formulation for acoustic radiation problems. Journal of the Acoustical Society of America, 44, 41-58.Google Scholar
Schuëller, G. I. 2005. Uncertainties in structural mechanics and analysis- computational methods. Special issue of Computer and Structures, 83(14), 1031-1150.Google Scholar
Schuëller, G. I. 2007. On the treatment of uncertainties in structural mechanics and analysis. Computer and Structures, 85(5-6), 235-243.Google Scholar
Schuëller, G. I., and Jensen, H. A. 2008. Computational methods in optimization considering uncertainties: an overview. Computer Methods in Applied Mechanics and Engineering, 198(1), 2-13.Google Scholar
Shannon, C. E. 1948. A mathematical theory of communication. Bell System Technology Journal, 27(14), 379-423 & 623-459.Google Scholar
Shorter, P. J., and Langley, R. S. 2005. Vibro-acoustic analysis of complex systems. Journal of Sound and Vibration, 288(3), 669-699.Google Scholar
Soize, C. 1986. Probabilistic structural modeling in linear dynamic analysis of complex mechanical systems. I: Theoretical elements. La Recherche Aérospatiale, 5, 23-48 (English edition).Google Scholar
Soize, C. 1993. A model and numerical method in the medium frequency range for vibroacoustic predictions using the theory of structural fuzzy. Journal of the Acoustical Society of America, 94(2), 849-865.Google Scholar
Soize, C. 1998. Estimation of the fuzzy substructure model parameters using the mean power flow equation of the fuzzy structure. Journal of Vibration and Acoustics, 120(1), 279-286.Google Scholar
Soize, C. 2000. A nonparametric model of random uncertainties on reduced matrix model in structural dynamics. Probabilistic Engineering Mechanics, 15(3), 277-294.Google Scholar
Soize, C. 2001. Maximum entropy approach for modeling random uncertainties in transient elastodynamics. Journal of the Acoustical Society of America, 109(5), 1979-1996.Google Scholar
Soize, C. 2003a. Random matrix theory and non-parametric model of random uncertainties. Journal of Sound and Vibration, 263(4), 893-916.Google Scholar
Soize, C. 2003b. Uncertain dynamical systems in the medium-frequency range. Journal of Engineering Mechanics, 129(9), 1017-1027.Google Scholar
Soize, C. 2005a. A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics. Journal of Sound and Vibration, 288(3), 623-652.Google Scholar
Soize, C. 2005b. Random matrix theory for modeling uncertainties in computational mechanics. Computer Methods in Applied Mechanics and Engineering, 194(12-16), 1333-1366.Google Scholar
Soize, C. 2008. Construction of probability distributions in high dimension using the maximum entropy principle: applications to stochastic processes, random fields and random matrices. International Journal for Numerical Methods in Engineering, 76(10), 1583-1611.Google Scholar
Soize, C. 2010a. Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions. International Journal for Numerical Methods in Engineering, 81(8), 939-970.Google Scholar
Soize, C. 2010b. Random matrices in structural acoustics. Pages 206-230 of: Weaver, R., and Wright, M. (eds), New Directions in Linear Acoustics: Random Matrix Theory, Quantum Chaos and Complexity.Cambridge: Cambridge University Press.
Soize, C. 2012a. Stochastic Models of Uncertainties in Computational Mechanics.Reston: American Society of Civil Engineers (ASCE).
Soize, C. 2012b. Stochastic models of uncertainties in computational structural dynamics and structural acoustics. Pages 61-113 of: Elishakoff, I., and Soize, C. (eds), Non deterministics Mechanics. CISM Courses and Lectures (Udine), International Centre for Mechanical Sciences, vol. 539. Wien, NY: Springer.
Soize, C., and Chebli, H. 2003. Random uncertainties model in dynamic sub-structuring using a nonparametric probabilistic model. Journal of Engineering Mechanics, 129(4), 449-457.Google Scholar
Soize, C., and Poloskov, I. E. 2012. Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation. Computers and Mathematics with Applications, 64(11), 3594-3612.Google Scholar
Soize, C., Capiez-Lernout, E., Durand, J.-F., Fernandez, C., and Gagliardini, L. 2008a. Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation. Computer Methods in Applied Mechanics and Engineering, 198(1), 150-163.Google Scholar
Soize, C., Capiez-Lernout, E., and Ohayon, R. 2008b. Robust updating of uncertain computational models using experimental modal analysis. AIAA Journal, 46(11), 2955-2965.Google Scholar
Spall, J. C. 2003. Introduction to Stochastic Search and Optimization. Chichester: John Wiley & Sons.
Taflanidis, A. A., and Beck, J. L. 2008. An efficient framework for optimal robust stochastic system design using stochastic simulation. Computer Methods in Applied Mechanics and Engineering, 198(1), 88-101.Google Scholar
Truesdell, C. 1973. Encyclopedia of Physics, Vol. VIa/3, Mechanics of Solids III.Berlin, Heidelberg, New York: Springer-Verlag.
Von Estorff, O., Coyette, J. P., and Migeot, J. L. 2000. Governing formulations of the BEM inacoustics. Pages 1-44 of: Von Estorff, O. (ed), Boundary Elements in Acoustics: Advances and Applications.Southampton: WIT Press.
Wang, X. Q., Mignolet, M. P., Soize, C., and Khannav, V. 2011. Stochastic reduced order models for uncertain infinite-dimensional geometrically nonlinear dynamical system. Stochastic excitation cases. Pages 293-302 of: Zhu, W. Q., Lin, Y. K., and Cai, G. Q. (eds), IUTAM Symposium on Nonlinear Stochastic Dynamics and Control. IUTAM Bookseries. Hangzhou, China: Zhejiang Univ.
Wright, M., and Weaver, R. 2010. New Directions in Linear Acoustics: Random Matrix Theory, Quantum Chaos and Complexity.Cambridge: Cambridge University Press.
Zienkiewicz, O. C., and Taylor, R. L. 2005. The Finite Element Method For Solid And Structural Mechanics. 6th ed., Amsterdam: Elsevier, Butterworth Heinemann.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×