Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T17:22:34.926Z Has data issue: false hasContentIssue false

1 - Newton's gravitational theory

Published online by Cambridge University Press:  05 April 2013

Hans C. Ohanian
Affiliation:
University of Vermont
Remo Ruffini
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Get access

Summary

  1. It was occasioned by the fall of an apple,

  2. As he sat in a contemplative mood…

  3. William Stukeley, Memoirs of Sir Isaac Newton's Life

Few theories can compare in the accuracy of their predictions with Newton's theory of universal gravitation. The predictions of celestial mechanics for the positions of the major planets agree with observation to within a few arcseconds over time intervals of many years. The discovery of Neptune and the rediscovery of Ceres are among the spectacular successes that testify to the accuracy of the theory. But Newton's theory is not perfect: The predicted motions of the perihelia for the inner planets deviate somewhat from the observed values. In the case of Mercury the excess perihelion precession amounts to 43 arcseconds per century. This small deviation was discovered through calculations by LeVerrier in 1845, and it was confirmed by Newcomb in 1882. The explanation of this perihelion precession became one of the early successes of Einstein's relativistic theory of gravitation.

Telescopic observations of planetary angular positions stretching over hundreds of years are needed to detect the excess perihelion precession. However, with the development of radar astronomy it has become possible to measure the distances to the inner planets directly and very accurately by means of the travel time of a radio signal sent from the Earth to the planet and reflected back. With such radar observations of distances, the small deviations from Newton’s theory can be detected after just a few years of observation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelberger, E. G., Heckel, B. R., and Nelson, A. E. (2003). Ann. Rev. Nucl. Part. Sci. 53, 77.CrossRef
Adelberger, E. G., et al. (2009). Part. Nucl. Phys. 62, 102.CrossRef
Ander, M. E., et al. (1989). Phys. Rev. Lett. 62, 985.CrossRef
Braginsky, V. B., and Panov, V. I. (1971). Zh. Eksp. Teor. Fiz., 61, 873; translated in Sov. Phys. JETP 34, 463 (1972).
Cavendish, H. (1798). Trans. Roy. Soc. London 18, 383 and 469.
Chen, Y. T., Cook, A. H., and Metherell, A. J. F. (1984). Proc. Roy. Soc. London A 394, 47.CrossRef
de Boer, H. (1984). Experiments Relating to the Newtonian Gravitational Constant. In Precision Measurements and Fundamental Constants, ed. Taylor, B. N. and Phillips, W. D.. Natl. Bureau of Standards, Special Publication617.Google Scholar
Dicke, R. H. (1964). Experimental Relativity. In Relativity, Groups, and Topology, ed. DeWitt, C. and DeWitt, B.. New York: Gordon & Breach.Google Scholar
Dicke, R. H., and Goldenberg, H. M. (1967). Phys. Rev. Lett. 18, 313.CrossRef
Eckhardt, D. H., et al. (1988). Phys. Rev. Lett. 60, 2567. For a correction of the data analysis, see Jekeli, C., Eckhardt, D. H., and Romaides, A. J. (1990). Phys. Rev Lett. 64, 1204.CrossRef
Einstein, A. (1916). Ann d. Physik. 49, 769.CrossRef
Eötvös, R. V., Pekar, D., and Fekete, E. (1922). Ann. d. Physik 68, 11.CrossRef
Fischbach, E., and Talmadge, C. L. (1999). The Search for Non-Newtonian Gravity. New York: Springer-Verlag.CrossRefGoogle Scholar
Fischbach, E., et al. (1986). Phys. Rev. Lett. 56, 3.CrossRef
Galileo, Galilei (1638). Dialogues Concerning Two New Sciences. Translated from Le Opere di Galileo Galilei. Florence, Edizione Nazionale (1898), pp. 128, 129.Google Scholar
Goldhaber, A. S., and Nieto, M. M. (2010). Rev. Mod. Phys. 82, 939.CrossRef
Gundlach, J. H., and Merkowitz, S. M. (2000). Phys. Rev. Lett. 85, 2869.CrossRef
Gundlach, J. H., Schlamminger, S., and Wagner, T. (2009). Space Sci. Rev. 148, 201.
Holzscheiter, H. (1990). Bull. A. P. S. 35, 1635.
Hoskins, J. K., et al. (1985). Phys. Rev. D 32, 3084.
Kapner, D. J., et al. (2007). Phys. Rev. Lett. 98, 021101.CrossRef
Koester, L. (1976). Phys. Rev. D 14, 907.
Milgrom, M. (1983). Astrophys. J. 270, 371.CrossRef
Müller, G., et al. (1990). Geophys. J. Int. 101, 329.CrossRef
Muzi, D., and Allacio, A. (2004). Acta Astronautica 54, 167.CrossRef
Newman, R. D., Berg, E. C., and Boynton, P. E. (2009). Space Science Review, 148, 175.CrossRef
Newton, I. (1686). Principia, Book III, Proposition VII and Corollary.Google Scholar
Parker, R. L., and Zumberge, M. A. (1989). Nature 342, 29.CrossRef
Peters, A., et al. (2001). Metrologia 38, 25.CrossRef
Poynting, J. H. (1911). Gravitation. In The Encyclopaedia Britannica, Eleventh Edition. New York: The Encyclopaedia Brittanica Co.Google Scholar
Redouane, M., et al. (2004). Solar Physics 222, 191.
Roll, P. G., Krotkov, R., and Dicke, R. H. (1964). Ann. Phys. (N.Y.), 26, 442.CrossRef
Schiff, L. I. (1959). Proc. Natl. Acad. Sci. (US) 45, 69.CrossRef
Schlamminger, St., et al. (2006). Phys. Rev. D 74, 082001.
Schlamminger, S., et al. (2008). Phys. Rev. Lett. 100, 041101.CrossRef
Smullin, S. J., et al. (2005). Phys. Rev. D 72, 122001.
Spero, R., et al. (1980). Phys. Rev. Lett. 44, 1645.CrossRef
Stacey, F. D., and Tuck, G. J. (1981). Nature 292, 230.CrossRef
Stacey, F. D., et al. (1987). Rev. Mod. Phys. 59, 157.CrossRef
Synge, J. L. (1971). Relativity: The General Theory. Amsterdam: North-Holland, pp. IX--X.Google Scholar
Thomas, J., and Vogel, P. (1990). Phys. Rev. Lett. 65, 1173.CrossRef
Thomas, J., et al. (1989). Phys. Rev. Lett. 63, 1902.CrossRef
Will, C. M. (1993). Theory and Experiment in Gravitational Physics. Cambridge: Cambridge University Press, pp. 28, 29.CrossRefGoogle Scholar
Zumberge, M. A., et al. (1990). J. Geophysical Res. 95, 15483.CrossRef
Zumberge, M. A., et al. (1991). Phys. Rev. Lett. 67, 3051.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×