Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-04T23:56:38.541Z Has data issue: false hasContentIssue false

6 - Molecular statics

from Part II - Atomistics

Published online by Cambridge University Press:  05 June 2012

Ellad B. Tadmor
Affiliation:
University of Minnesota
Ronald E. Miller
Affiliation:
Carleton University, Ottawa
Get access

Summary

Chapters 4 and 5 were essentially about ways to estimate the potential energy of configurations of atoms. In this chapter, we discuss how we can use these potential energy landscapes to understand phenomena in materials science. Generally, this is done by studying key features in the potential energy landscape (local minima and the transition paths between them) using the methods of molecular statics (MS). After discussing some of the details of implementing MS algorithms, we will turn to several example applications in crystalline materials in Section 6.5.

The potential energy landscape

Using quantum mechanics, density functional theory (DFT) or tight-binding (TB) we are able to compute the energy of the electrons given the fixed positions of the atomic nuclei, and add this to the Coulomb interactions between the nuclei to get the total potential energy. In developing empirical methods, we approximated this electronic energy as a potential energy function dependent on only the interatomic distances. In either case, we are able to compute the potential energy, V = V(r), of any arbitrary configuration of N atoms, with positions r = (r1, …, rN). We refer to the set of all possible coordinates {rα} as the configuration space of our system. Much of this configuration space is likely to be unphysical or at least impractical; we can create virtual atomic configurations on a computer that are very unlikely ever to occur in nature.

Type
Chapter
Information
Modeling Materials
Continuum, Atomistic and Multiscale Techniques
, pp. 304 - 374
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×