Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-28T03:57:33.379Z Has data issue: false hasContentIssue false

11 - Atomistic constitutive relations for multilattice crystals

from Part IV - Multiscale methods

Published online by Cambridge University Press:  05 June 2012

Ellad B. Tadmor
Affiliation:
University of Minnesota
Ronald E. Miller
Affiliation:
Carleton University, Ottawa
Get access

Summary

In this chapter, we derive expressions for the free energy, stress and elasticity tensors for crystalline systems under equilibrium conditions. These expressions can be used as constitutive relations in continuum mechanics (see Section 2.5) under the assumption that a continuum system is in a state of “local thermodynamic equilibrium” at each point. The advantage of the “atomistic constitutive relations” derived here is that they inherently possess basic properties of the material such as its symmetries and lattice-invariant shears which are difficult to incorporate into standard continuum models for crystals. It is also hoped that atomistic models are more predictive than macroscopic phenomenological models, but of course this depends on the transferability of the interatomic model as discussed in Section 5.7.2. The use of atomistic constitutive relations within a continuum finite element framework will be our first example of a multiscale method in Chapter 12.

Chapter 8 has already dealt with the derivation of microscopic expressions for stress and elasticity, so why are we revisiting this problem again? The reason is that the statistical mechanics expressions in Chapter 8 place no restrictions on the positions of the atoms aside from overall macroscopic constraints. This is an excellent model for fluids, where atoms move freely through space. However, in solid systems, atoms are arranged in energetically-favorable patterns about which they vibrate with an overall magnitude dictated by the temperature of the system.

Type
Chapter
Information
Modeling Materials
Continuum, Atomistic and Multiscale Techniques
, pp. 550 - 600
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×