Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T17:36:10.902Z Has data issue: false hasContentIssue false

12 - Spatial point processes

Published online by Cambridge University Press:  05 November 2012

Eric D. Feigelson
Affiliation:
Pennsylvania State University
G. Jogesh Babu
Affiliation:
Pennsylvania State University
Get access

Summary

The astronomical context

Spatial data consists of data points in p dimensions, usually p = 2 or 3 dimensions, which can be interpreted as spatial variables. The variables might give locations in astronomical units or megaparsecs, location in right ascension and declination, or pixel locations on an image. Sometimes nonspatial variables are treated as spatial analogs; for example, stellar distance moduli based on photometry or galaxy redshifts based on spectra are common proxies for radial distances that are merged with sky locations to give approximate threedimensional locations.

The methods of spatial point processes are not restricted to spatial variables. They can be applied to any distribution of astronomical data in low dimensions: the orbital distributions of asteroids in the Kuiper Belt; mass segregation in stellar clusters; velocity distributions across a triaxial galaxy or within a turbulent giant molecular cloud; elemental abundance variations across the disk of a spiral galaxy; plasma temperatures within a supernova remnant; gravitational potential variations measured from embedded plasma or lensing distortions of background galaxy shapes; and so forth.

The most intensive study of spatial point processes in astronomy has involved the distribution of galaxies in the two-dimensional sky and in three-dimensional space. One approach, pioneered by Abell (1958), is to locate individual concentrations or “clusters” of galaxies. The principal difficulty is the overlapping of foreground and background galaxies on a cluster, diluting its prominence in two-dimensional projections. The greatest progress is made when spectroscopic redshifts are obtained that, due to Hubble's law of universal expansion, allows the third dimension of galaxy distances to be estimated with reasonable accuracy.

Type
Chapter
Information
Modern Statistical Methods for Astronomy
With R Applications
, pp. 337 - 378
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×