Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-nbtfq Total loading time: 0 Render date: 2024-04-30T09:18:22.665Z Has data issue: false hasContentIssue false

5 - Dense Correspondence and Its Applications

Published online by Cambridge University Press:  05 December 2012

Richard J. Radke
Affiliation:
Rensselaer Polytechnic Institute, New York
Get access

Summary

In the last chapter we focused on detecting and matching distinctive features. Typically, features are sparsely distributed – that is, not every pixel location has a feature centered at it. However, for several visual effects applications, we require a dense correspondence between pixels in two images, even in relatively flat or featureless areas. One of the most common applications of dense correspondence in filmmaking is for slowing down or speeding up a shot after it's been filmed for dramatic effect. To create the appropriate intermediate frames, we need to estimate the trajectory of every pixel in the video sequence over the course of a shot, not just a few pixels near features.

More mathematically, we want to compute a vector field (u(x,y),v(x,y)) over the pixels of the first image I1, so that the vector at each pixel (x,y) points to a corresponding location in the second image I2. That is, the pixels I1(x,y) and I2(x +u(x,y),y + v(x,y)) correspond. We usually abbreviate the vector field as (u,v) with the understanding that both elements are functions of x and y.

Defining what constitutes a correspondence in this context can be tricky. As in feature matching, our intuition is that a correspondence implies that both pixels arise from the same point on the surface of some object in the physical world. The vector (u,v) is induced by the motion of the camera and/or the object in the interval between taking the two pictures.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×