Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T11:36:17.794Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  26 March 2018

Alberto Rojo
Affiliation:
Oakland University, Michigan
Anthony Bloch
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Principle of Least Action
History and Physics
, pp. 241 - 253
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, R., and Marsden, J. E. 1978. Foundations of Mechanics. Addison-Wesley. Reprinted by Perseus Press, 1995.Google Scholar
Alexander, A. 2014. Infinitesimal: How a Dangerous Mathematical Theory Shaped the Modern World. Scientific American / Farrar, Straus and Giroux.Google Scholar
Andersen, K. 1983. The Mathematical Technique in Fermta's Deduction of the Law of Refraction. Historia Mathematica, 10: 48–62.CrossRefGoogle Scholar
Aristotle, 350 BC/1922. De caelo. In The Works of Aristotle. Translated by J. L., Stocks and H. H., Joachim. Oxford University Press.
Aristotle, 350 BC/1955. Aristotle: Mechanical Problems. In Aristotle. Minor Works. Translated by W. S, Hett. Harvard University Press.
Aristotle, 350 BC Politics. Available at http://classics.mit.edu/Aristotle/politics.html .
Baker, B. B., and Copson, E. T. 1950. The Mathematical Theory of Huygens' Principle. Second edn. Clarendon Press, 14.Google Scholar
Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K. U., Katz, M. G., Nowik, T., Sherry, T., and Shnider, S. Fermat, Leibniz, Euler, and the Gang, 2014: The True History of the Concepts of Limit and Shadow. Notices of the AMS 61 (8): 848–864.Google Scholar
Beck, G., Bethe, G., and Riezler, W. 1931. Remarks on the Quantum Theory of the Absolute Zero of Temperature. Die Naturwissenschaften, 2: 38–39. A translation appears in A Random Walk in Science, (1973). Compiled by R.L., Weber, edited by E., Mendoza. Institute of Physics.Google Scholar
Bellver-Cebreros, C., and Rodriguez-Danta, M. 2001. Eikonal Equation from Continuum Mechanics and Analogy between Equilibrium of a String and Geometrical Light Rays. Am. J. Phys. 69: 360–367.CrossRefGoogle Scholar
Bernoulli, J. 1686. Narratio Controvertiæ inter Dn. Hugenium et Abbatem Catalanum agitatæ de Centro Oscillationis quæloco animadversionis esse poterit in Responsionem Dr. Catelani, num. 27, Ephem. Gallic. anni 1684, insertam. Acta Eroditorum, 356–360. Available in Google books.
Bernoulli, J. 1703. Démonstration générale du centre de balancement ou d'oscillation, tirée de la nature du levier. Letter of 13 March 1703 Mém. acad. sci. Paris, 1703. Fourth edn: 78–84.
Bernoulli, J. 1742. Disquisitio Catoptico-Dioptrica. Opera Omnia. Vol. 1. printed by Marci-Michaelis Bousquet & sociorum, 1742: 369–376.
Berry, M. V. 1984. Quantal Phase Factors Accompanying Adiabatic Changes. Proc. Roy. Soc. Lond. A392: 45–57.
Berry, M. V., and Jeffrey, M. R. 2007. Conical Diffraction: Hamilton's Diabolical Point at the Heart of Crystal Optics. In Progress in Optics 50, edited by E., Wolf: 13–50. Elsevier, B. V.Google Scholar
Berry, M.V. 2015. Nature's Optics and Our Understanding of Light. Contemp. Phys. 56: 2–16.Google Scholar
Blanchard, P. and Brüning, E. 1982. Variational Methods in Mathematical Physics: A Unified Approach. Springer-Verlag.Google Scholar
Blåsjö, V. 2005. The Isoperimetric Problem. American Mathematical Monthly 112, June- July: 526–566.CrossRefGoogle Scholar
Bloch, A. 2003. Nonholonomic Mechanics and Control. With J., Baillieul, P., Crouch., J., Marsden., and D., Zenkov. 2nd edn., 2015. Springer.
Bohr, N. 1913a. On the Constitution of Atoms and Molecules: Part I. Phil. Mag. 26 (6): 1–25.Google Scholar
Bohr, N. 1913b. On the Constitution of Atoms and Molecules: Part II, Systems Containing Only a Single Nucleus. Phil. Mag. 26 (6): 476–502.Google Scholar
Bohr, N. 1913c. On the Constitution of Atoms and Molecules: Part III, Systems Containing Several Nuclei. Phil. Mag. 26 (6): 857–875.Google Scholar
Bohr, N. 1922. The Theory of Spectra and Atomic Constitution: Three Essays. Cambridge University Press.Google Scholar
Boltzmann, L. 1872. Further Studies on the Thermal Equilibrium of Gas Molecules. Reprinted in Brush, S. G. 2003. The Kinetic Theory of Gases, an Anthology of Classic Papers with Historical Commentary. Imperial College Press: 262–349. Originally published under the title Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungberichte Akad. Wiss. Vienna, part II, 66: 275–370.Google Scholar
Born, M. 1926. The Problems of Atomic Dynamics: 75. Dover Publications.
Born, M., and Woolf, E. 1999. Principles of Optics, 7th ed., Cambridge University Press.CrossRefGoogle Scholar
Boyer, C. A. 1987. The Rainbow: From Myth to Mathematics. Princeton University Press.CrossRefGoogle Scholar
Brackenridge, J. B. 1996. The Key to Newton's Dynamics: The Kepler Problem and the Principia. University of California Press.Google Scholar
Breger, H. 1994. The Mysteries of Adaequare: A Vindication of Fermat. Arch. Hist. Exact Sci. 46 (3): 193–219.
Briggs, J. S., and Rost, J. M. 2001. On the Derivation of the Time-Dependent Equation of Schrödinger. Foundations of Physics 31: 693–712.CrossRefGoogle Scholar
Brillouin, Marcel. 1919. Actions mécaniques à hérédité discontinue par propagation; essai de théorie dynamique de l'atome à quanta. Comptes rendus 168: 1318–1320.Google Scholar
de Broglie, L 1923a. Ondes et quanta. Comptes rendus 177: 507–510.Google Scholar
de Broglie, L 1923b. Quanta de lumière, diffraction et interférences. Comptes rendus 177: 548–550.Google Scholar
de Broglie, L 1923c. Les quanta, la théorie cinétique des gaz el le principe de Fermat. Comptes rendus 177: 630–632.Google Scholar
de Broglie, L 1924a. A Tentative Theory of Light Quanta. Philosophical Magazine 47: 446–458.Google Scholar
de Broglie, L 1924b. Ph. D. Thesis. Université de Paris.
Brunet, P. 1938. Etude historique sur le principe de la moindre action. Herman & Cie, Éditeurs.Google Scholar
Burns, H. 1895. The Eikonal. Translated by D. H., Delphenich. S., Hirzel.
Butterfield, J. 1995. On Hamilton-Jacobi Theory as a Classical Root of Quantum Theory. In Quo Vadis Quantum Mechanics? Edited by Elitzur, A. C., Dolev, S. and Kolenda, N., 239–273. Springer.
Byers, N. 1978. E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws. Arxiv. hep-th 980744.
Cajori, F. 1729/1934. Sir Isaac Newton's Mathematical Principles of Natural Philosophy and his System of the World (Andrew Motte's translation of the Principia, of 1729, revised.) University of California Press.Google Scholar
Capecchi, D. 2012. History of Virtual Work Laws. A History of Mechanics Prospective. Springer Verlag.CrossRefGoogle Scholar
Carathéodory, C. 1937. The Beginning of Research in the Calculus of Variations. Osiris, 3: 224–240.CrossRefGoogle Scholar
Cauchy, A. 1830. Oeuvres complètes d'Augustin Cauchy. Ser. 1, vol. 9, p. 410.
Cauchy, A. 1843. Mémoire sur les dilatations, les condensations et les rotations produites par un changement de forme dans un système de points matériels. Comptes rendus, Vol. 16, p. 12. Reprinted in Oeuvres Complètes d'Augustin Cauchy. Vol. 7 (1892), 235–246.
Chandrasekhar, S. 1995. Newton's Principia for the Common Reader. Oxford University Press.Google Scholar
Cohen, I. B. 1974. Isaac Newton, The Calculus of Variations, and the Design of Ships. In For Dirk Struik, Scientific, Historical and Political Essays in Honor of Dirk J. Struik. Edited by 000, 169–187. Boston Studies in the Philosophy of Science Vol. 15. Reidel Publishing Company.
Cohen, I. B., and Whitman, A. 1999. A Guide to Newton's Principia. In Isaac Newton, The Principia, p. 46. University of California Press.Google Scholar
Cohen, M., and Drabkin, I. E. 1965. A Source Book in Greek Science. Harvard University Press, 271–272.Google Scholar
Courant, R., and Robbins, H. 1996. What is Mathematics? An Elementary Approach to Ideas and Methods. Revised by Ian Stewart from the original 1941 edition. Oxford University Press.Google Scholar
D'Alembert, J. L. R. 1743. Traité de dynamique.
D'Alembert, J. L. R. 1755. Equilibre. In Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers. Available online at http://encyclopedie.uchicago.edu/.
D'Alembert, J. L. R. 1758. Traité de dynamique (Second edition). First edition 1743.
Damianus, 1897. Schrift über Optik: Mit Auszügen aus Geminos, Edited by R., Schöne, Berlin, Reichsdruckerei.
Darrigol, O. 2010. James MacCullagh's ether: An optical route to Maxwell's equations? European Physical Journal H, 35: 133–172.CrossRefGoogle Scholar
Darrigol, O. 2012. A History of Optics from Greek Antiquity to the Nineteenth Century. Oxford University Press.Google Scholar
Darrigol, O. 2014. Physics and Necessity: Rationalist Pursuits from the Cartesian Past to the Quantum Present. Oxford University Press.CrossRefGoogle Scholar
De la Chambre, M. C. 1662. La Lumière, 313–314. Available in Google Books.
Descartes, R. 1637. Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences plus la dioptrique, les météores et la géomeétrie qui sont des essais de cette méthode. Leyde: Maire. p. 73.Google Scholar
Dirac, P. A. M. 1933. The Lagrangian in Quantum Mechanics. Phys. Zeits. Sowjetunion, 3 (1): 64–72.Google Scholar
Drago, A. 1993. The Principle of Virtual Works as a Source of Two Traditions in 18th Century Mechanics. In Bevilacqua, F. (ed.), 1992. History of Physics in Europe in the 19th and 20th Centuries, Como, Italy, 1992, F., Bevilacqua ed., Società Italiana di Fisica, Bologna, 69–80, Bologna.Google Scholar
Drake, S. 1978. Galileo at Work: His Scientific Biography. University of Chicago Press.Google Scholar
Dugas, R. 1955. A History of Mechanics. Dover.Google Scholar
Duhem, P. 1905. Les origines de la statique.
Eastwood, B. S. 1971. Metaphysical Derivations of a Law of Refraction: Damianos and Grosseteste. Archive for History of Exact Sciences, 6 (3): 224–236.Google ScholarPubMed
Ehrenfest, P. 1911. Welche Züge der Lichtquantenhypothese spielen in der Theorie der Wärmestrahlung eine wesentliche Rolle? Annalen der Physik, 36: 91–118.Google Scholar
Ehrenfest, P. 1913. A mechanical theorem of Boltzmann and its relation to the theory of energy quanta. Proceedings of the Amsterdam Academy 16: 591–597.Google Scholar
Einstein, A. 1905. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 17: 132–148.Google Scholar
Einstein, A. 1911. Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes. Annalen der Physik, 35: 898–908. Translated as “On the Influence of Gravitation on the Propagation of Light,” in Einstein, A. 1952. The Principle of Relativity. Dover. pp. 99–108.Google Scholar
Einstein, A. 1915a. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Preussische Akademie der Wissenschaften, 1915 (part 2): 831–839.
Einstein, A. 1915b. Die Feldgleichungen der Gravitation. Preussischen Akademie der Wissenschaften 1915 (part 2): 844–847.
Einstein, A. 1916a. Die Grundlage der allmeinen Relativitätstheorie. Annalen der Physik, 49: 769–822. Translated as “The Foundation of the General Theory of Relativity,” inGoogle Scholar
Einstein, A. 1952. The Principle of Relativity. Dover. pp. 111–164.
Einstein, A. 1916b. Hamilton's Principle and the General Theory of Relativity. Königliche preußische Akademie der Wissenschaften (Berlin), 1111–1116. Reprinted in “The Principle of Relativity” Einstein (1952).Google Scholar
Einstein, A. 1922. The Meaning of Relativity. Four Lectures Delivered at Princeton University, May, 1921. Princeton University Press.CrossRefGoogle Scholar
Einstein, A. 1952. The Principle of Relativity. A Collection of Original Papers on the Special and General Theory of Relativity, with notes by A., Sommerfeld. DoverGoogle Scholar
Ekeland, I. 2006. The Best of all possible worlds: Mathematics and Destiny. The University of Chicago Press.Google Scholar
Erlichson, H. 1997. Hooke's September 1685 Ellipse Vertices Construction and Newtons's Instantaneous Impulse Construction. Historia Mathematica, 24: 167–184.CrossRefGoogle Scholar
Erlichson, H. 1988. Galileo's work on swiftest descent from a circle and how he almost proved the circle itself was the minimum time path. The American Mathematical Monthly, 105: 338–347.Google Scholar
Euler, L. 1736. Mechanica sive motus scientia analytice exposita. Auctore Leonhardo Eulero academiae imper. scientiarum membro et matheseos sublimioris professore. Vol. 1: Instar supplementi ad commentar. acad. scient. imper. Petropoli. Ex typographia academiae scientarum. Available online at http://eulerarchive.maa.org/ docs/originals/E015intro.pdf.
Euler, L. 1744. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti (A Method of Finding Plane Curves that Show Some Property of Maximum or Minimum, or Solution of Isoperimetric Problems in the Broadest Accepted Sense). Laussanne and Geneva. Also in L. Euler, Opera Omnia I, Vol. XXIV, C. Carathéodory, ed. Bern, 1952.Google Scholar
Euler, L. 1748a. Recherches sur les plus grands et plus petits qui se trouvent dans les actions des forces. Mémoires de l'Académie des sciences de Berlin, 4:149–188.Google Scholar
Euler, L. 1748b. Reflexions sur quelques loix générales de la nature qui s'observent dans les effets des forces quelconques. Mémoires de l'Académie des sciences de Berlin, 4: 189–218.Google Scholar
Euler, L. 1751. Dissertation sur le principe de la moindre action, avec l'examen des objections de M. le Professeur Koenig faites contre ce principe. Berlin. Bilingual edition available online at http://eulerarchive.maa.org/docs/originals/E186a.pdfGoogle Scholar
Euler, L. 1752. Harmonie entre les principes generaux de repos et de mouvement de M., de Maupertuis. Mémoires de l'Académie des sciences de Berlin, 7: 169–198. Available at http://eulerarchive.maa.org/.Google Scholar
Evans, J. and Rosenquist, M. 1986. “F = ma” optics. Am. J. Phys. 54: 876–882.
Fermat, P. 1657/1894. OEuvres. Vol. 1. Translated by Paul Tannery Correspondance. Paris. Available in Google books.
Fermat, P. 1657/1894b. OEuvres. Vol. 3. Translated by Paul Tannery. Paris. Available in Google books. 149–151.
Feynman, R. 1942/2005. Feynman's Thesis–A New Approach to Quantum Theory. Edited by Laurie M Brown. World Scientific. Available online at https://cds.cern.ch/record/ 101498/files/Thesis-1942-Feynman.pdf
Feynman, R. 1965. “The Development of the Space-Time View of Quantum Electrodynamics.” Nobel Lecture. http://www.nobelprize.org/nobel_prizes/physics/laureates/ 1965/feynman-lecture.html.
Feynman, R. 1963. The Feynman Lectures on Physics. Vol. I, Addison Wesley. Section 26–3.
Feynman, R. 2013. The Feynman Lectures on Physics. Vol. II, The Millenium Edition. http://www.feynmanlectures.caltech.edu/II_01.html.
FitzGerald, G. F. 1879. On the electromagnetic theory of the reflection and refraction of light. Proceedings of the Royal Society. Reprinted in FitzGerald, G. F. 1902. The Scientific Papers of the Late G. F. FitzGerald, ed. J. Larmor. Dublin, 41–44.Google Scholar
Fraser, C. 1983. J. L. Lagrange's Early Contributions to the Principles and Methods of Mechanics. Archive for History of Exact Sciences, 28: 197–241.CrossRefGoogle Scholar
Fraser, C. 1985. D'Alembert's Principle: The Original Formulation and Application in Jean d'Alembert's Traité de Dynamique (1743), parts 1 and 2. Centaurus 28: 31–61.Google Scholar
Galilei, G. 1600/1960. On Motion and On Mechanics. Translated with Introduction and notes by I. E., Drabkin and Stillman, Drake. University of Wisconsin Press.Google Scholar
Galilei, G. 1638/1974. Discourses and Mathematical Demonstrations Two New Sciences. Translated by Stillman Drake. University of Wisconsin Press.Google Scholar
Gamow, R. I. 1966. Thirty Years That Shook Physics: The Story of Quantum Theory. Dover Publications.Google Scholar
Gandz, S. 1940. Studies in Babylonian Mathematics III: Isoperimetric Problems and the Origin of the Quadratic Equations. Isis, 32: 103–115.CrossRefGoogle Scholar
Gauss, C. F. 1829. Über ein neues allgemeines Grundgesetzder Mechanik. Crelles Journal, 4: 232–235.Google Scholar
Giusti, E. 2009. Les méthodes des maxima et minima de Fermat. Ann. Fac. Sci. Toulouse Math. 18 (6): Fascicule Special, 5985.CrossRefGoogle Scholar
Goldenbaum, U. 2016. Ein gefälschter Leibnizbrief?: Plaidoyer für seine Authentizität. Wehrhahn Verlag, Hannover.Google Scholar
Goldenbauh, U. 2017. Private communication.
Goldstine, H. H. 1980. A History of the Calculus of Variations from the 17th through the 19th Century. Springer Verlag.CrossRefGoogle Scholar
Gould, S. H. 1985. Newton, Euler, and Poe in the Calculus of Variations. In Differential Geometry, Calculus of Variations, and their Applications. Edited by Rassias, G. M. and Rassias, T. M., 267–282. Marcel Dekker, Inc., 1985.Google Scholar
Gouy, L. G. 1890. Sur une propriété nouvelle des ondes lumineuses. Comptes rendus hebdomadaires des séances de l'Académie des sciences, 110: 1251–1253.Google Scholar
Gouy, L. G. 1891. Sur la propagation anomale des ondes. Annales de chimie et de physique 24 6e série, 145–213.Google Scholar
Graves, R. P. 1882. Life of SirWilliam Rowan Hamilton, Andrews Professor of Astronomy in the University of Dublin, and Royal Astronomer of Ireland, Including Selections from his Poems, Correspondence, and Miscellaneous Writings. Hodges, Figgis, Vol. I.Google Scholar
Gray, J. 1993. Möbius's Geometrical Mechanics. In Möbius and His Band. Edited by Fauvel, J. R. Flood, R. and Wilson, R., 79–103 Oxford University Press.Google Scholar
Gray, C. G. and Taylor, E. F. 2007. When Action Is Not Least. Am. J. Phys. 75: 434–458.CrossRefGoogle Scholar
Gray, C. G. 2009. Principle of Least Action. Scholarpedia, 4 (12): 8291. Available at http://www.scholarpedia.org/article/Principle−of−least−action.CrossRefGoogle Scholar
Green, G. 1838. On the Laws of Reflection and Refraction of Light at the Common Surface of Two Non-Crystallized Media (read 11 Dec 1837). Transactions of the Cambridge Philosophical Society. Also in The Mathematical Papers of the Late George Green. MacMillan and Co. 243–269.Google Scholar
Hall, A. R. and Hall, M. B. 1888/1962. A Catalog of the Portsmouth Collection of Books and Papers Written by or Belonging to Sir Isaac Newton. Cambridge University Press.Google Scholar
Hamilton, W. R. 1823. On a General Method of Expressing the Paths of Light, and of the Planets, by the Coefficients of a Characteristic Function. Dublin University Review and Quarterly Magazine, 1: 795–826.Google Scholar
Hamilton, W. R. 1833. On Some Results of the View of a Characteristic Function in Optics. Report of the Third Meeting of the British Association for the Advancement of Science held at Cambridge in 1833 John Murray, 360–370.Google Scholar
Hamilton, W. R. 1834. On a General Method in Dynamics. Philosophical Transactions of the Royal Society, part II, 247–308.
Hamilton, W. R. 1834b. On the Application to Dynamics of a General Mathematical Method Previously Applied to Optics. British Association Report, 513–518.
Hamilton, W. R. 1835. Second Essay on a General Method in Dynamics. Philosophical Transactions of the Royal Society, I: 95–144.
Hamilton, W. R. 1837. Third Supplement to an Essay on the Theory of Systems of Rays. Transactions of the Royal Irish Academy, 17: 1–144.Google Scholar
Hanc, J. and Taylor, E. F. 2004. From Conservation of Energy to the Principle of Least Action: A Story Line. Am. J. Phys., 72: 514–521 .CrossRefGoogle Scholar
Hanc, J., Taylor, E. F. and Tuleja, S. 2004. Deriving Lagrange's Equations Using Elementary Calculus. Am. J. Phys., 72: pp. 510–513.CrossRefGoogle Scholar
Hanc, J., Taylor, E. F. and Tuleja, S. 2005. Variarional Mechanics in One and Two Dimensions. Am. J. Phys., 73: 603–610.CrossRefGoogle Scholar
Hanc, J., Tuleja, S. and Hancova, M. 2004. Simple Derivation of Newtonian Mechanics from the Principle of Least Action. Am. J. Phys., 71: 386–391.Google Scholar
Hankins, T. L., 1967. The Reception of Newton's Second Law of Motion in the 18th Century. Archives internationales d'histoire des sciences, 20: 55–56.Google Scholar
Hankins, T. L., 1970. Jean d'Alembert, Science and the Enlightenment. Clarendon Press.
Hankins, T. L., 1980. Sir William Rowan Hamilton. The John Hopkins University Press.Google Scholar
Hardy, G. H., 1967. A Mathematicians Apology. Cambridge University Press.Google Scholar
Hawking, S. and Ellis, G.F.R. 1973. The Large Scale Structure of Space-Time. Cambridge University Press. pp. 365–368.CrossRefGoogle Scholar
Heath, T. 1921. A History of Greek Mathematics. Vol. 2. Oxford University Press, pp. 206–213.
Heath, T. 1926. The Thirteen Books of Euclid's Elements. Books 1–2. Cambridge University Press.Google Scholar
Heilbrom, J. 2013. The path to the Quantum Atom. Nature, 498: 27–30.Google Scholar
Helmholtz, H., von. 1887. Zur Geschichte des Princips der kleinsten Action.
Helmholtz, H., von. 1892. Das Princip der kleinsten Wirkung in der Electrodynamik. Annalen der Physik, 283: 1–26.
Heronis, Alexandrini. 1976. Opera Qvae Supersvnt Omnia. Vol. 2. Teubner, 396. Available at http://gallica.bnf.fr/ark:/12148/bpt6k25187r
Hertz, H.R. 1894/1956. Gessamelte Werke, Vol. 3 Der Prinzipien der Mechanik in neuem Zusammenhange dargestellt, Barth. English Translation: Dover.
Herzberger, M. 1936. On the Characteristic Function of Hamilton, the Eiconal of Bruns, and Their Use in Optics. J. Opt. Soc. Am., 26: 177–178.CrossRefGoogle Scholar
Hildebrandt, S. and Tromba, A. 1985. Mathematics and Optimal Form. Scientific American Books.
Holm, D. D. 2008. Geometric Mechanics. Imperial College Press.Google Scholar
Hussein, M. S., Pereira, J. G., Stojanoff, V., and Takai, H. 1980. The Sufficient Condition for an Extremum in the Classical Action Integral as an Eigenvalue Problem. American Journal of Physics, 48: 767–770.CrossRefGoogle Scholar
Huygens, C. 1673. Horologium Oscillatorium; sive, de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae.
Huygens, C. 1690/1945. Treatise on Light. In Which Are Explained the Causes of That Which Occurs in Reflexion, & in Refraction. And Particularly in the Strange Refraction of Iceland Crystal. Rendered into English by Silvanus, P. Thompson. University of Chicago Press, 42–44.Google Scholar
Jacobi, C. G. 1837. Über die Reduction der Integration der partiellen Differentialgleichungen erster Ordnung zwischen Irgend einer Zahl Variabeln auf die Integration eines einzigen Systemes gewohnlicher Differentialgleichungen. Journal für die Reine und Angewandte Mathematik, 17: 97–162. In Werke, 4: 57–127.Google Scholar
Jacobi, C. G. 1837. Zür Theorie der Variationensrechnung und der Differential Gleichungen. J. f. Math. XVII: 68–82. An English translation is given in Todhunter (1861/2005): p. 243.
Jacobi, C. G. 1884. Vorlesungen über Dynamik. For the English version see Balagangadharan, K. (translator), 2009. Jacobi's Lectures on Dynamics. Hindustan Book Agency.
Jammer, M. 1999. Concepts of Force. Dover.
Jourdain, P. E. B. 1912. Maupertuis and the Principle of Least Action. The Monist, 22: 414–459.CrossRefGoogle Scholar
Jouguet, E. 1908. Lectures de Mécanique. La Mécanique Ensignée par les Auteurs Orininaux. Vol. 1. Gauthier-Villars.
Klein, F. 1918. Über die Differentialgesetze für die Erhaltung von Impuls und Energie in die Einsteinschen Gravitationstheories. Nachr. d. Konig. Gesellsch. d.Wiss. zu Gottingen Math-phys. Klasse.
Klein, M. J. 1970. Paul Ehrenfest, The Making of a Theoretical Physicist. Vol. 1. North Holland.
Knobloch, E. 2012. Leibniz and the Brachistochrone. Documenta Mathematica. Extra Volume ISMP, 15–18.
König, S. 1751. De universali principio aequilibrii et motus. Nova acta eroditorum, 162–176. Available at http://gallica.bnf.fr/.
Kragh, J. 1982. Erwin Schrödinger and theWave Equation: The Crucial Phase. Centaurus, 26: 154–197.CrossRefGoogle Scholar
Kragh, J. 1985 The Fine Structure of Hydrogen and the Gross Structure of the Physics Community, 1916–26. Historical Studies in the Physical Sciences, 15: No. 2, 67–125.CrossRefGoogle Scholar
Kuhn, T. S., and Heilbron, J. L. 1969. The Genesis of the Bohr Atom. Historical Studies in the Physical Sciences, 1: 211–290.Google Scholar
Kuhn, T. S., 1978. Black-body Theory and the Quantum Discontinuity: 1894–1912. Oxford University Press.Google Scholar
Lagrange, J. L. 1760/1761. Application de la méthode exposé dans le mémoire précédente à la solution des problèmes de dynamique differents. Miscelanea Taurinesia, 196–298.
Lagrange, J. L. 1764. Recherches sur la libration de la Lune. OEuvres de Lagrange, Vol. 6, 5–61. Available at http://gallica.bnf.fr/.
Lagrange, J. L. 1768. Mécanique Analytique, Seconde Partie. The equations first appeared in Miscell. Tourin, 11.
Lagrange, J. L. 1811/1995. Analytical Mechanics. Translated by A., Boissonnade and V. N., Vagliente from the Mécanique analytique. New edn. 1811. Springer.
Lamb, H. 1900. On a Peculiarity of the Wave-System due to the Free Vibrations of a Nucleus in an Extended Medium. Proc. London Math. Soc., 53: 208–211.Google Scholar
Lanczos, C. 1962. The Variational Principles of Mechanics. Second edn. University of Toronto Press, first edn. 1949.
Landsman, N., P. 2007. Between Classical and Quantum. In Handbook of the Philosophy of Science, Vol. 2: Philosophy of Physics, Edited by John Earman & Jeremy Butterfield, 417–554. North Holland.Google Scholar
Laplace, P. S. 1799. Traité de mécanique céleste. Vol. 1, First Part, Book 2. 165 ff.
Larmor, J. 1893. A Dynamical Theory of the Electric and Luminuferous Medium. Proceedings of the Royal Society of London, 14: 438–461.Google Scholar
Leibniz, G. W. 1682. Unicum Opticae, Catoptricae & Dioptricae Principium. Acta eruditorum. June. Reprinted in Acta Eruditorum. Vol. 1. Johnson Reprint Corporation. English translation by Jeffrey, K. McDonough. Available at http://philosophyfaculty.ucsd.edu/faculty/rutherford/Leibniz/unitary-principle.htm.
Leibniz, G.W., 1962. Mathematische Schriften, Vol. 3/1. Edited by G. I., Gerhardt. Reprint. Georg Olms Verlagbuchhandlung Hildesheim.
Leibniz, G.W., 1696/1952. Tentamen Anagogicum. In Philosophical Papers and Letters. Translated by Loemker, L. E., 777–788. University of Chicago Press.Google Scholar
Lenz, W. 1924. Über den Bewegungsverlauf und die Quantenzustände der gestörten Keplerbewegung. Zeitschrift für Physik, 24: 197–207.CrossRefGoogle Scholar
Levi, M. 2002. Lectures on Geometrical Methods in Mechanics In Classical and Celestial Mechanics. Edited by H., Cabral and F., Diacu, 239–280, Princeton University Press.Google Scholar
Levi, M. 2012. The Mathematical Mechanic: Using Physical Reasoning to Solve Problems. Princeton University Press.Google Scholar
Lewis, A. 1998. The Geometry of the Gibbs-Appell Equations and Gauss' Principle of Least Constraint. Reports on Math. Phys, 38: 11–28.Google Scholar
Liberzon, D. 2012. Calculus of Variations and Optimal Control Theory. Princeton University Press.Google Scholar
Lloyd, H. 1833. On the Phenomena Presented by Light in its Passage along the Axes of Biaxial Crystals. Trans. R. Irish Acad., 17: 145–158. Reprinted in Lloyd, H., 1877. Miscellaneous Papers Connected with Physical Science. Longman Green: 1–18.Google Scholar
Lohne, J. 1959. Thomas Harriott (1650–1621), The Tycho Brahe of Optics. Centaurus, 6 (2): 113–121.Google Scholar
Lorentz, H. A. 1892 La théorie électromagnétique de Maxwell et son application aux corps mouvants. E.J. Brill.Google Scholar
Lorentz, H. A. 1895. Michelson's Interference Experiment. Reprinted in Einstein (1952), 1–7.
Lorentz, H. A. 1903. Contributions to the Theory of Electrons, Proc. Roy. Acad. Amsterdam. 608: 132–154.Google Scholar
Lyssy, A. 2015. L'Économie de la nature—Maupertuis et Euler sur le Principe de Moindre Action, Philosophiques, 42: 31–51.CrossRefGoogle Scholar
Lyusternik, L. A. 1964. Shortest Paths, Variational Problems. MacMillan.Google Scholar
Mach, E. 1960. The Science of Mechanics: Account of its Development. Translated by Thomas, J. McCormack. Sixth edn. Open Court Publishing Company.
Mariotte, E. (1673). Traité de la percussion ou chocq des corps, dans lequel les principales régles du mouvement contraires á celles que Mr. Des Cartes, & quelques autres modernes ont voulu éstablir, sont demonstrées par leurs veritables causes.
Mark Smith, A. 1982. Ptolemy's Search for a Law of Refraction: A Case-Study in the Classical Methodology of ‘Saving the Appearances’ and Its Limitations. Archive for History of Exact Sciences, 26: No. 3, 221–240.Google Scholar
Mark Smith, A. 2009. Alhacen on Refraction: A Critical Edition, with English Translation and Commentary, of Book 7 of Alhacen's De Aspectibus. Transactions of the American Philosophical Society, 100 (3): 213–331.Google Scholar
Marsden, J. E. and T. S., Ratiu. 1999. Introduction to Mechanics and Symmetry. Springer- Verlag, Texts in Applied Mathematics, 17; First Edition 1994, Second Edition, 1999.Google Scholar
de Maupertuis, P. L. M. 1744. Accord de différentes loix de la nature, qui avoient jusqu'ici paru incompatible. Memoires de l'Académie Royale de Sciences (Paris), 417–426. Reprinted in Oeuvres, 4 pp. 1–23 Reprografischer Nachdruck der Ausg. (1768).Google Scholar
de Maupertuis, P. L. M. 1746. Les Loix du mouvement et du repos duites d'un principe metaphysique. Histoire de l'Académie Royale des Sciences et des Belles Lettres, 267–294.
Mayer, A. 1877. Geschichte des Princips der kleinsten Action. Leipzig. Available in Google books.Google Scholar
MacCullagh, J. 1846. An Essay towards a Dynamical Theory of Crystalline Re-exion and Refraction (read 9 Dec. 1839). The Transactions of the Royal Irish Academy, 21: 17–50.Google Scholar
McDonough, J. K. 2008. Leibniz's two realms revisited. Nôus, 42 (4): 673–696Google Scholar
McDonough, J. K. 2009. Leibniz on Natural Teleology and the Laws of Optics. Philosophy and Phenomenological Research, 78 (3): 505–544.CrossRefGoogle Scholar
Mehra, J. and Rechenberg, H. 1982. The Historical Development of Quantum Theory. Part I, Springer-Verlag, 58.
Möbius, A. F. 1837. Lehrbuch der Statik. Part 2, 217–313.
Moore, T. A. 2004. Getting the Most Action Out of Least Action: A Proposal. Am. J. Phys. 72: 522–527.CrossRefGoogle Scholar
Motte, A. 1729. Mathematical Principles of Natural Philosophy by Sir Isaac Newton, translated into English. Vol. 2, Appendix pp. i–vii.
Nakane, M. and Fraser, C. G. 2002. The Early History of Hamilton-Jacobi Dynamics 1834– 1837. Centaurus, 44: 61–227.Google ScholarPubMed
Nadderd, L., Davidovic, M. and Davidovic, D. 2014. A direct derivation of the relativistic Lagrangian for a system of particles using d'Alembert's principle. Am. J. Phys, 82: 1083–1086.CrossRefGoogle Scholar
Nauenberg, M. 1994. Hooke, Orbital Motion, and Newtons's Principia. American Journal of Physics 62 (4): 331–350.CrossRefGoogle Scholar
Neimark, J. I. and N. A., Fufaev. 1972. Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, AMS, 33.Google Scholar
Navarro, L. and Pérez E. 2006. Paul Ehrenfest: The Genesis of the Adiabatic Hypothesis, 1911–1914. Arch. Hist. Exact Sci. 60: 209–267.CrossRefGoogle Scholar
Neumann, J.G. 1888. Leipzig Beriechte XL, Vierkandt Monatshefte fu¨r Math u. Phys. III.
Newton, I. 1687. Philosophi Naturalis Principia Mathematica. Londini Societatis Regiae ac Typis, Josephi and Streater.
Newton, I. 1718. Opticks: A Treatise of the Reflections, Refractions, Inflections & Colours of Light. Second Edition. Available in Google books.
Noether, E. 1918. Invariante Variationsprobleme, Nachr. D. Knig. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse, 235–257.
Nicholson, J. W. 1912. The Constitution of the Solar Corona. II. Month. Not. Roy. Astr. Soc., 72: 677–692.Google Scholar
O'Hara, J. 1979. Analysis versus Geometry: William Rowan Hamilton, James Mac- Cullagh and the Elucidation of the Fresnel Wave Surface in the Theory of Double Refraction. Available at https://halshs.archives-ouvertes.fr/halshs-00004274v3/ file/15_OHara.tif.pdf.
O'Hara, J. 1982. The Prediction and Discovery of Conical Refraction by William Rowan Hamilton and Humphrey Lloyd (1832–1833). Proc. Roy. Ir. Acad. 82: pp. 231–257.Google Scholar
Okun, L.B. 1989. The Concept of Mass. Physics Today, 42: 31–36.CrossRefGoogle Scholar
Okun, L.B. 2009. Mass versus Relativistic and Rest Masses. Am. J. Phys. 77: 430–431.CrossRefGoogle Scholar
Olver, P. 2015. Introduction to the Calculus of Variations. Notes.
Orio de Miguel, B. (Translator). 2009. Correspondencia G. W. Leibniz–Johann Bernoulli. Cartas 1–275, 20 de diciembre de 1693–11 de noviembre de 1716. Registro de la Propiedad Intelectual de la Comunidad de Madrid.
Pais, A. 1982. ‘Subtle is the Lord: The Science and the Life of Albert Einstein. Oxford University Press, 154Google Scholar
Pais, A. 1991. Niels Bohr's Times. Oxford University Press. p.154
Palmieri, P. 2008. The Empirical Basis of Equilibrium: Mach, Vailati, and the Lever. Stud. Hist. Phil. Sci. 39: 42–53.CrossRefGoogle Scholar
Pappus of Alexandria, 1888. Pappi Alexandrini Collectionis: quae supersunt. Vol. 2, 1189– 1211.
Pars, L. A. 1965. A Treatise on Analytical Dynamics. Heineman.Google Scholar
Pedersen, O. 1993. Early Physics and Astronomy: A Historical Introduction. Cambridge University Press 115.Google Scholar
Pérez, E. 2009. Ehrenfest's Adiabatic Theory and the Old Quantum Theory, 1916–1918. Arch. Hist. Exact Sci. 63: pp. 81–125.Google Scholar
Piéi Valls, B. and Pérez, E. 2016. The Historical Role of the Adiabatic Principle in Bohr's Quantum Theory. Ann. Phys., 528: 530–534 .Google Scholar
Planck, M. 1906a. Vorlesungen über die Theorie der Wärmestrahlumg, J. A., Barth, 155– 156. For the translation of the second edition, see M., Planck. 1914. The Theory of Radiation. Blakiston's Son & Co., 160–166.Google Scholar
Planck, M. 1906b. Das Prinzip der Relativität und die Grundgleichungen der Mechanik. Verhandlungen der Deutschen Physikalischen Gesellschaft, 8: 136–141.Google Scholar
Planck, M. 1907. Zur Dynamik bewegter Systeme. Sitzungsberichte der Preussischen Akademie der Wissenschaften, (January-June), 542–570.
Planck, M. 1910. Die Stellung der neueren Physik zur mechanischen Naturanschauung. In Planck, M. 1944. Wege zur physikalischen Erkenntnis. Reden und Vorträge. S., Hirzel. pp.. 25–41.
Planck, M. 1915. Eight Lectures on Theoretical Physics. Columbia University Press.Google Scholar
Planck, M. 1915/1993. The Principle of Least Action. In A Survey of Physical Theory. Dover.
Poe, E. A. 1975. The Complete Tales and Poems. Vintage Books.
Poisson, M. 1818. Mémoire sur l'intégration de quelques équations lináires aux différences partielles, et particulièrement de léquation générale du mouvement des fluides élastiques. Mémoires de l'Académie royale des sciences, 3: 121–176.Google Scholar
Pound, R. V. and Rebka Jr. G. A. 1959. Gravitational Red-Shift in Nuclear Resonance. Physical Review Letters, 3: 439–441CrossRefGoogle Scholar
Rashed, R. 1970. Optique géometrique et doctrine optique chez Ibn al-Haytham. Archive for History of Exact Sciences, 6: 271–298.CrossRefGoogle Scholar
Rashed, R. 1990. A Pioneer in Anaclastics: Ibn Sahl on Burning Mirrors and Lenses. Isis, 81: 464–491.CrossRefGoogle Scholar
Rashed, R. 2016. Private communication.
Rodrigues, O. 1816. De la manière d'employer le principe de la moindre action, pour obtenir les équations du mouvement, rapportées aux variables independentes. Correspondance sur l'École Royale Polytechnique. Vol. III, 159–162.
Rojo, A. G. 2005. Hamilton's Principle: Why Is the Integrated Difference of the Kinetic and Potential Energy Minimized? Am. J. Phys., 73: 831–836.CrossRefGoogle Scholar
Runge, C. 1919. Vektoanalysis. Vol. 1.
Sabra, A. I. 1981. Theories of Light from Descartes to Newton. Cambridge University Press.Google Scholar
Sarton, G. 1932. Discovery of Conical Refraction by William Rowan Hamilton and Humphrey Lloyd (1833). Isis, 17: 154–170.Google Scholar
Schopenhauer, A. 1969. The world as will and representation. Vol. 1 Dover Publications.
Schrödinger, E. 1926a. Quantisation as a Problem of Proper Values (Part I). Annalen der Physik, 79: 361–376.Google Scholar
Schrödinger, E. 1926b. Quantisation as a Problem of Proper Values (Part II). Annalen der Physik, 79: 489–527.Google Scholar
Schrödinger, E. 1926c. Quantisation as a Problem of Proper Values (Part III). Annalen der Physik, 80: 437–490.Google Scholar
Schrödinger, E. 1926d. Quantisation as a Problem of Proper Values (Part IV). Annalen der Physik, 81: 109–139.Google Scholar
Schrödinger, E. 1928. Collected Papers on Wave Mechanics. Blackie & Son Limited, London.Google Scholar
Schwartz, M. 1972. Principles of Electrodynamics. Dover Publications.Google Scholar
Schwarzschild, K. 1903. Zur Elektrodynamik. 1. Zwei Formen des Prinzips der kleinsten Wirkung in der Elektronentheorie. Konigliche Gesellschaft der Wissenschaften und der Georg August Universitat zu Gottingen. 126–131. Available at http://gdz.sub.unigoettingen. de/ .
Schwarzschild, K. 1916. On the Gravitational Field of a Point-Mass, According to Einstein's Theory. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 49: 189–196.Google Scholar
Serway, Raymond A. and Jewett, John W. 2013. Physics for Scientists and Engineers. Ninth edn. Cengage Learning, 1071–1072.
Sklar, L. 2013. Philosophy and the Foundations of Mechanics. Cambridge University Press.Google Scholar
Soldner, H. J. von. 1801 On the Deflection of a Light Ray from its Motion along a Straight Line through the Attraction of a Celestial Body Which Passes Nearby. Translated from Soldner, H. J., Astronomisehes Jahrbuch für das Jahr 1804, 161–172, in Jaki, S. L. 1978. Johann Georg von Soldner and the Gravitational Bending of Light, with an English Translation of His Essay on It Published in 1801. Foundations of Physics, 8: Nos. 11/12, 927–950.Google Scholar
Sommerfeld, A. and Runge, I. 1911. Anwendung der Vektorrechtung auf die Grundlagen der geometrischen Optik. Annalen der Physik, 4th ser. 35: pp. 289–293.Google Scholar
Sommerfeld, A. 1911a. Das Plancksche Wirkungsquantum und seine allgemeine Bedeutung für die Molekularphysik. Physikalische Zeitschrift, 12: 10571069.
Sommerfeld, A. 1911b. Application de la théorie de l'élément d'áction aus phénomènes moléculaires non périodiques. In La théorie du rayonnement et les quanta. Rapports et discussions de la réunion tenue à Bruxelles, du 30 octobre au 3 novembre 1911, sous les auspices de M. E. Solvay. Pub. par MM. P. Langevin et M. de Broglie. Ulan Press, 2012, 313–392.
Sommerfeld, A. 1916. Zur Theorie des Zeeman-Effekts der Wasserstofflinien, mit einem Anhang über den Stark-Effect. Phys. Zs., 17: 491–507Google Scholar
Sommerfeld, A. 1950. Mechanics of Deformable Bodies: Lectures on Theoretical Physics. Vol. 2. Academic Press.
Sommerfeld, A. 1952. Mechanics. Lectures on Theoretical Physics. Vol. 1. Academic Press.
Smith, G. E. 2006. The vis viva dispute: A controversy at the dawn of dynamics. Phys. Today, October, 31–36.
Steiner, J. 1842. Sur le maximum et le minimum des figures dans le plan, sur la sphère et dans l'espace en général. Second mémoire'. J. Reine Angew. Math. 24: 189–250.Google Scholar
Stokes, G. G. 1862. Report on double refraction. Report of the British Association for the Advancement of Science. Reprinted Mathematical and Physical Papers, by the Late George Gabriel Stokes. Vol. 4. Cambridge University Press (1904). 127–202
Stöltzner, M. 2003. The Principle of Least Action as the Logical Empiricist's Shibboleth. Studies in History and Philosophy of Modern Physics, 34: 285–318.CrossRefGoogle Scholar
Stuewer, R. 1970. Non-Einstenian Interpretations of the Photoelectric Effect. Minnesota Studies in the Philosophy of science. Edited by R., Stuewer. Vol. 5, 246–263
Synge, J. L. 1937. Geometrical Optics: An Introduction to Hamilton's Method. Cambridge University Press, vii.Google Scholar
Synge, J. L. 1945. The Life and EarlyWork of SirWilliam Rowan Hamilton. In a collection of papers in memory of Sir William Rowan Hamilton, Scipta Mathematica Studies, 13–24.
Sussmann, H. J. and Willems, J.C. 1997. 300 Years of Optimal Control: From the Brachistochrone to the Maximum Principle. IEEE Control System Magazine, 17: 32–44.Google Scholar
Taylor, E. F. and Wheeler, J. A. 1999. Spacetime Physics: Introduction to Special Relativity. Second edn. W. H., Freeman.
Taylor, E. F. and Wheeler, J. A. 2000. Exploring Black Holes. Addison Wesley, 5.
Terrall, M. 2002. The Man Who Flattened the Earth; Maupertuis and the Sciences of Enlightment. University of Chicago Press.Google Scholar
Thomson, William (Lord Kelvin). 1890. On a Mechanism for the Constitution of Ether. Proceedings Royal Society of Edinburgh, 17: 122–132.Google Scholar
Thucydides, 431 BC. The History of the Peloponnesian War. Available at http://classics.mit.edu/Thucydides/pelopwar.html
Tisserand, F. 1899. Traité de mécanique céleste, 95–97.
Todhunter, I. 1861/2005. A History of the Progress of the Calculus of Variations During the Nineteenth Century. Cambridge University Press.Google Scholar
Truesdell, C. 1960. Rational Mechanics of Flexible or Elastic Bodies. 1638–1788 – Introduction to Work of Euler. Springer.
Truesdell, C. 1960b. A Program toward Rediscovering the Rational Mechanics of the Age of Reason. Archive for History of Exact Sciences, 1: 3–36.CrossRefGoogle Scholar
Truesdell, C. 1968. Whence the Law of Moment of Momentum? Chapter V in Truesdell C., 1968. Essays in the History of Mechanics. Springer-Verlag.CrossRefGoogle Scholar
Varignon, P. 1735. Nouvelle Mecanique ou Statique. Vol. 2.
Vierkandt, A. 1892. Über gleitende und rollende Bewegung. Monatshefte der Math. und Phys. 3: 31–54.Google Scholar
Virgil. 19. BC The Aeneid. Book I. Translated by Robert Fitzgerald. New York: Random House, 1981.
Visser, T. D. and Wolf, E. 2010. The origin of the Gouy phase anomaly and its generalization to astigmatic wavefields. Optics Communications, 283: 3371–3375.CrossRefGoogle Scholar
Voltaire, 1753. Diatribe du docteur Akakia, médecin du Pape: Decret de l'inquisition. Rome. Available in Google books.
Vollgraff, J. A. 1915. Christiaan Huygens (1629–1695) et Jean le Rond d'Alembert (1715– 1783). Janus, 20: 269–313.Google Scholar
Weierstrass, K. 1927. Mathematische Werke. Vol. 7. Mayer & Muller.
Weyl, H. 1919. Eine neue Erweiterung der Relativitätstheorie. Ann. der Physik, 59: 101– 133.Google Scholar
Whiteside, D. T. 1974. The Mathematical Papers of Isaac Newton. Vol. 6. Cambridge University Press.
Whittaker, E. T. 1988. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Fourth Edition, Cambridge University Press; first edn. 1904, fourth edn., 1937, reprinted by Dover 1944 and Cambridge University Press 1988.Google Scholar
Young, A. T. 2012. An introduction to mirages http://mintaka.sdsu.edu/GF/mirages/ mirintro.html.
Yourgrau, W. and Mandelstam, S. 1968. Variational Principles in Dynamics and Quantum Theory. W.H. Saunders and Co., first published 1955.Google Scholar
Yurkina, M. I. 1985. Sur l'histoire de la notion du potentiel. Journal of Geodesy, 59 (2): 150–166.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alberto Rojo, Oakland University, Michigan, Anthony Bloch, University of Michigan, Ann Arbor
  • Book: The Principle of Least Action
  • Online publication: 26 March 2018
  • Chapter DOI: https://doi.org/10.1017/9781139021029.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alberto Rojo, Oakland University, Michigan, Anthony Bloch, University of Michigan, Ann Arbor
  • Book: The Principle of Least Action
  • Online publication: 26 March 2018
  • Chapter DOI: https://doi.org/10.1017/9781139021029.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alberto Rojo, Oakland University, Michigan, Anthony Bloch, University of Michigan, Ann Arbor
  • Book: The Principle of Least Action
  • Online publication: 26 March 2018
  • Chapter DOI: https://doi.org/10.1017/9781139021029.018
Available formats
×