Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-07T08:14:35.883Z Has data issue: false hasContentIssue false

7 - Low-noise tuned amplifier design

Published online by Cambridge University Press:  05 March 2013

Sorin Voinigescu
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Friis, H. T., “Noise figure of radio receivers,” Proc. IRE, 32: 419–422, July 1944.Google Scholar
2011 ITRS Roadmap.
Voinigescu, S. P. et al., “A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design,” IEEE JSSC, 32(9): 1430–1439, September 1997 and S. P. Voinigescu and M. C. Maliepaard on "High-frequency noise and impedance matched integrated circuits" US Patent no. 5789799.Google Scholar
Voinigescu, S. P., Chalvatzis, T., Yau, K. H. K., Hazneci, A., Garg, A., Shahramian, S., Yao, T., Gordon, M., Dickson, T. O., Laskin, E., Nicolson, S. T., and Carusone, A. C., Tchoketch-Kebir, L., Yuryevich, O., Ng, G., Lai, B., and Liu, P., “SiGe BiCMOS for analog, high-speed digital and millimetre-wave applications beyond 50GHz,” IEEE BCTM Digest, pp. 223–230, October 2006.
Yao, T., Gordon, M., Yau, K., Yang, M. T., and Voinigescu, S. P. “60GHz PA and LNA in 90nm RF-CMOS,” IEEE RFIC Symposium Digest, pp. 147–150, June 2006.
Yau, K. H. K., Tang, K. K. W., Schvan, P., Chevalier, P., Sautreuil, B., and Voinigescu, S. P., “The invariance of the noise impedance in n-MOSFETs across technology nodes and its application to the algorithmic design of tuned low noise amplifiers,” IEEE Si Monolithic Integrated Circuits in RF Systems, pp. 245–248, Jan. 2007.
Jan, C. -H., Agostinelli, M., Deshpande, H., El-Tanani, M. A., Hafez, W., Jalan, U., Janbay, L., Kang, M., Lakdawala, H., Lin, J., Lu, Y. -L., Mudanai, S., Park, J., Rahman, A., Rizk, J., Shin, W. -K., Soumyanath, K., Tashiro, H., Tsai, C., VanDerVoorn, P., Yeh, J. -Y., and Bai, P., “RF CMOS technology scaling in high-k/metal gate era for RF SoC (system-on-chip) applications,” IEEE IEDM Digest, pp. 604–607, December 2010.
Shaffer, D. K. and Lee, T. H., “A 1.5V 1.5GHz CMOS low noise amplifier,” IEEE JSSC, 32(5): 745–759, 1997.Google Scholar
Nicolson, S. T. and Voinigescu, S. P., “Methodology for simultaneous noise and impedance matching in W-Band LNAs,” IEEE CSICS Digest, pp. 279–282, November 2006.
Gordon, M., Yao, T., and Voinigescu, S. P., “65GHz receiver in SiGe BiCMOS using monolithic inductors and transformers,” 6 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems Technical Digest, pp. 265–268, Jan. 2006.
Razavi, B., “A 60GHz direct-conversion CMOS receiver,” IEEE ISSCC Digest, pp. 400–401, February 2005.
Nicolson, S. T., Yau, K. H. K., Pruvost, S., Danelon, V., Chevalier, P., Garcia, P., Chantre, A., Sautreuil, B., and Voinigescu, S. P., “A low-voltage SiGe BiCMOS 77GHz automotive radar chipset,” IEEE MTT, 56: 1092–1104, May 2008.Google Scholar
Yau, K. H. K., Chevalier, P., Chantre, A., and Voinigescu, S. P., “Characterization of the noise parameters of SiGe HBTs in the 70–170 GHz Range,” IEEE MTT, in print. 2011.
Khanpour, M., Tang, K. W., Garcia, P., and Voinigescu, S. P., “A wideband W-band receiver front-end in 65nm CMOS,” IEEE JSSC, 43(8): 1717–1730, August 2008.Google Scholar
Karanicolas, A. N., “A 2–7-V 900MHz CMOS LNA and mixer,” IEEE JSSC, 31: 1939–1944, December 1996.Google Scholar
Wang, S. B. T., Niknejad, A. M., and Brodersen, R. W., “A Sub-mW 960MHz ultra-wideband CMOS LNA,” IEEE RFIC Symposium Digest, pp. 35–38, June 2005.
Li, D. and Yu, K., “60GHz LNA radio receiver ICs in 65nm CMOS,” 4th year undergraduate project, ECE Dept. University of Toronto, April 2008.
Nicolson, S. T., Tomkins, A., Tang, K. W., Cathelin, A., Belot, D., and Voinigescu, S. P., “A 1.2V, 140GHz receiver with on-die antenna in 65nm CMOS,” IEEE RFIC Symposium Digest, pp. 239–242, June 2008.
Floyd, B. et al., “ SiGe bipolar transceiver circuits operating at 60GHz,” IEEE JSSC, 40: 156–157, January 2005.Google Scholar
Allstot, D. J., Li, X., and Shekhar, S., “Design considerations for CMOS low-noise amplifiers,” IEEE RFIC Symposium Digest, pp. 97–100, June 2004.
Bruccoleri, F., Klumperink, E. A. M., and Nauta, B., “Wide-band CMOS low-noise amplifier exploting thermal noise canceling,” IEEE JSSC, 39: 275–282, February 2004.Google Scholar
Long, J. R. and Copeland, M. A., “A 1.9GHz low-voltage silicon bipolar receiver front-end for wireless personal communication systems,” IEEE JSSC, 30: 1438–1448, December 1995.Google Scholar
Cassan, D. and Long, J. R., “A 1-V transformer-feedback low-noise amplifier for 5GHz wireless LAN in 0.18-μm CMOS,” IEEE JSSC, 38: 427–435, March 2003.Google Scholar
Reiha, M. T., Long, J. R., and Pekarik, J. J., “A 1.2V Reactive-feedback 3.1–10.6 GHz ultrawideband low-noise amplifier in 0.13μm CMOS,” IEEE RFIC Symposium Digest, pp. 55–58, 2006.
Tomkins, A., Garcia, P., and Voinigescu, S. P., “A passive W-band imager in 65nm bulk CMOS,” IEEE JSSC, 45(10): 1981–1991, October 2010.Google Scholar
Tomkins, A., Aroca, R. A., Yamamoto, T., Nicolson, S. T., Doi, Y., and Voinigescu, S. P., “A zero-IF 60GHz 65nm CMOS transceiver with direct BPSK modulation demonstrating up to 6Gb/s data rates over a 2m wireless link,” IEEE JSSC, 44(8): 2085–2099, August 2009.Google Scholar
Laskin, E., Tomkins, A., Balteanu, A., Sarkas, I., and Voinigescu, S. P., “A 60GHz RF IQ DAC transceiver with on-die at-speed loopback,” IEEE RFIC Symposium Digest, Baltimore, June 2011.
Voinigescu, S. P. and Maliepaard, M. C., “5.8GHz and 12.6GHz Si Bipolar MMICs,” IEEE ISSCC Digest, pp. 372–373, 1997.
Gordon, M. and Voinigescu, S. P., “An inductor-based 52GHz 0.18μm SiGe HBT cascode LNA with 22dB gain,” European Solid-State Circuits Conference, pp. 287–290, September 2004.
Subramanian, V., Mercha, A., Parvias, B., Dehan, M., Groeseneken, G., Sansen, W., and Decoutere, S., “Identifying the bottlenecks to the RF performance of FinFETs,” 23rd International Conference on VLSI Design, 2010.
Fu, C -T, Lakdawala, H., Taylor, S. S., and Soumyanath, K., “A 2.5GHz 32nm 0.35mm2 3.5dB NF −5dBm P1dB fully differential CMOS push-pull LNA with integrated T/R switch and ESD protection,” IEEE ISSCC Digest, pp. 56–57, February 2011.
Borremans, J., Mandal, G., Giannini, V., Sano, T., Ingels, M., Verbruggen, B., and Craninck, J., “A 40nm CMOS highly linear 0.4-to-6 GHz receiver resilient to 0dBm out-of-band blockers,” IEEE ISSCC Digest, pp. 62–63, February 2011.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×