Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-14T05:18:38.571Z Has data issue: false hasContentIssue false

9 - Gases

Published online by Cambridge University Press:  05 April 2015

M. Scott Shell
Affiliation:
University of California, Santa Barbara
Get access

Summary

Until now, most of what we have discussed has involved general relationships among thermodynamic quantities that can be applied to any system, such as the fundamental equation, reversibility, Legendre transforms, and Maxwell equations. In this and the coming chapters, we begin to investigate properties of specific types of substances. We will mostly consider very simple models in which only the essential physics is included; these give insight into the basic behaviors of solids, liquids, and gases, and actually are sufficient to learn quite a bit about them. Of course, there are also many detailed theoretical and empirical models for specific systems, but very often these theories simply improve upon the accuracy of the approaches rather than introduce major new concepts and qualitative behaviors.

Statistical mechanics provides a systematic route to state- and substance-specific models. If one can postulate a sufficiently simple description of the relevant atomic interaction energetics, the entropy or free energy can be determined in fundamental form. Ultimately our strategy for most of these simple models will be to determine the chemical potential μ(T, P) in single-component systems or μ(T, P, {x}) for multicomponent ones, where {x} gives the mole fractions. In both cases, knowledge of the chemical potentials does indeed give a fundamental perspective, allowing us to extract all of the intensive thermodynamic properties. Moreover, for problems involving phase equilibrium, the chemical potential is the natural starting point, as we will see in Chapter 10.

Type
Chapter
Information
Thermodynamics and Statistical Mechanics
An Integrated Approach
, pp. 161 - 175
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Denbigh, K., The Principles of Chemical Equilibrium, 4th edn. New York: Cambridge University Press (1981).CrossRefGoogle Scholar
Hill, T. L., An Introduction to Statistical Thermodynamics. Reading, MA: Addison-Wesley (1960); New York: Dover (1986).Google Scholar
Landau, L. D. and Lifshitz, E. M., Statistical Physics, 3rd edn. Oxford: Butterworth-Heinemann (1980).Google Scholar
McQuarrie, D. A., Quantum Chemistry. Mill Valley, CA: University Science Books (1983).Google Scholar
McQuarrie, D. A., Statistical Mechanics. Sausalito, CA: University Science Books (2000).Google Scholar
Smith, J. M., Ness, H. V., and Abbott, M., Introduction to Chemical Engineering Thermodynamics, 7th edn. New York: McGraw-Hill (2005).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Gases
  • M. Scott Shell, University of California, Santa Barbara
  • Book: Thermodynamics and Statistical Mechanics
  • Online publication: 05 April 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139028875.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Gases
  • M. Scott Shell, University of California, Santa Barbara
  • Book: Thermodynamics and Statistical Mechanics
  • Online publication: 05 April 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139028875.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Gases
  • M. Scott Shell, University of California, Santa Barbara
  • Book: Thermodynamics and Statistical Mechanics
  • Online publication: 05 April 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139028875.011
Available formats
×