Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-30T07:34:13.189Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 March 2013

Robert J. Trapp
Affiliation:
Purdue University, Indiana
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlerman, E. J., Droegemeier, K. K., and Davies-Jones, R., 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 2045–2069.2.0.CO;2>CrossRefGoogle Scholar
Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984: Computational Fluid Mechanics and Heat Transfer. Hemisphere Publishing, New York.Google Scholar
Anthes, R. A., 1986: The general question of predictability. Mesoscale Meteorology and Forecasting, American Meteorological Society, Boston, 636–656.CrossRefGoogle Scholar
Armijo, L, 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570–573.2.0.CO;2>CrossRefGoogle Scholar
Arnup, S. J., and Reeder, M. J., 2007: The diurnal and seasonal variation of the northern Australian dryline. Mon. Wea. Rev., 135, 2995–3008.CrossRefGoogle Scholar
Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32, 116–125.2.0.CO;2>CrossRefGoogle Scholar
Atkins, N. T., Bouchard, C. S., Przybylinski, R. W., et al., 2005: Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX. Mon. Wea. Rev., 113, 2275–2296.CrossRefGoogle Scholar
Atkins, N. T., and Cunningham, J. J., 2006: The influence of low-level stable layers on damaging surface winds within bow echoes. Preprints, 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., (6.4) CD-ROM.Google Scholar
Atkins, N. T., and Laurent, M. St., 2009: Bow echo mesovortices. Part II: Their genesis. Mon. Wea. Rev., 137, 1514–1532.CrossRefGoogle Scholar
Atkins, N. T., Wakimoto, R. M., and Weckwerth, T. M., 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944–968.2.0.CO;2>CrossRefGoogle Scholar
Atkins, N. T., Wakimoto, R. M., and Ziegler, C. L., 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126, 525–555.2.0.CO;2>CrossRefGoogle Scholar
Atkins, N. T., Weisman, M. L., and Wicker, L. J., 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 2910–2927.2.0.CO;2>CrossRefGoogle Scholar
Augustine, J. A., and Caracena, F., 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116–135.2.0.CO;2>CrossRefGoogle Scholar
Balaji, V., and Clark, T. L., 1988: Scale selection in locally forced convective fields and the initiation of deep cumulus. J. Atmos. Sci., 45, 3188–3211.2.0.CO;2>CrossRefGoogle Scholar
Baldwin, M. E., Kain, J. S., and Lakshmivarahan, S., 2005: Development of an automated classification procedure for rainfall systems. Mon. Wea. Rev., 133, 844–862.CrossRefGoogle Scholar
Banacos, P. C., and Schultz, D. M., 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351–366.CrossRefGoogle Scholar
Bannon, P. R., 1996: On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci., 53, 3618–3628.2.0.CO;2>CrossRefGoogle Scholar
Bannon, P. R., 2002: Theoretical foundations for models of moist convection. J. Atmos. Sci., 59, 1967–1982.2.0.CO;2>CrossRefGoogle Scholar
Banta, R. M., and Barker Schaaf, C., 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463–476.2.0.CO;2>CrossRefGoogle Scholar
Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396–409.2.0.CO;2>CrossRefGoogle Scholar
Barnes, S. L., 1973: Mesoscale objective analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, Norman, OK [NTIS COM-73–10781].
Barnes, G. M., Sieckman, K., 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 1782–1794.2.0.CO;2>CrossRefGoogle Scholar
Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press.Google Scholar
Bedka, K., Brunner, J., Dworak, R., et al., 2010: Objective Satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181–202.CrossRefGoogle Scholar
Beer, T., 1974: Atmospheric Waves. Wiley, New York.Google Scholar
Bell, G. D., and Janowiak, J. E., 1995: Atmospheric circulation associated with the Midwest floods of 1993. Bull. Amer. Meteor. Soc., 76, 681–695.2.0.CO;2>CrossRefGoogle Scholar
Benjamin, S. G., Brewster, K. A., Brummer, R. L., et al., 1991: An isentropic three-hourly data assimilation system using ACARS aircraft observations. Mon. Wea. Rev., 119, 888–906.2.0.CO;2>CrossRefGoogle Scholar
Benjamin, S. G., Schwartz, B. E., Koch, S. E., and Szoke, E. J., 2004: The value of wind profiler data in U.S. weather forecasting. Bull. Amer. Meteor. Soc., 85, 1871–1886.CrossRefGoogle Scholar
Benjamin, T. B., 1968: Gravity currents and related phenomena. J. Fluid Mech., 31, 209–248.CrossRefGoogle Scholar
Berry, G. J., and Thorncroft, C. D., 2012: African easterly wave dynamics in a mesoscale numerical model: The upscale role of convection. J. Atmos. Sci., 69, 1267–1283.CrossRefGoogle Scholar
Biggerstaff, M. I., et al., 2005: The Shared Mobile Atmospheric Research and Teaching Radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 1263–1274.CrossRefGoogle Scholar
Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. 2, Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press.Google Scholar
Bluestein, H. B., and Jain, M. H., 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711–1732.2.0.CO;2>CrossRefGoogle Scholar
Bluestein, H. B., McCaul, Jr. E. W., Byrd, G. P., and Woodall, G. R., 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas storm of 7 May 1986. Mon. Wea. Rev., 116, 1790–1804.2.0.CO;2>CrossRefGoogle Scholar
Bluestein, H. B., and Weisman, M. L., 2000: The interaction of numerically simulated supercells initiated along lines. Mon. Wea. Rev., 128, 3128–3148.2.0.CO;2>CrossRefGoogle Scholar
Bluestein, H. B., and Woodall, G. R., 1990: Doppler-radar analysis of a low-precipitation severe storm. Mon. Wea. Rev., 118, 1640–1664.2.0.CO;2>CrossRefGoogle Scholar
Blyth, A. M., Cooper, W. A., and Jensen, J. B, 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 3944–3964.2.0.CO;2>CrossRefGoogle Scholar
Blyth, A. M., Lasher-Trapp, S. G., and Cooper, W. A., 2005: A study of thermals in cumulus clouds. Quart. J. Roy. Meteor. Soc., 131, 1171–1190.CrossRefGoogle Scholar
Bohme, T., Lane, T. P., Hall, W. D., and Hauf, T., 2007: Gravity waves above a convective boundary layer: A comparison between wind-profiler observations and numerical simulations. Quart. J. Roy. Meteor. Soc., 133, 1041–1055.CrossRefGoogle Scholar
Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046–1053.2.0.CO;2>CrossRefGoogle Scholar
Bony, S., et al., 2006: How well do we understand and evaluate climate change feedback processes?J. Climate, 19, 3445–3482.CrossRefGoogle Scholar
Bougeault, P., et al., 2010: The THORPEX interactive grand global ensemble. Bull. Amer. Met. Soc., 91, 1059–1072.CrossRefGoogle Scholar
Brady, R. H., and Szoke, E. J., 1989: A case study of nonmesocyclone tornado development in northeast Colorado: Similarities to waterspout formation. Mon. Wea. Rev., 117, 843–856.2.0.CO;2>CrossRefGoogle Scholar
Brandes, E. A., 1977: Flow in severe thunderstorms observed by dual-Doppler radar. Mon. Wea. Rev., 105, 113–120.2.0.CO;2>CrossRefGoogle Scholar
Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106, 995–1011.2.0.CO;2>CrossRefGoogle Scholar
Brandes, E. A., and Ziegler, C. L., 1993: Mesoscale downdraft influences on vertical vorticity in a mature mesoscale convective system. Mon. Wea. Rev., 121, 1337–1353.2.0.CO;2>CrossRefGoogle Scholar
Brock, F. V., and Richardson, S. J., 2001: Meteorological Measurement Systems. Oxford University Press.Google Scholar
Brock, F. V., Crawford, K. C., Elliott, R. L., et al., 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 5–19.2.0.CO;2>CrossRefGoogle Scholar
Brock, F. V., Lesins, G., and Walko, R., 1987: Measurement of pressure and air temperature near severe thunderstorms: An inexpensive and portable instrument. Extended Abstracts, Sixth Symp. on Meteorological Observations and Instrumentation, New Orleans, LA, American Meteorological Society, Boston, 320–323.Google Scholar
Brooks, H. E., Doswell, C. A. III, and Wilhelmson, R. B., 1994: The role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122, 126–136.2.0.CO;2>CrossRefGoogle Scholar
Brooks, H. E., Lee, J. W., and Craven, J. P., 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 73–94.
Brown, R. A., and Wood, V. T., 1991: On the interpretation of single-Doppler velocity patterns within severe thunderstorms. Wea. Forecasting, 6, 32–48.2.0.CO;2>CrossRefGoogle Scholar
Brown, R. A., and Wood, V. T., 2007: A guide for interpreting Doppler velocity patterns: Northern Hemisphere Edition. NOAA National Severe Storms Laboratory document, 55 pp. (Available from .)
Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639.2.0.CO;2>CrossRefGoogle Scholar
Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 23–41.2.0.CO;2>CrossRefGoogle Scholar
Browning, K.A. and Ludlam, F. H., 1962: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117–135.CrossRefGoogle Scholar
Browning, K. A., and Donaldson, R. J., 1963: Airflow and structure of a tornadic storm. J. Atmos. Sci., 20, 533–545.2.0.CO;2>CrossRefGoogle Scholar
Bryan, G. H., 2008: On the computation of pseudoadiabatic entropy and equivalent potential temperature. Mon. Wea. Rev., 136, 5239–5245.CrossRefGoogle Scholar
Bryan, G. H., and Fritsch, J. M., 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 1207–1230.2.3.CO;2>CrossRefGoogle Scholar
Bryan, G. H., and Fritsch, J. M., 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 2917–2928.2.0.CO;2>CrossRefGoogle Scholar
Bryan, G. H., Knievel, J. C., and Parker, M. D., 2006: A multimodel assessment of RKW theory's relevance to squall-line characteristics. Mon. Wea. Rev., 134, 2772–2792.CrossRefGoogle Scholar
Bryan, G. H., and Rotunno, R., 2008: Gravity currents in a deep anelastic atmosphere. J. Atmos. Sci., 64, 536–556.CrossRefGoogle Scholar
Bunkers, M. J., Klimowski, B. A., Zeitler, J. W., et al., 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 61–79.2.0.CO;2>CrossRefGoogle Scholar
Byers, H. R., and Braham, R. R., Jr., 1949: The Thunderstorm. U.S. Department of Commerce, Weather Bureau, Washington D.C.Google ScholarPubMed
Carbone, R. E., 1983: A severe frontal rainband. Part II: Tornado parent vortex circulation. J. Atmos. Sci., 40, 2639–2654.2.0.CO;2>CrossRefGoogle Scholar
Carleton, A. M., Travis, D. J., Adegoke, J. O., et al., 2008: Synoptic circulation and land surface influences on convection in the midwest U.S. “Corn Belt,” summers 1999 and 2000. Part II: Role of vegetation boundaries. J. Climate, 21, 3635–3659.Google Scholar
Carley, J. R., Schwedler, B. R. J., Baldwin, M. E., et al., 2011: A proposed model-based methodology for feature-specific prediction for high impact weather. Wea. Forecasting, 26, 243–249.CrossRefGoogle Scholar
Carlson, T. N., and Ludlam, F. H., 1968: Conditions for the formation of severe local storms. Tellus, 20, 203–226.CrossRefGoogle Scholar
Carlson, T. N., Benjamin, S. G., Forbes, G. S., and Li, Y.-F., 1983: Elevated mixed layers in the severe-storm environment: Conceptual model and case studies. Mon. Wea. Rev., 111, 1453–1473.2.0.CO;2>CrossRefGoogle Scholar
Chen, F., and Dudhia, J., 2001: Coupling an advanced land-surface/ hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585.2.0.CO;2>CrossRefGoogle Scholar
Chisholm, A. J., and Renick, J. H., 1972: The kinematics of multicell and supercell Alberta hailstorms. Alberta hail studies, Research Council of Alberta Hail Studies, Rep. 72–2, 24–31.
Cohen, A. E., Coniglio, M. C., Corfidi, S. F., and Corfidi, S. J., 2007: Discrimination of mesoscale convective system environments using sounding observations. Wea. Forecasting, 22, 1045–1062.CrossRefGoogle Scholar
Coniglio, M. C., Corfidi, S. F., and Kain, J. S., 2011: Environment and early evolution of the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 139, 1083–1102.CrossRefGoogle Scholar
Coniglio, M. C., Stensrud, D. J., and Richman, M. B., 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19, 320–337.2.0.CO;2>CrossRefGoogle Scholar
Cook, A. R., and Schaefer, J. T., 2008: The relation of El Nino-Southern Oscillation (ENSO) to winter tornado activity. Mon. Wea. Rev., 136, 3121–3137.CrossRefGoogle Scholar
Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 997–1017.2.0.CO;2>CrossRefGoogle Scholar
Cotton, W. R., and Anthes, R. A., 1989: Storm and Cloud Dynamics. Academic Press, San Diego, CA.Google Scholar
Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367–374.2.0.CO;2>CrossRefGoogle Scholar
Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 1533–1541.2.0.CO;2>CrossRefGoogle Scholar
Dailey, P. S., and Fovell, R. G., 1999: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev., 127, 858–878.2.0.CO;2>CrossRefGoogle Scholar
Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press.Google Scholar
Damiani, R., Vali, G., and Haimov, S., 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 1432–1450.CrossRefGoogle Scholar
Davies, H. C., 1994: Theories of frontogenesis. The Life Cycles of Extratropical Cyclones. Gronas, S. and Shapiro, M. A. (eds.), Vol. I, University of Bergen, 182–192.Google Scholar
Davies-Jones, R. P., 1974: Discussion of measurements inside high-speed thunderstorm updrafts. J. Appl. Meteor., 13, 710–717.2.0.CO;2>CrossRefGoogle Scholar
Davies-Jones, R. P., 1979: Dual-Doppler radar coverage area as a function of measurement accuracy and spatial resolution. J. Appl. Meteor., 18, 1229–1233.CrossRefGoogle Scholar
Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 2991–3006.2.0.CO;2>CrossRefGoogle Scholar
Davies-Jones, R. P., 1988: Tornado interception with mobile teams. Chapter 2 in Measurements and Techniques for Thunderstorm Observations and Analysis, Vol. 3, of Thunderstorms: A Social, Scientific, and Technological Documentary. Kessler, E. (ed.), Univ. of Oklahoma Press, Norman, OK, 23–32.Google Scholar
Davies-Jones, R., 2002: Linear and nonlinear propagation of supercell storms. J. Atmos. Sci., 59, 3178–3205.2.0.CO;2>CrossRefGoogle Scholar
Davies-Jones, R., and Brooks, H. E., 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, American Geophysical Union, 105–114.CrossRefGoogle Scholar
Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 1397–1411.2.0.CO;2>CrossRefGoogle Scholar
Davis, C., et al., 2004: The bow echo and MCV experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 1075–1093.CrossRefGoogle Scholar
Davis, C. A., and Trier, S. B., 2007: Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135, 2029–2049.CrossRefGoogle Scholar
Del Genio, A. D., and Kovari, W., 2002: Climatic properties of tropical precipitating convection under varying environmental conditions. J. Climate, 15, 2597–2615.2.0.CO;2>CrossRefGoogle Scholar
Derber, J. C., and Wu, W.-S., 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287–2299.2.0.CO;2>CrossRefGoogle Scholar
Dial, G. L., Racy, J. P., and Thompson, R. L., 2010: Short-term convective mode evolution along synoptic boundaries. Wea. Forecasting, 25, 1430–1446.CrossRefGoogle Scholar
Diffenbaugh, N.S., Trapp, R. J., and Brooks, H. E., 2008: Challenges in identifying influences of global warming on tornado activity. Eos Trans., 89, 553–554.CrossRefGoogle Scholar
Doswell, C. A., 1985: The operational meteorology of convective weather. Vol. II: Storm scale analysis. NOAA Technical Memorandum ERL ESG-15.
Doswell, C. A., 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 3–16.2.0.CO;2>CrossRefGoogle Scholar
Doswell, C. A., 1991: A review for forecasters on the application of hodographs to forecasting severe thunderstorms. Nat. Wea. Dig., 16 (1), 2–16.Google Scholar
Doswell, C. A., 2001: Severe convective storms – An overview. Severe Convective Storms, Meteor. Monogr., No. 50, American Meteorological Society, Boston, 1–26.CrossRefGoogle Scholar
Doswell, C. A., and Burgess, D. W., 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Hazards, and Prediction (Geophys. Monogr. 79), Church, C., Burgess, D., Doswell, C., and Davies-Jones, R. (eds.), American Geophysical Union, 161–172.CrossRefGoogle Scholar
Doswell, C. A., and Rasmussen, E. N. 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625–629.2.0.CO;2>CrossRefGoogle Scholar
Doswell, C. A., Brooks, H. E., and Maddox, R. A., 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–580.2.0.CO;2>CrossRefGoogle Scholar
Doswell, C. A, and Bosart, L. F., 2001: Extratropical synoptic-scale processes and severe convection. Severe Convective Storms, Meteor. Monogr., No. 50, American Meteorological Society, Boston, 27–70.CrossRefGoogle Scholar
Doswell, C. A., and Markowski, P. M., 2004: Is buoyancy a relative quantity?Mon. Wea. Rev., 132, 853–863.2.0.CO;2>CrossRefGoogle Scholar
Doswell, C. A., Brooks, H. E., and Dotzek, N., 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554–563.CrossRefGoogle Scholar
Dotzek, N., Groenemeijer, P., Feuerstein, B., and Holzer, A. M., 2009: Overview of ESSL's severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575–586.CrossRefGoogle Scholar
Doviak, R. J., and Zrnic, D. S., 1993: Doppler Radar and Weather Observations, Second Edition. Academic Press, San Diego, 562 pp.Google Scholar
Dowell, D. C., and Bluestein, H. B., 1997: The Arcadia, Oklahoma, storm of 17 May 1981: Analysis of a supercell during tornadogenesis. Mon. Wea. Rev., 125, 2562–2582.2.0.CO;2>CrossRefGoogle Scholar
Dowell, D. C., Bluestein, H. B., and Jorgensen, D. P., 1997: Airborne Doppler radar analysis of supercells during COPS-91. Mon. Wea. Rev., 125, 365–383.2.0.CO;2>CrossRefGoogle Scholar
Dowell, D. C., Wicker, L. J., and Snyder, C., 2011: Ensemble Kalman Filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272–294.CrossRefGoogle Scholar
Drazin, P. G., 2002: Introduction to Hydrodynamic Stability. Cambridge University Press.CrossRefGoogle Scholar
Droegemeier, K. K., and Wilhelmson, R. B., 1985a: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations. J. Atmos. Sci., 42, 2381–2403.2.0.CO;2>CrossRefGoogle Scholar
Droegemeier, K. K., and Wilhelmson, R. B., 1985b: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part II: Variations in vertical wind shear. J. Atmos. Sci., 42, 2404–2414.2.0.CO;2>CrossRefGoogle Scholar
Droegemeier, K. K., and Wilhelmson, R. B., 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 1180–1210.2.0.CO;2>CrossRefGoogle Scholar
Droegemeier, K. K., Lazarus, S. M., and Davies-Jones, R., 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121, 2005–2029.2.0.CO;2>CrossRefGoogle Scholar
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107.2.0.CO;2>CrossRefGoogle Scholar
Dworak, R., Brunner, J., Feltz, W., and Bedka, K., 2012: Comparison between GOES-12 overshooting top detections, WSR-88D radar reflectivity and severe storm reports. Wea. Forecasting, 27, 684–699.
Ebert, E. E., 2008: Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework. Meteorol. Appl., 15, 51–64.CrossRefGoogle Scholar
Etling, D., and Brown, R. A., 1993: Roll vortices in the planetary boundary layer: A review. Boundary-Layer Meteorology, 65, 215–248.CrossRefGoogle Scholar
Emanuel, K. A., 1986: Overview and definition of mesoscale meteorology. In Mesoscale Meteorology and Forecasting, American Meteorological Society, Boston, 1–17.Google Scholar
Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, Oxford.Google Scholar
Evans, J. S., and Doswell, III C. A., 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329–342.2.0.CO;2>CrossRefGoogle Scholar
Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280.2.0.CO;2>CrossRefGoogle Scholar
Fiedler, B. H., and Trapp, R. J., 1993: A fast dynamic grid adaption scheme for meteorological flows. Mon. Wea. Rev., 121, 2879–2888.2.0.CO;2>CrossRefGoogle Scholar
Fiedler, F., and Panofsky, H. A., 1970: Atmospheric scales and spectral gaps. Bull. Amer. Meteor. Soc., 51, 1114–1120.2.0.CO;2>CrossRefGoogle Scholar
Fovell, R. G., and Dailey, P. S., 1995: The temporal behavior of numerically simulated multicell-type storms. Part I: Modes of behavior. J. Atmos. Sci., 52, 2073–2095.2.0.CO;2>CrossRefGoogle Scholar
Fovell, R. G., and Tan, P.-H., 1998: The temporal behavior of numerically simulated multicell-type storms. Part II: The convective cell life cycle and cell regeneration. Mon. Wea. Rev., 126, 551–577.2.0.CO;2>CrossRefGoogle Scholar
French, A. J., and Parker, M. D., 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 3384–3408.CrossRefGoogle Scholar
Fritsch, J. M., and Forbes, G. S., 2001: Mesoscale convective systems. Severe Convective Storms, American Meteorological Society, Boston, 323–358.CrossRefGoogle Scholar
Fudeyasu, H., Wang, Y., Satoh, M., et al., 2010: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part II: System-scale and mesoscale processes. Mon. Wea. Rev., 138, 4305–4327.CrossRefGoogle Scholar
Fujita, T. T., 1979: Objective, operation, and results of Project NIMROD. Preprints, 11th Conf. on Severe Local Storms, Kansas City, MO, American Meteorological Society, Boston, 259–266.Google Scholar
Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 1512–1534.2.0.CO;2>CrossRefGoogle Scholar
Fujita, T. T., 1986: Mesoscale classifications: Their history and their application to forecasting. In Mesoscale Meteorology and Forecasting, American Meteorological Society, Boston, 18–35.CrossRefGoogle Scholar
Fulton, R. A., Breidenbach, J. P., Seo, D.-J., et al., 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377–395.2.0.CO;2>CrossRefGoogle Scholar
Gage, K. S., 1979: Evidence for a k-5/3 law inertial range in mesoscale two dimensional turbulence. J. Atmos. Sci., 36, 1950–1954.2.0.CO;2>CrossRefGoogle Scholar
Gage, K. S., and Nastrom, G. D., 1986: Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP. J. Atmos. Sci., 43, 729–740.2.0.CO;2>CrossRefGoogle Scholar
Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: implications for matching models with observations. Mon. Wea. Rev., 106, 587–606.2.0.CO;2>CrossRefGoogle Scholar
Galloway, J., Pazmany, A., Mead, J., et al., 1997: Detection of ice hydrometeor alignment using an airborne W-band polarimetric radar. J. Atmos. Oceanic Technol., 14, 3–12.2.0.CO;2>CrossRefGoogle Scholar
Gallus, W. A., and Johnson, R. H., 1991: Heat and moisture budgets of an intense midlatitude squall line. J. Atmos. Sci., 48, 122–146.2.0.CO;2>CrossRefGoogle Scholar
Galway, J. G., 1979: Relationship between precipitation and tornado activity. Water Resources Research, 15, 961–964.CrossRefGoogle Scholar
Galway, J. G., 1992: Early severe thunderstorm forecasting and research by the United States Weather Bureau. Wea. Forecasting, 7, 564–587.2.0.CO;2>CrossRefGoogle Scholar
Gao, J., Stensrud, D., and Xue, M., 2009: A 3DVAR application to several thunderstorm cases observed during VORTEX2 field operations and potential for real-time warning. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., CD-ROM.Google Scholar
Garcia-Carreras, L., Parker, D. J., and Marsham, J. H., 2011: What is the mechanism for the modification of convective cloud distributions by land surface–induced flows?J. Atmos. Sci., 68, 619–634.CrossRefGoogle Scholar
Geerts, B., Miao, Q., and Demko, J. C., 2008: Pressure perturbations and upslope flow over a heated, isolated mountain. Mon. Wea. Rev., 136, 4272–4288.CrossRefGoogle Scholar
Gilleland, E., Ahijevych, D. A., Brown, B. G., and Ebert, E. E., 2010: Verifying forecasts spatially. Bull. Amer. Meteor. Soc., 91, 1365–1373.CrossRefGoogle Scholar
Gilmore, M. S., and Wicker, L. J., 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943–958.2.0.CO;2>CrossRefGoogle Scholar
Gilmore, M. S., Straka, J. M., and Rasmussen, E. N., 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 1897–1916.2.0.CO;2>CrossRefGoogle Scholar
Glickman, T. S., Ed., 2000: Glossary of Meteorology. 2d ed. Amer. Meteor. Soc.Google Scholar
Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 1429–1440.2.0.CO;2>CrossRefGoogle Scholar
Goody, R. M., and Yung, Y. L., 1989: Atmospheric Radiation, Theoretical Basis. Oxford University Press.Google Scholar
Griffiths, M., Thorpe, A. J., and Browning, K. A., KA, 2000: Convective destabilization by a tropopause fold diagnosed using potential-vorticity inversion. Quart. J. Roy. Meteor. Soc., 126, 125–144.CrossRefGoogle Scholar
Guralnik, D. B., Ed., 1984: Webster's New World Dictionary of the American Language. Simon and Schuster, New York.Google Scholar
Hacker, J., et al., 2005: Predictability. Bull. Amer. Meteor. Soc., 86, 1733–1737.Google Scholar
Halpert, M. S., and Ropelewski, C. F., 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577–593.2.0.CO;2>CrossRefGoogle Scholar
Haltiner, G. J., and Williams, R. T., 1980: Numerical Prediction and Dynamic Meteorology. Wiley, New York.Google Scholar
Hamill, T. M., Whitaker, J. S., and Mullen, S. L., 2006: Reforecasts, an important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 33–46.CrossRefGoogle Scholar
Hane, C. E., Wilhelmson, R. B., and Gal-Chen, T., 1981: Retrieval of thermodynamic variables within deep convective clouds: Experiments in three dimensions. Mon. Wea. Rev., 109, 564–576.2.0.CO;2>CrossRefGoogle Scholar
Hane, C. E., and Ray, P. S., 1985: Pressure and buoyancy fields derived from Doppler radar data in a tornadic thunderstorm. J. Atmos. Sci., 42, 18–35.2.0.CO;2>CrossRefGoogle Scholar
Härtel, C., Carlsson, F., and Thunblom, M., 2000: Analysis and direct numerical simulation of the flow at a gravity-current head. Part 2. The lobe-and-cleft instability. J. Fluid Mech., 418, 213–229.CrossRefGoogle Scholar
Hartmann, D. L., 1993: Radiative effects of clouds on Earth's climate. In Aerosol-Cloud-Climate Interactions, Hobbs, P. V. (ed.), Academic Press, San Diego, CA.Google Scholar
Hartmann, D. L., and Michelsen, M. L., 2002: No evidence for Iris. Bull. Amer. Meteor. Soc., 83, 249–254.2.3.CO;2>CrossRefGoogle Scholar
Hendricks, E. A., Montgomery, M. T., and Davis, C. A., 2004: On the role of “vortical” hot towers in formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 1209–1232.2.0.CO;2>CrossRefGoogle Scholar
Hess, S. L., 1959: Introduction to Theoretical Meteorology. Robert E. Krieger Publishing, Huntington, NY.Google Scholar
Heymsfield, G. M., Tian, L., Heymsfield, A. J., et al., 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285–308.CrossRefGoogle Scholar
Hildebrand, P. H., Walther, C. A., Frush, C. L., et al., 1994: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design, and first field tests. Proc. IEEE, 82, 1873–1890.CrossRefGoogle Scholar
Hitchens, N. M., Trapp, R. J., Baldwin, M. E., and Gluhovsky, A., 2010: Characterizing subdiurnal extreme precipitation in the midwestern United States. J. Hydrometeor., 11, 211–218.CrossRefGoogle Scholar
Hitchens, N. M., Baldwin, M. E., and Trapp, R. J., 2012: An object-oriented characterization of extreme precipitation-producing convective systems in the Midwestern United States. Mon. Wea. Rev., 140, 1356–1366.CrossRefGoogle Scholar
Hjelmfelt, M. R., Orville, H. D., Roberts, R. D., et al., 1989: Observational and numerical study of a microburst line-producing storm. J. Atmos. Sci., 46, 2731–2743.2.0.CO;2>CrossRefGoogle Scholar
Hoch, J., and Markowski, P., 2004: A climatology of springtime dryline position in the U.S. Great Plains region. J. Climate, 18, 2132–2137.CrossRefGoogle Scholar
Hock, T. F., and Franklin, J. L., 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407–420.2.0.CO;2>CrossRefGoogle Scholar
Holland, G. J., et al., 2001: The Aerosonde robotic aircraft: A new paradigm for environmental observations. Bull. Amer. Meteor. Soc., 82, 889–901.2.3.CO;2>CrossRefGoogle Scholar
Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier, Burlington, MA.Google Scholar
Hong, S.-Y., and Pan, H.-L., 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.2.0.CO;2>CrossRefGoogle Scholar
Hooke, W. H., 1986: Gravity waves. In Mesoscale Meteorology and Forecasting, American Meteorological Society, Boston, 272–288.CrossRefGoogle Scholar
Hoskins, B. J., and Karoly, D., 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W., 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.CrossRefGoogle Scholar
Houtekamer, P. L., Lefaivre, L., Derome, J., et al., 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 1225–1242.2.0.CO;2>CrossRefGoogle Scholar
Houze, R. A., 1993: Cloud Dynamics. Academic Press, San Diego, CA.Google Scholar
Houze, R. A., Rutledge, S. A., Biggerstaff, M. I., and Smull, B. F., 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608–619.2.0.CO;2>CrossRefGoogle Scholar
Houze, R. A., Smull, B. F., and Dodge, P., 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613–654.2.0.CO;2>CrossRefGoogle Scholar
Hsieh, J.-S., and Cook, K. H., 2005: Generation of African easterly wave disturbances: Relationship to the African easterly jet. Mon. Wea. Rev., 133, 1311–1327.CrossRefGoogle Scholar
Jacobson, M. Z., 2005: Fundamentals of Atmospheric Modeling. Cambridge University Press.CrossRefGoogle Scholar
James, R. P., Fritsch, J. M., and Markowski, P. M., 2005: Environmental distinctions between cellular and slabular convective lines. Mon. Wea. Rev., 133, 2669–2690.CrossRefGoogle Scholar
James, E. P., and Johnson, R. H., 2010: Patterns of precipitation and mesolow evolution in midlatitude mesoscale convective vortices. Mon. Wea. Rev., 138, 909–931.CrossRefGoogle Scholar
Johns, R. H., 1993: Meteorological conditions associated with bow echo development in convective storms. Wea. Forecasting, 8, 294–299.2.0.CO;2>CrossRefGoogle Scholar
Johns, R. H. and Hirt, W. D., 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 32–49.2.0.CO;2>CrossRefGoogle Scholar
Jorgensen, D. P., Hildebrand, P. H., and Frush, C. L., 1983: Feasibility test of airborne pulse Doppler meteorological radar. J. Climate Appl. Meteor., 22, 744–757.2.0.CO;2>CrossRefGoogle Scholar
Jorgensen, D. P., Zhaoxia, P., Persson, P. O. G., and Tao, W.-K., 2003: Variations associated with cores and gaps of a Pacific narrow cold frontal rainband. Mon. Wea. Rev., 131, 2705–2729.2.0.CO;2>CrossRefGoogle Scholar
Joss, J., and Waldvogel, A., 1970: Raindrop size distribution and Doppler velocities. Preprints, 14th Conf. Radar Meteorology, American Meteorological Society, Boston, 153–156.Google Scholar
Kain, J. S., and Fritsch, J. M., 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization, J. Atmos. Sci., 47, 2784–2802.2.0.CO;2>CrossRefGoogle Scholar
Kain, J. S., Weiss, S. J., Levit, J. J., Baldwin, M. E., and Bright, D. R., 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167–181.CrossRefGoogle Scholar
Kain, J. S., et al., 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931–942.CrossRefGoogle Scholar
Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press.Google Scholar
Karl, T. R., and Knight, R. W., 1998: Secular trends of precipitation amount, frequency, and intensity in the U.S.A. Bull. Amer. Meteor. Soc. 79, 231–242.2.0.CO;2>CrossRefGoogle Scholar
Kawase, H., Yoshikane, T., Hara, M., et al., 2008: Impact of extensive irrigation on the formation of cumulus clouds, Geophys. Res. Lett., 35, L01806, .CrossRefGoogle Scholar
Kelly, G. A., Bauer, P., Geer, A. J., Lopez, P., and Thépaut, J-N., 2008: Impact of SSM/I observations related to moisture, clouds, and precipitation on global NWP forecast skill. Mon. Wea. Rev., 136, 2713–2726.CrossRefGoogle Scholar
Kessinger, C. J., Ray, P. S., and Hane, C. E., 1987: The Oklahoma squall line of 19 May 1977. Part I: A multiple Doppler analysis of convective and stratiform structure. J. Atmos. Sci., 44, 2840–2865.2.0.CO;2>CrossRefGoogle Scholar
Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulation, Meteor. Monogr., 32, Amer. Meteor. Soc.Google Scholar
Khairoutdinov, M., and Randall, D., 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 3421–3436.CrossRefGoogle Scholar
Kidder, S. Q., and Vonder Haar, T. H., 1995: Satellite Meteorology: An Introduction. Academic Press, San Diego, CA.Google Scholar
Kirshbaum, D. J., 2011: Cloud-resolving simulations of deep convection over a heated mountain. J. Atmos. Sci., 68, 361–378.CrossRefGoogle Scholar
Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Ann. Rev. Fluid Mech., 19, 369--402.CrossRefGoogle Scholar
Klemp, J. B., and Rotunno, R., 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359–377.2.0.CO;2>CrossRefGoogle Scholar
Klemp, J. B., and Wilhelmson, R. B., 1978: The simulation of three dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.2.0.CO;2>CrossRefGoogle Scholar
Klemp, J. B., Rotunno, R., and Skamarock, W. C., 1994: On the dynamics of gravity currents in a channel. J. Fluid Mech., 269, 169–198.CrossRefGoogle Scholar
Klimowski, B. A., Hjelmfelt, M. R., and Bunkers, M. J., 2004: Radar observations of the early evolution of bow echoes. Wea. Forecasting, 19, 727–734.2.0.CO;2>CrossRefGoogle Scholar
Klotzbach, P. J., 2007: Recent developments in statistical prediction of seasonal Atlantic basin tropical cyclone activity. Tellus A 59, 511–518.CrossRefGoogle Scholar
Klotzbach, P. J., and Gray, W. M., 2003: Forecasting September Atlantic basic tropical cyclone activity. Wea. Forecasting, 18, 1109–1128.2.0.CO;2>CrossRefGoogle Scholar
Knopfmeier, K. H., 2007: Real-data and idealized simulations of the 4 July 2004 bow echo event. M.S. Thesis, Purdue University.
Knupp, K. R., 2006: Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer. J. Atmos. Sci., 63, 2016–2035.CrossRefGoogle Scholar
Koch, S. E., 1984: The role of an apparent mesoscale frontogenetic circulation in squall line initiation. Mon. Wea. Rev., 112, 2090–2111.2.0.CO;2>CrossRefGoogle Scholar
Koch, S. E., DesJardins, M., and Kocin, P. J., 1983: An interactive Barnes objective analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 1487–1503.2.0.CO;2>CrossRefGoogle Scholar
Koch, S. E., Ferrier, B., Stolinga, M., et al., 2005: The use of simulated radar reflectivity fields in the diagnosis of mesoscale phenomena from high-resolution WRF model forecasts. Preprints, 12th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., J4J.7. (Available online at 97032.pdf.)Google Scholar
Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 1160–1189.2.0.CO;2>CrossRefGoogle Scholar
Kundu, P., 1990: Fluid Mechanics. Academic Press, San Diego, CA.Google Scholar
Laing, A. G., and Fritsch, J. M., 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389–405.CrossRefGoogle Scholar
Lane, T. P., and Reeder, M. J., 2001: Convectively generated gravity waves and their effect on the cloud environment. J. Atmos. Sci., 58, 2427–2440.2.0.CO;2>CrossRefGoogle Scholar
Lee, B. D., and Wilhelmson, R. B., 1997: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic miscocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 32–60.2.0.CO;2>CrossRefGoogle Scholar
Lemon, L. R., and Doswell, C. A., 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 1184–1197.2.0.CO;2>CrossRefGoogle Scholar
Leon, D., Vali, G., and Lothon, M., 2006: Dual-Doppler analysis in a single plane from an airborne platform. J. Atmos. Oceanic Technol., 23, 3–22.CrossRefGoogle Scholar
Leslie, L. M., and Smith, R. K., 1978: The effect of vertical stability on tornadogenesis. J. Atmos. Sci., 35, 1281–1288.2.0.CO;2>CrossRefGoogle Scholar
Lewis, J. M., Lakshmivarahan, S., and Dhall, S. K., 2006: Dynamic Data Assimilation: A Least Squares Approach. Cambridge University Press.CrossRefGoogle Scholar
Ligda, M. G. H., 1951: Radar storm observation. In Compendium of Meteorology, American Meteorological Society, Boston, 1265–1282.CrossRefGoogle Scholar
Lilly, D. K., 1979: The dynamical structure and evolution of thunderstorms and squall lines. Annu. Rev. Earth Planet. Sci., 7, 117–161.CrossRefGoogle Scholar
Lilly, D. K., 1982: The development and maintenance of rotation in convective storms. Intense Atmospheric Vortices, Bengtsson, L. and Lighthill, J. (eds.), Springer-Verlag, Berlin/Heidelberg/New York, 149–160.CrossRefGoogle Scholar
Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749–761.2.0.CO;2>CrossRefGoogle Scholar
Lilly, D. K., 1986a: The structure, energetics and propagation of rotating convective storms. Part I: Energy exchange with the mean flow. J. Atmos. Sci., 43, 113–125.2.0.CO;2>CrossRefGoogle Scholar
Lilly, D. K., 1986b: The structure, energetics and propagation of rotating convective storms. Part II: helicity and storm stabilization. J. Atmos. Sci., 43, 126–140.2.0.CO;2>CrossRefGoogle Scholar
Lilly, D. K., 1990: Numerical prediction of thunderstorms – has its time come? Q. J. Roy. Meteor. Soc., 116, 779–798.Google Scholar
Lima, M. A., and Wilson, J. W., 2008: Convective storm initiation in a moist tropical environment. Mon. Wea. Rev., 136, 1847–1864.CrossRefGoogle Scholar
Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence?J. Fluid Mech., 388, 259–288.CrossRefGoogle Scholar
Lindzen, R. S., Chou, M.-D., and Hou, A. Y., 2001: Does the earth have an adaptive infrared iris? Bull. Amer. Meteor. Soc., 82, 417–432.2.3.CO;2>CrossRefGoogle Scholar
Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Academic Press, San Diego, CA.Google Scholar
Loehrer, S. M., and Johnson, R. H., 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon. Wea. Rev., 123, 600–621.2.0.CO;2>CrossRefGoogle Scholar
Loftus, A. M., Weber, D. B., and Doswell, III C. A., 2008: Parameterized mesoscale forcing mechanisms for initiating numerically simulated isolated multicellular convection. Mon. Wea. Rev., 136, 2408–2421.CrossRefGoogle Scholar
Long, A. B., Matson, R. J., and Crow, E. L., 1980: The hailpad: Materials, data reduction and calibration. J. Appl. Meteor., 19, 1300–1313.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307.CrossRefGoogle Scholar
Lorenz, E. N., 1984: Estimates of atmospheric predictability at medium range. Predictability of Fluid Motions: A.I.P. Conference Proceedings, No. 106, American Institute of Physics, La Jolla Institute, 133–140.Google Scholar
Lucas, C., Zipser, E. J., and LeMone, M. A., 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 3183–3193.2.0.CO;2>CrossRefGoogle Scholar
MacDonald, A. E., 2005: A Global profiling system for improved weather and climate prediction. Bull. Amer. Meteor. Soc., 86, 1747–1764.CrossRefGoogle Scholar
Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133–142.2.0.CO;2>CrossRefGoogle Scholar
Maddox, R. A., 1980a: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387.2.0.CO;2>CrossRefGoogle Scholar
Maddox, R. A., 1980b: An objective technique for separating macroscale and mesoscale features in meteorological data. Mon. Wea. Rev., 108, 1108–1121.2.0.CO;2>CrossRefGoogle Scholar
Maddox, R. A., Hoxit, L. R., and Chappell, C. F., 1980: A study of tornadic thunderstorm interactions with thermal boundaries. Mon. Wea. Rev., 108, 322–336.2.0.CO;2>CrossRefGoogle Scholar
Mahoney, W. P., 1988: Gust front characteristics and the kinematics associated with interacting thunderstorm outflows. Mon. Wea. Rev., 116, 1474–1491.2.0.CO;2>CrossRefGoogle Scholar
Mahoney, K. M., Lackmann, G. M., and Parker, M. D., 2009: The role of momentum transport in the motion of a quasi-idealized mesoscale convective system. Mon. Wea. Rev., 137, 3316–3338.CrossRefGoogle Scholar
Malkus, J. S., and Scorer, R. S., 1955: The erosion of cumulus towers. J. Meteor., 12, 43–57.2.0.CO;2>CrossRefGoogle Scholar
Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci, 50, 2026–2037.2.0.CO;2>CrossRefGoogle Scholar
Markovic, M., Lin, H., and Winger, K., 2010: Simulating global and North American climate using the global environmental multiscale model with a variable-resolution modeling approach. Mon. Wea. Rev., 138, 3967–3987.CrossRefGoogle Scholar
Markowski, P. M., Rasmussen, E. N., and Straka, J. M., 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852–859.2.0.CO;2>CrossRefGoogle Scholar
Markowski, P. M., Straka, J. M., and Rasmussen, E. N., 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 1692–1721.2.0.CO;2>CrossRefGoogle Scholar
Marquis, J. N., Richardson, Y. P., and Wurman, J. M., 2007: Kinematic observations of misocyclones along boundaries during IHOP. Mon. Wea. Rev., 135, 1749–1768.CrossRefGoogle Scholar
Marshall, J. S., and Palmer, W. McK., 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.2.0.CO;2>CrossRefGoogle Scholar
Marsham, J. H., and Parker, D. J., 2006: Secondary initiation of multiple bands of cumulonimbus over southern Britain. II: Dynamics of secondary initiation. Quart. J. Roy. Meteor. Soc., 132, 1053–1072.CrossRefGoogle Scholar
Marsham, J. H., Trier, S. B., Weckwerth, T. M., and Wilson, J. W., 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247–271.CrossRefGoogle Scholar
Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics: A First Course. Wiley, New York.Google Scholar
Marwitz, J. D., 1972: The structure and motion of severe hailstorms. Part II: Multi-cell storms. J. Appl. Meteor., 11, 180–188.2.0.CO;2>CrossRefGoogle Scholar
May, P. T., and Rajopadhyaya, D. K., 1999: Vertical velocity characteristics of deep convection over Darwin, Australia. Mon. Wea. Rev., 127, 1056–1071.2.0.CO;2>CrossRefGoogle Scholar
McCaul, E. W., 1987: Observations of the Hurricane “Danny” tornado outbreak of 16 August 1985. Mon. Wea. Rev., 115, 1206–12232.0.CO;2>CrossRefGoogle Scholar
McCaul, E. W., and Weisman, M. L., 1996: Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev., 124, 408–429.2.0.CO;2>CrossRefGoogle Scholar
Miller, L. J., and Fredrick, S. M., 1998: CEDRIC: Custom Editing and Display of Reduced Information in Cartesian space. User's Manual, National Center for Atmospheric Research, Boulder, CO, 130 pp.
Miller, S. T. K., Keim, B. D., Talbot, R. W., and Mao, H., 2003: Sea breeze: structure, forecasting, and impacts. Rev. Geophysics, 41, 1–31.CrossRefGoogle Scholar
Mitchell, E. D., Vasiloff, S. V., Stumpf, G. J., et al., 1998: The National Severe Storms Laboratory Tornado Detection Algorithm. Wea. Forecasting, 13, 352–366.2.0.CO;2>CrossRefGoogle Scholar
Mohr, C. G., and Vaughan, R. L., 1979: An economical procedure for Cartesian interpolation and display of reflectivity factor data in three-dimensional space. J. Appl. Meteor., 18, 661–670.2.0.CO;2>CrossRefGoogle Scholar
Moller, A. R., Doswell, III C. A., Foster, M. P., and Woodall, G. R., 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327–347.2.0.CO;2>CrossRefGoogle Scholar
Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Meteor. Soc., 118, 819–850.CrossRefGoogle Scholar
Moninger, W. R., Mamrosh, R. D., and Pauley, P. M., 2003: Automated meteorological reports from commercial aircraft. Bull. Amer. Meteor. Soc., 84, 203–216.CrossRefGoogle Scholar
Montgomery, M. T., Nicholls, M. E., Cram, T. A., and Saunders, A. B., 2006: A vertical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355–386.CrossRefGoogle Scholar
Musil, D. J., Heymsfield, A. J., and Smith, P. L., 1986: Microphysical characteristics of a well-developed weak echo region in a High Plains supercell thunderstorm. J. Clim. Appl. Meteor., 25, 1037–1051.2.0.CO;2>CrossRefGoogle Scholar
Nachamkin, J. E., McAnelly, R. L., and Cotton, W. R., 1994: An observational analysis of a developing mesoscale convective complex. Mon. Wea. Rev., 122, 1168–1188.2.0.CO;2>CrossRefGoogle Scholar
Namias, J., 1991: Spring and summer 1998 drought over the contiguous United States – causes and prediction. J. Climate, 4, 54–65.2.0.CO;2>CrossRefGoogle Scholar
Nastrom, G. D., and Gage, K. S., 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950–960.2.0.CO;2>CrossRefGoogle Scholar
Neiman, P. J., and Wakimoto, R. M., 1999: The interaction of a Pacific cold front with shallow air masses east of the Rocky Mountains. Mon. Wea. Rev., 127, 2102–2127.2.0.CO;2>CrossRefGoogle Scholar
Newton, C. W., 1976: Severe convective storms. Advances in Geophysics, Vol. 12, Academic Press, 257–303.Google Scholar
Newton, C. W., and Newton, H. R., 1959: Dynamical interactions between large convective clouds and environments with vertical shear. J. Meteor., 16, 483–496.2.0.CO;2>CrossRefGoogle Scholar
Nicholls, M. E., and Pielke, R. A., 2000: Thermally induced compression waves and gravity waves generated by convective storms. J. Atmos. Sci., 57, 3251–3271.2.0.CO;2>CrossRefGoogle Scholar
Nieman, S. J., Menzel, W. P., Hayden, C. M., et al., 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc., 78, 1121–1133.2.0.CO;2>CrossRefGoogle Scholar
Norris, J. R., and Iacobellis, S. F., 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18, 4862–4878.CrossRefGoogle Scholar
Oreskes, N., Shrader-Frechette, K., and Belitz, K., 1994: Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263, 641–646.CrossRefGoogle ScholarPubMed
Orlanski, I., 1975: A rational division of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527–530.Google Scholar
Pal, J. S., and Eltahir, E. A. B., 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land-atmosphere system. J. Climate, 14, 1227–1242.2.0.CO;2>CrossRefGoogle Scholar
Pal, J. S., and Eltahir, E. A. B., 2002: Teleconnections of soil moisture and rainfall during the 1993 midwest summer flood. Geophys. Res. Lett., 29, .CrossRefGoogle Scholar
Palencia, C., Castro, A., Giaiotti, D., et al., 2011: Dent overlap in hailpads: Error estimation and measurement correction. J. Appl. Meteor. Climatol., 50, 1073–1087.CrossRefGoogle Scholar
Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 1323–1341.CrossRefGoogle Scholar
Parker, M. D., 2010: Relationship between system slope and updraft intensity in squall lines. Mon. Wea. Rev., 138, 3572–3578.CrossRefGoogle Scholar
Parker, M. D., and Johnson, R. H., 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413–3436.2.0.CO;2>CrossRefGoogle Scholar
Parker, M. D., and Johnson, R. H., 2004: Simulated convective lines with leading precipitation. Part II: Evolution and maintenance. J. Atmos. Sci., 61, 1656–1673.2.0.CO;2>CrossRefGoogle Scholar
Parker, M. D., Ratcliffe, I. C., and Henebry, G. M., 2005: The July 2003 Dakota hailswaths: creation, characteristics, and possible impacts. Mon. Wea. Rev., 133, 1241–1260.CrossRefGoogle Scholar
Parsons, D. B., Shapiro, M. A., Hardesty, R. M., et al., 1991: The finescale structure of a West Texas dryline. Mon. Wea. Rev., 119, 1242–1258.2.0.CO;2>CrossRefGoogle Scholar
Parsons, D. P., et al., 1994: The integrated sounding system: Description and preliminary observations from TOGA COARE. Bull. Amer. Meteor. Soc., 75, 553–567.2.0.CO;2>CrossRefGoogle Scholar
Pauley, P. M., and Smith, P. J., 1988: Direct and indirect effects of latent heat release on a synoptic-scale wave system. Mon. Wea. Rev., 116, 1209–1235.2.0.CO;2>CrossRefGoogle Scholar
Peckham, S. E., Wilhelmson, R. B., Wicker, L. J., and Ziegler, C. L., 2004: Numerical simulation of the interaction between the dryline and horizontal convective rolls. Mon. Wea. Rev., 132, 1792–1812.2.0.CO;2>CrossRefGoogle Scholar
Peixoto, J. P. and Oort, A. H., 1998: Physics of Climate, American Institute of Physics.Google Scholar
Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev., 102, 115–139.2.0.CO;2>CrossRefGoogle Scholar
Pielke, R. A.. 2002: Mesoscale Meteorological Modeling. Academic Press, San Diego, CA.Google Scholar
Pielke, R. A., Lee, T. J., Copeland, J. H., et al., 1997: Use of USGS-provided data to improve weather and climate simulations. Ecological Applications, 7, 3–21.Google Scholar
Proctor, F. H., 1989: Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. J. Atmos. Sci., 46, 2143–2165.2.0.CO;2>CrossRefGoogle Scholar
Pruppacher, H. R., and Klett, J. D., 1978: Microphysics of Clouds and Precipitation. D. Reidel, Dordrecht, the Netherlands.CrossRefGoogle Scholar
Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203–218.2.0.CO;2>CrossRefGoogle Scholar
Ramanathan, V., and Collins, W., 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 27–32.CrossRefGoogle Scholar
Randall, D. A., Khairoutdinov, M., Arakawa, A., and Grabowski, W., 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 1547–1564.CrossRefGoogle Scholar
Rasmussen, E. N., and Blanchard, D. O., 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 1148–1164.2.0.CO;2>CrossRefGoogle Scholar
Rasmussen, E. N., and Straka, J. M., 1998: Variations in supercell morphology. Part I: Observations of the role of upper-level storm-relative flow. Mon. Wea. Rev., 126, 2406–2421.2.0.CO;2>CrossRefGoogle Scholar
Raymond, D. J., and Jiang, H., 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 3067–3077.2.0.CO;2>CrossRefGoogle Scholar
Redelsperger, J. L., and Clark, T. L., 1990: The initiation and horizontal scale selection of convection over gently sloping terrain. J. Atmos. Sci., 47, 516–541.2.0.CO;2>CrossRefGoogle Scholar
Rinehart, R. E., 1997: Radar for Meteorologists, Third Edition. Rinehart Publications, Columbia, MO.Google Scholar
Roberts, N. M., and Lean, H. W., 2008: Scale-selective verification of rainfall accumulations from high resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–96.CrossRefGoogle Scholar
Roebber, P. J., Schultz, D. M., and Romero, R., 2002: Synoptic regulation of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 399–429.2.0.CO;2>CrossRefGoogle Scholar
Rogers, R. R., and Yau, M. K., 1989: A Short Course in Cloud Physics. Pergamon Press, Elmsford, NY.Google Scholar
Ropelewski, C. F., and Halpert, M. S., 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 1606–1626.2.0.CO;2>CrossRefGoogle Scholar
Ross, A. N., Tompkins, A. M., and Parker, D. J., 2004: Simple models of the role of surface fluxes in convective cold pool evolution. J. Atmos. Sci., 61, 1582–1595.2.0.CO;2>CrossRefGoogle Scholar
Rotunno, R., and Klemp, J. B., 1985: On the rotation and propagation of numerically simulated supercell thunderstorms. J. Atmos. Sci., 42, 271–292.2.0.CO;2>CrossRefGoogle Scholar
Rotunno, R., Klemp, J. B., and Weisman, M. L., 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485.2.0.CO;2>CrossRefGoogle Scholar
Russell, A., Vaughan, G., Norton, E. G., et al., 2008: Convective inhibition beneath an upper-level PV anomaly. Quart. J. Roy. Meteor. Soc., 134, 371–383.CrossRefGoogle Scholar
Ryzhkov, A. V., Giangrande, S. E., and Schuur, T. J., 2005: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502–515.CrossRefGoogle Scholar
Saltzman, B., 1962: Finite amplitude free convection as an initial value problem – I. J. Atmos. Sci., 19, 329–341.2.0.CO;2>CrossRefGoogle Scholar
Schiffer, R. A., and Rossowe, W. B., 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64, 779–748.CrossRefGoogle Scholar
Schultz, D. M., Schumacher, P. N., and Doswell, III C. A., 2000: The intricacies of instabilities. Mon. Wea. Rev., 128, 4143–4148.2.0.CO;2>CrossRefGoogle Scholar
Schultz, D. M, Weiss, C. C., and Hoffman, P. M., 2007: The synoptic regulation of the dryline. Mon. Wea. Rev., 135, 1699–1709.CrossRefGoogle Scholar
Schumacher, R. S., and Johnson, R. H., 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961–976.CrossRefGoogle Scholar
Schroeder, J. L., and Weiss, C. C., 2008: Integrating research and education through measurement and analysis. Bull. Amer. Meteor. Soc., 89, 793–798.Google Scholar
Scorer, R. S., and Ludlam, F. H., 1953: Bubble theory of penetrative convection. Quart. J. Roy. Meteor. Soc., 79, 94–103.CrossRefGoogle Scholar
Segal, M., and Arritt, R. W., 1992: Nonclassic mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc., 73, 1593–1604.2.0.CO;2>CrossRefGoogle Scholar
Segel, Z. T., Stensrud, D. S., Ratcliffe, I. C., and Henebry, G. M., 2005: Influence of a hailstreak on boundary layer evolution. Mon. Wea. Rev., 133, 942–960.CrossRefGoogle Scholar
Shabbott, C. J., and Markowski, P. M., 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 1422–1441.CrossRefGoogle Scholar
Shapiro, M. A., Hampel, T., Rotzoll, D., and Mosher, F., 1985: The frontal hydraulic head: A micro-α scale (~ 1 km) triggering mechanism for mesoconvective weather systems. Mon. Wea. Rev., 113, 1166–1183.2.0.CO;2>CrossRefGoogle Scholar
Shepherd, M., Niyogi, D., and Mote, T. L., 2009: A seasonal-scale climatological analysis correlating spring tornadic activity with antecedent fall-winter drought in the southeaster United States. Environ. Res. Lett., 4, 1–7.CrossRefGoogle Scholar
Sherwood, S. C., 2000: On moist instability. Mon. Wea. Rev., 128, 4139–4142.2.0.CO;2>CrossRefGoogle Scholar
Simpson, J. E. 1969 A comparison between laboratory and atmospheric density currents. Quart. J. Roy. Meteor. Soc., 95, 758–765.CrossRefGoogle Scholar
Simpson, J., Adler, R. F., and North, G. R., 1988: A proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278–295.2.0.CO;2>CrossRefGoogle Scholar
Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 3019–3032.CrossRefGoogle Scholar
Skamarock, W. C., Weisman, M. L., and Klemp, J. B., 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 2563–2584.2.0.CO;2>CrossRefGoogle Scholar
Skamarock, W. C., et al., 2008: A description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475-STR.
Smith, A. M., McFarquhar, G. M., Rauber, R. M., Grim, J. A., Timlin, M. S., and Jewett, B. F., 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part I: Observations. Mon. Wea. Rev., 137, 1165–1185.CrossRefGoogle Scholar
Smith, D. M., et al., 2010: Skillful multi-year predictions of Atlantic hurricane frequency. Nature-Geos., 3, 846–849.CrossRefGoogle Scholar
Smith, J. A., Baeck, M. L., Zhang, Y., and Doswell, III C. A., 2001: Extreme rainfall and flooding from supercell thunderstorms. J. Hydrometeor., 2, 469–489.2.0.CO;2>CrossRefGoogle Scholar
Smith, P. J., 1971: An analysis of kinematic vertical motions. Mon. Wea. Rev., 99, 715–724.2.3.CO;2>CrossRefGoogle Scholar
Smith, P. J., 2000: The importance of the horizontal distribution of heating during extratropical cyclone development. Mon. Wea. Rev., 128, 3692–3694.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. K., and Leslie, L. M., 1978: Tornadogenesis. Quart. J. Roy. Meteor. Soc., 104, 189–199.CrossRefGoogle Scholar
Srivastava, R. C., 1985: A simple model of evaporatively driven downdraft: Application to microburst downdraft. J. Atmos. Sci., 42, 1004–1023.2.0.CO;2>CrossRefGoogle Scholar
Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 1752–1773.2.0.CO;2>CrossRefGoogle Scholar
Stensrud, D. J., 1993: Elevated residual layers and their influence on boundary-layer evolution. J. Atmos. Sci., 50, 2284–2293.2.0.CO;2>CrossRefGoogle Scholar
Stensrud, D. J., 1996a: Importance of low-level jets to climate: A review. J. Climate, 9, 1698–1711.2.0.CO;2>CrossRefGoogle Scholar
Stensrud, D. J., 1996b: Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season. J. Atmos. Sci., 53, 3503–3527.2.0.CO;2>CrossRefGoogle Scholar
Stensrud, D. J. and Anderson, J. L., 2001: Is midlatitude convection an active or a passive player in producing global circulation patterns? J. Climate, 14, 2222–2237.2.0.CO;2>CrossRefGoogle Scholar
Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press.CrossRefGoogle Scholar
Stensrud, D. J., and Fritsch, J. M., 1994: Mesoscale convective systems in weakly forced large-scale environments. Part II: Generation of mesoscale initiation condition. Mon. Wea. Rev., 122, 2068–2083.2.0.CO;2>CrossRefGoogle Scholar
Stensrud, D. J., and Maddox, R. A., 1988: Opposing mesoscale circulations: A case study. Wea. Forecasting, 3, 189–204.2.0.CO;2>CrossRefGoogle Scholar
Stensrud, D. J., Bao, J.-W., and Warner, T. T., 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 2077–2107.2.0.CO;2>CrossRefGoogle Scholar
Stensrud, D. J., Coniglio, M. C., Davies-Jones, R. P., and Evans, J. S., 2005: Comments on “‘A theory for strong long-lived squall lines’ revisited.” J. Atmos. Sci., 62, 2989–2996.CrossRefGoogle Scholar
Stensrud, D. J., et al., 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Met. Soc., 90, 1487–1499.CrossRefGoogle Scholar
Straka, J. M., 2009: Cloud and Precipitation Microphysics: Principles and Parameterizations. Cambridge University Press.CrossRefGoogle Scholar
Straka, J. M., Rasmussen, E. N., and Fredrickson, S. E., 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol., 13, 921–936.2.0.CO;2>CrossRefGoogle Scholar
Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht/Boston/London.CrossRefGoogle Scholar
Stumpf, G. J., Witt, A., Mitchell, E. D., et al., 1998: The National Severe Storms Laboratory Mesocyclone Detection Algorithm for the WSR-88D. Wea. Forecasting, 13, 304–326.2.0.CO;2>CrossRefGoogle Scholar
Tennekes, H., and Lumley, J. L., 1972: A First Course in Turbulence. MIT Press, Cambridge, MA.Google Scholar
Tepper, M., 1950: On the origin of tornadoes. Bull. Amer. Meteor. Soc., 31, 311–314.Google Scholar
Thompson, P., 1957: Uncertainty in the initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9, 275–295.CrossRefGoogle Scholar
Thompson, R. L., and Edwards, R., 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15, 682–699.2.0.CO;2>CrossRefGoogle Scholar
Thompson, R. L., Edwards, R., Hart, J. A., et al., 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 1243–1261.2.0.CO;2>CrossRefGoogle Scholar
Thompson, R. L., Mead, C. M., and Edwards, R., 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102–115.CrossRefGoogle Scholar
Thomson, D. W., 1986: Systems for measurements at the surface. Mesoscale Meteorology and Forecasting. Ray, P. (ed.), Amer. Meteor. Soc.Google Scholar
Thorncroft, C. D., Hall, N. M. J., and Kiladis, G. N., 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 3596–3607.CrossRefGoogle Scholar
Thorpe, A. J., Miller, M. J., and Moncrieff, M. W., 1982: Two-dimensional convection in non-constant shear: A model of midlatitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739–762.CrossRefGoogle Scholar
Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 1650–1672.2.0.CO;2>CrossRefGoogle Scholar
Toth, Z., Kalnay, E., Tracton, S. M., Wobus, R., and Irwin, J., 1997: A synoptic evaluation of the NCEP ensemble. Wea. Forecasting, 12, 140–153.2.0.CO;2>CrossRefGoogle Scholar
Toth, M., Trapp, R. J., Wurman, J., and Kosiba, K. A., 2013: Improving tornado estimates with Doppler radar. Wea. Forecasting. .
Trapp, R. J., 1999: Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX. Mon. Wea. Rev., 127, 1693–1705.2.0.CO;2>CrossRefGoogle Scholar
Trapp, R. J., and Fiedler, B. H., 1995: Tornado-like vortexgenesis in a simplified numerical model. J. Atmos. Sci., 52, 3757–3778.2.0.CO;2>CrossRefGoogle Scholar
Trapp, R. J., and Davies-Jones, R., 1997: Tornadogenesis with and without a dynamic pipe effect. J. Atmos. Sci., 54, 113–133.2.0.CO;2>CrossRefGoogle Scholar
Trapp, R. J., and Doswell, III C. A., 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17, 105–120.2.0.CO;2>CrossRefGoogle Scholar
Trapp, R. J., and Weisman, M. L., 2003: Low-level mesovortices within squall lines and bow echoes: Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804–2823.2.0.CO;2>CrossRefGoogle Scholar
Trapp, R. J., Stumpf, G. J., and Manross, K. L., 2005a: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680–687.CrossRefGoogle Scholar
Trapp, R. J., Tessendorf, S. A., Godfrey, E. Savageau, and Brooks, H. E., 2005b: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 23–34.CrossRefGoogle Scholar
Trapp, R. J., Wheatley, D. M., Atkins, N. T., et al., 2006: Buyer beware: Some words of caution on the use of severe wind reports in post-event assessment and research. Wea. Forecasting, 21, 408–415.CrossRefGoogle Scholar
Trapp, R. J., Diffenbaugh, N. S., Brooks, H. E., et al., 2007a: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl Acad. Sci., 104, 19719–19723, .CrossRefGoogle Scholar
Trapp, R. J., Halvorson, B., and Diffenbaugh, N. S., 2007b: Telescoping, multimodel approaches to evaluate extreme convective weather under future climates. J. Geophys. Res., 112, D20109, .CrossRefGoogle Scholar
Trapp, R. J., Robinson, E. D., Baldwin, M. E., et al., 2010: Regional climate of hazardous convective weather through high-resolution dynamical downscaling. Clim. Dyn., .
Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39, 667–694.CrossRefGoogle Scholar
Trenberth, K. E., and Guillemot, C. J., 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 1288–1298.2.0.CO;2>CrossRefGoogle Scholar
Tribbia, J. J., and Baumhefner, D. P., 1988: The reliability of improvements in deterministic short-range forecasts in the presence of initial-state and modeling deficiencies. Mon. Wea. Rev., 116, 2276–2228.2.0.CO;2>CrossRefGoogle Scholar
Tribbia, J. J., and Baumhaufner, D. P., 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 132, 703–713.2.0.CO;2>CrossRefGoogle Scholar
Trier, S. B., Davis, C. A., and Tuttle, J. D., 2000a: Long-lived mesoconvective vortices and their environment. Part I: Observations from the central United States during the 1998 warm season. Mon. Wea. Rev., 128, 3376–3395.2.0.CO;2>CrossRefGoogle Scholar
Trier, S. B., Davis, C. A., and Skamarock, W. C., 2000b: Long-lived mesoconvective vortices and their environment. Part II: Induced thermodynamic destabilization in idealized simulations. Mon. Wea. Rev., 128, 3396–3412.2.0.CO;2>CrossRefGoogle Scholar
Trier, S. B., and Davis, C. A., 2007: Mesoscale convective vortices observed during BAMEX. Part II: Influences on secondary deep convection. Mon. Wea. Rev., 135, 2051–2075.CrossRefGoogle Scholar
Tripoli, G. J., and Cotton, W. R., 1981: The use of ice-liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Wea. Rev., 109, 1094–1102.2.0.CO;2>CrossRefGoogle Scholar
Velden, C. S., Hayden, C. M., Nieman, S. J., et al., 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173–195.2.0.CO;2>CrossRefGoogle Scholar
Velden, C., and Coauthors, , 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205–223.CrossRefGoogle Scholar
Vinnichenko, N. K., 1970: The kinetic energy spectrum in the free atmosphere–one second to five years. Tellus, 22, 158–166.CrossRefGoogle Scholar
Vitart, F., et al., 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34, L16815, .CrossRefGoogle Scholar
Wakimoto, R. M., 2001: Convectively driven high wind events. Severe Convective Storms, American Meteorological Society, Boston, 255–298.CrossRefGoogle Scholar
Wakimoto, R. M., and Murphey, H. V., 2010: Analysis of convergence boundaries observed during IHOP_2002. Mon. Wea. Rev., 138, 2737–2760.CrossRefGoogle Scholar
Wakimoto, R. M., and Wilson, J. W., 1989: Non-supercell tornadoes. Mon. Wea. Rev., 117, 1113–1140.2.0.CO;2>CrossRefGoogle Scholar
Wakimoto, R. M., Cai, H., and Murphey, H. V., 2004: The Superior, Nebraska, supercell during BAMEX. Bull. Amer. Meteor. Soc., 85, 1095–1106.CrossRefGoogle Scholar
Wakimoto, R. M., Lee, W.-C., Bluestein, H. B., Liu, C.-H., Hildebrand, P. H., 1996: ELDORA observations during VORTEX 95. Bull. Amer. Meteor. Soc., 77, 1465–1481.2.0.CO;2>CrossRefGoogle Scholar
Wakimoto, R. M., Liu, C-H., and Cai, H-Q., 1998: The Garden City, Kansas, storm during VORTEX 95. Part I: Overview of the storm's life cycle and mesocyclogenesis. Mon. Wea. Rev., 126, 372–392.2.0.CO;2>CrossRefGoogle Scholar
Wakimoto, R. M., Murphey, H. V., Nester, A., et al., 2006: High winds generated by bow echoes. Part I: Overview of the Omaha bow echo 5 July 2003 storm during BAMEX. Mon. Wea. Rev., 134, 2793–2812.CrossRefGoogle Scholar
Wallace, J. M., and Hobbs, P. V., 2006: Atmospheric Science: An Introductory Survey, 2nd Edition. Elsevier, London.Google Scholar
Wang, H., et al., 2009: A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J. Clim., 22, 4481–4500.CrossRefGoogle Scholar
Wang, J., and Wolff, D. B., 2010: Evaluation of TRMM ground-validation radar-rain errors using rain gauge measurements. J. Appl. Meteor. Climatol., 49, 310–324.CrossRefGoogle Scholar
Warner, J., 1970: On steady-state one-dimensional models of cumulus convection. J. Atmos. Sci., 27, 1035–1040.2.0.CO;2>CrossRefGoogle Scholar
Warner, T. T., and Hsu, H.-M., 2000: Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection. Mon. Wea. Rev., 128, 2211–2231.2.0.CO;2>CrossRefGoogle Scholar
Weaver, C. P., and Avissar, R., 2001: Atmospheric disturbances caused by human modification of the landscape. Bull. Amer. Meteor. Soc., 82, 269–281.2.3.CO;2>CrossRefGoogle Scholar
Weaver, J. F., Knaff, J. A., Bikos, D., et al., 2002: Satellite observations of a severe supercell thunderstorm on 24 July 2000 made during the GOES-11 Science Test. Wea. Forecasting, 17, 124–138.2.0.CO;2>CrossRefGoogle Scholar
Weber, B. L., et al., 1990: Preliminary evaluation of the first NOAA demonstration network wind profiler. J. Atmos. Oceanic Technol., 7, 909–918.2.0.CO;2>CrossRefGoogle Scholar
Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 4017–4030.2.0.CO;2>CrossRefGoogle Scholar
Weckwerth, T. M., and Parsons, D. B., 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 5–22.CrossRefGoogle Scholar
Weckwerth, T. M., Murphey, H. V., Flamant, C., et al., 2008: An observational study of convection initiation on 12 June 2002 during IHOP_2002. Mon. Wea. Rev., 136, 2283–2304.CrossRefGoogle Scholar
Weckwerth, T. M., Wilson, J. W., and Wakimoto, R. M., 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769–784.2.0.CO;2>CrossRefGoogle Scholar
Weckwerth, T. M., Wilson, J. W., Wakimoto, R. M., and Crook, N. A., 1997: Horizontal convective rolls: Determining the environmental supporting their existence and characteristics. Mon. Wea. Rev., 125, 505–526.2.0.CO;2>CrossRefGoogle Scholar
Weckwerth, T. M., et al., 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253–277.CrossRefGoogle Scholar
Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 1826–1847.2.0.CO;2>CrossRefGoogle Scholar
Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645–670.2.0.CO;2>CrossRefGoogle Scholar
Weisman, M. L., 2001: Bow echoes: A tribute to T. T. Fujita. Bull. Amer. Meteor. Soc., 82, 97–116.2.3.CO;2>CrossRefGoogle Scholar
Weisman, M. L., and Davis, C. A., 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 2603–2622.2.0.CO;2>CrossRefGoogle Scholar
Weisman, M. L., and Klemp, J. B., 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.2.0.CO;2>CrossRefGoogle Scholar
Weisman, M. L., and Klemp, J. B., 1986: Characteristics of isolated convective storms. In Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston, 331–358.CrossRefGoogle Scholar
Weisman, M. L., Klemp, J. B., and Rotunno, R., 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990–2013.2.0.CO;2>CrossRefGoogle Scholar
Weisman, M. L., Skamarock, W. C., and Klemp, J. B., 1997: The Resolution Dependence of Explicitly Modeled Convective Systems. Mon. Wea. Rev., 125, 527–548.2.0.CO;2>CrossRefGoogle Scholar
Weisman, M. L., and Rotunno, R., 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 1452–1472.2.0.CO;2>CrossRefGoogle Scholar
Weisman, M. L., and Rotunno, R., 2004: “A theory for long-lived squall lines” revisited. J. Atmos. Sci., 61, 361–382.2.0.CO;2>CrossRefGoogle Scholar
Weisman, M. L., and Trapp, R. J., 2003: Low-level mesovortices within squall lines and bow echoes: Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 2779–2803.2.0.CO;2>CrossRefGoogle Scholar
Weiss, C. C., and Bluestein, H. B., 2002: Airborne pseudo-dual Doppler analysis of a dryline-out flow boundary intersection. Mon. Wea. Rev., 130, 1207–1226.2.0.CO;2>CrossRefGoogle Scholar
Wentz, F. J. and Schabel, M., 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403, 414–416.CrossRefGoogle ScholarPubMed
Westrick, K. J., Mass, C. F., and Colle, B. A., 1999: The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull. Amer. Meteor. Soc., 80, 2289–2298.2.0.CO;2>CrossRefGoogle Scholar
Wheatley, D. M., and Trapp, R. J., 2008: The effect of mesoscale heterogeneity on the genesis and structure of mesovortices within quasi-linear convective systems. Mon. Wea. Rev., 136, 4220–4241.CrossRefGoogle Scholar
Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press.Google Scholar
Wilson, J. W., and Roberts, R. D., 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon Wea. Rev., 134, 23–47.CrossRefGoogle Scholar
Wilson, J. W., and Schreiber, W. E., 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 2516–2536.2.0.CO;2>CrossRefGoogle Scholar
Wilson, J. W., Crook, N. A., Mueller, C. K., et al., 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 2079–2099.2.0.CO;2>CrossRefGoogle Scholar
Winn, W. P., Hunyady, S. J., and Aulich, G. D., 1999: Pressure at the ground in a large tornado. J. Geophys. Res., 104, 22 067–22 082.CrossRefGoogle Scholar
Wurman, J., Randall, M., and Zahari, A., 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 1502–1512.2.0.CO;2>CrossRefGoogle Scholar
Wurman, J., et al., 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc.,
Xue, M., Drogemeier, K. K., and Wong, V., 2000: The Advanced Regional Prediction System (ARPS) – A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Physics, 75, 161–193.CrossRefGoogle Scholar
Yuter, S. E., and Houze, Jr. R. A., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941–1963.2.0.CO;2>CrossRefGoogle Scholar
Zhang, F., Snyder, C., and Rotunno, R., 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173–1185.2.0.CO;2>CrossRefGoogle Scholar
Ziegler, C. L., and Rasmussen, E. N., 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 1106–1131.2.0.CO;2>CrossRefGoogle Scholar
Ziegler, C. L., Martin, W. J., Pielke, R. A., and Walko, R. L., 1995: A modeling study of the dryline. J. Atmos. Sci., 52, 263–285.2.0.CO;2>CrossRefGoogle Scholar
Ziegler, C. L., Rasmussen, E. N., Buban, M. S., et al., 2007: The “triple point” on 24 May 2002 during IHOP. Part II: Ground radar and in situ boundary layer analysis of cumulus development and convection initiation. Mon. Wea. Rev., 135, 2443–2472.CrossRefGoogle Scholar
Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 1568–1589.2.0.CO;2>CrossRefGoogle Scholar
Zipser, E. J., 2003: Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the TRMM. Meteor. Monogr., No. 51, Amer. Meteor. Soc., 49–58.Google Scholar
Zrnic, D. S., Ryzhkov, A. V., 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389–406.2.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Robert J. Trapp, Purdue University, Indiana
  • Book: Mesoscale-Convective Processes in the Atmosphere
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139047241.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Robert J. Trapp, Purdue University, Indiana
  • Book: Mesoscale-Convective Processes in the Atmosphere
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139047241.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Robert J. Trapp, Purdue University, Indiana
  • Book: Mesoscale-Convective Processes in the Atmosphere
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139047241.012
Available formats
×