Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T18:15:47.412Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2013

Iris Berent
Affiliation:
Northeastern University, Boston
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Phonological Mind , pp. 316 - 351
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abler, W. L. (1989). On the particulate principle of self-diversifying systems. Journal of Social and Biological Systems, 12, 1–13.CrossRefGoogle Scholar
Abramson, M. & Goldinger, S. D. (1997). What the reader’s eye tells the mind’s ear: silent reading activates inner speech. Perception and Psychophysics, 59, 1059–1068.CrossRefGoogle ScholarPubMed
Adam, G. & Bat-El, O. (2009). When do universal preferences emerge in language development? The acquisition of Hebrew stress. Brill’s Annual of Afroasiatic Language and Linguistics, 1, 255–282.CrossRefGoogle Scholar
Adriaans, F. & Kager, R. (2010). Adding generalization to statistical learning: the induction of phonotactics from continuous speech. Journal of Memory and Language, 62, 311–331.CrossRefGoogle Scholar
Albright, A. (2007). Natural classes are not enough: biased generalization in novel onset clusters. Manuscript, Massachusetts Institute of Technology.
Albright, A. (2009). Feature-based generalisation as a source of gradient acceptability. Phonology, 26, 9–41.CrossRefGoogle Scholar
Alcock, K. J., Passingham, R. E., Watkins, K. E. & Vargha-Khadem, F. (2000). Oral dyspraxia in inherited speech and language impairment and acquired dysphasia. Brain and Language, 75, 17–33.CrossRefGoogle ScholarPubMed
Allen, G. D. (1983). Some suprasegmental contours in French two-year-old children’s speech. Phonetica: International Journal of Speech Science, 40, 269–292.CrossRefGoogle Scholar
Allen, J. S. & Miller, J. L. (2004). Listener sensitivity to individual talker differences in voice-onset-time. The Journal of the Acoustical Society of America, 115, 3171–3183.CrossRefGoogle ScholarPubMed
Alonzo, A. & Taft, M. (2002). Sonority constraints on onset-rime cohesion: evidence from native and bilingual Filipino readers of English. Brain and Language, 81, 368–383.CrossRefGoogle ScholarPubMed
Anderson, M. (2010). Neural re-use as a fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33, 245–266.CrossRefGoogle Scholar
Andrews, S. (1982). Phonological recoding: is the regularity effect consistent?Memory and Cognition, 10, 565–575.CrossRefGoogle Scholar
Anttila, A. (1997). Deriving variation from grammar. In Hinskens, F., van Hout, R. & Wetzels, L. (eds.), Variation, Change and Phonological Theory (pp. 35–68). Amsterdam: John Benjamins.CrossRefGoogle Scholar
Arnold, K. & Zuberbuhler, K. (2006). Language evolution: semantic combinations in primate calls. Nature, 441, 303.CrossRefGoogle ScholarPubMed
Ashby, J. (2010). Phonology is fundamental in skilled reading: evidence from ERPs. Psychonomic Bulletin & Review, 17, 95–100.CrossRefGoogle ScholarPubMed
Ashby, J. & Martin, A. E. (2008). Prosodic phonological representations early in visual word recognition. Journal of Experimental Psychology: Human Perception and Performance, 34, 224–236.Google ScholarPubMed
Ashby, J. & Rayner, K. (2004). Representing syllable information during silent reading: evidence from eye movements. Language and Cognitive Processes, 19, 391–426.CrossRefGoogle Scholar
Ashby, J., Sanders, L. D. & Kingston, J. (2009). Skilled readers begin processing sub-phonemic features by 80 ms during visual word recognition: evidence from ERPs. Biological Psychology, 80, 84–94.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1986). Working Memory. Oxford University Press.Google ScholarPubMed
Balaban, E. (1988a). Bird song syntax: learned intraspecific variation is meaningful. Proceedings of the National Academy of Sciences of the United States of America, 85, 3657–3660.CrossRefGoogle ScholarPubMed
Balaban, E. (1988b). Cultural and genetic variation in Swamp Sparrows (Melospiza georgiana): II. Behavioral salience of geographic song variants. Behaviour, 105, 292–322.CrossRefGoogle Scholar
Balaban, E. (2006). Cognitive developmental biology: history, process and fortune’s wheel. Cognition, 101, 298–332.CrossRefGoogle ScholarPubMed
Barlow, J. A. (2001). The structure of /s/-sequences: evidence from a disordered system. Jounal of Child Language, 28, 291–324.Google Scholar
Barlow, J. A. (2005). Sonority effects in the production of consonant clusters by Spanish-speaking children. In Eddington, D. (ed.), Selected Proceedings of the Sixth Conference on the Acquisition of Spanish and Portuguese as First and Second Languages (pp. 1–14). Somerville, MA: Cascadilla Proceedings Project.Google Scholar
Barner, D., Wood, J., Hauser, M. & Carey, S. (2008). Evidence for a non-linguistic distinction between singular and plural sets in rhesus monkeys. Cognition, 107, 603–622.CrossRefGoogle ScholarPubMed
Baron, J. & Strawson, C. (1976). Use of orthographic and word-specific knowledge in reading words aloud. Journal of Experimental Psychology: Human Perception and Performance, 2, 386–393.Google Scholar
Barrett, H. C. & Kurzban, R. (2006). Modularity in cognition: framing the debate. Psychological Review, 113, 628–647.CrossRefGoogle ScholarPubMed
Bat-El, O. (1994). Stem modification and cluster transfer in modern Hebrew. Natural Language and Linguistic Theory, 12, 571–596.CrossRefGoogle Scholar
Bat-El, O. (2003). The fate of the consonantal root and the binyan in Optimality Theory. Recherches Linguistiques de Vincennes, 32, 31–60.CrossRefGoogle Scholar
Bat-El, O. (2004). Parsing forms with identical consonants: Hebrew reduplication. In Ravid, D. & Shyldkrot, H. B. Z. (eds.), Perspectives on Language and Language Development (pp. 25–34). Dordrecht: Kluwer.Google Scholar
Bat-El, O. (2006). Consonant identity and consonant copy: the segmental and prosodic structure of Hebrew reduplication. Linguistic Inquiry, 37, 179–210.CrossRefGoogle Scholar
Becker, M., Ketrez, N. & Nevins, A. (2011). The surfeit of the stimulus: analytic biases filter lexical statistics in Turkish laryngeal alternations. Language, 87, 84–125.CrossRefGoogle Scholar
Becker, M., Nevins, A. & Levine, J. (2011). Asymmetries in generalizing alternations to and from initial syllables. Manuscript, University of Massachusetts, Amherst, UCL, Harvard.
Benasich, A. A. & Tallal, P. (2002). Infant discrimination of rapid auditory cues predicts later language impairment. Behavioural Brain Research, 136, 31–49.CrossRefGoogle ScholarPubMed
Benasich, A. A., Choudhury, N., Friedman, J. T., Realpe-Bonilla, T., Chojnowska, C. & Gou, Z. (2006). The infant as a prelinguistic model for language learning impairments: predicting from event-related potentials to behavior. Neuropsychologia, 44, 396–411.CrossRefGoogle Scholar
Berent, I. (1997). Phonological priming in the lexical decision task: regularity effects are not necessary evidence for assembly. Journal of Experimental Psychology: Human Perception and Performance, 23, 1727–1742.Google Scholar
Berent, I. (2008). Are phonological representations of printed and spoken language isomorphic? Evidence from the restrictions on unattested onsets. Journal of Experimental Psychology: Human Perception and Performance, 34, 1288–1304.Google ScholarPubMed
Berent, I. & Frost, R. (1997). The inhibition of polygraphic consonants in spelling Hebrew: evidence for a recurrent assembly of spelling and phonology in visual word recognition. In Perfetti, C., Fayol, M. & Rieben, L. (eds.), Learning to Spell: Research, Theory, and Practice across Languages (pp. 195–219). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Berent, I. & Lennertz, T. (2010). Universal constraints on the sound structure of language: phonological or acoustic?Journal of Experimental Psychology: Human Perception and Performance, 36, 212–223.Google ScholarPubMed
Berent, I., Lennertz, T. & Rosselli, M. (2012). Universal phonological restrictions and language-specific repairs: evidence from Spanish. The Mental Lexicon, 13.2.Google Scholar
Berent, I. & Marom, M. (2005). The skeletal structure of printed words: evidence from the Stroop task. Journal of Experimental Psychology: Human Perception and Performance, 31, 328–338.Google ScholarPubMed
Berent, I. & Perfetti, C. A. (1995). A rose is a REEZ: the two cycles model of phonology assembly in reading English. Psychological Review, 102, 146–184.CrossRefGoogle Scholar
Berent, I. & Shimron, J. (1997). The representation of Hebrew words: Evidence from the Obligatory Contour Principle. Cognition, 64, 39–72.CrossRefGoogle ScholarPubMed
Berent, I. & Shimron, J. (2003). Co-occurrence restrictions on identical consonants in the Hebrew lexicon: are they due to similarity?Journal of Linguistics, 39, 31–55.CrossRefGoogle Scholar
Berent, I., Everett, D. L. & Shimron, J. (2001a). Do phonological representations specify variables? Evidence from the obligatory contour principle. Cognitive Psychology, 42, 1–60.CrossRefGoogle ScholarPubMed
Berent, I., Shimron, J. & Vaknin, V. (2001b). Phonological constraints on reading: evidence from the Obligatory Contour Principle. Journal of Memory and Language, 44, 644–665.CrossRefGoogle Scholar
Berent, I., Marcus, G. F., Shimron, J. & Gafos, A. I. (2002). The scope of linguistic generalizations: evidence from Hebrew word formation. Cognition, 83, 113–139.CrossRefGoogle ScholarPubMed
Berent, I., Vaknin, V. & Shimron, J. (2004). Does a theory of language need a grammar? Evidence from Hebrew root structure. Brain and Language, 90, 170–182.CrossRefGoogle Scholar
Berent, I., Tzelgov, J. & Bibi, U. (2006). The autonomous computation of morphophonological structure in reading: evidence from the Stroop task. The Mental Lexicon, 1–2, 201–230.CrossRefGoogle Scholar
Berent, I., Steriade, D., Lennertz, T. & Vaknin, V. (2007a). What we know about what we have never heard: evidence from perceptual illusions. Cognition, 104, 591–630.CrossRefGoogle ScholarPubMed
Berent, I., Vaknin, V. & Marcus, G. (2007b). Roots, stems, and the universality of lexical representations: evidence from Hebrew. Cognition, 104, 254–286.CrossRefGoogle ScholarPubMed
Berent, I., Lennertz, T., Jun, J., Moreno, M. A. & Smolensky, P. (2008). Language universals in human brains. Proceedings of the National Academy of Sciences, 105, 5321–5325.CrossRefGoogle ScholarPubMed
Berent, I., Lennertz, T., Smolensky, P. & Vaknin-Nusbaum, V. (2009). Listeners’ knowledge of phonological universals: evidence from nasal clusters. Phonology 26, 75–108.CrossRefGoogle ScholarPubMed
Berent, I., Balaban, E., Lennertz, T. & Vaknin-Nusbaum, V. (2010). Phonological universals constrain the processing of nonspeech. Journal of Experimental Psychology: General, 139, 418–435.CrossRefGoogle ScholarPubMed
Berent, I., Harder, K. & Lennertz, T. (2011a). Phonological universals in early childhood: evidence from sonority restrictions. Language Acquisition, 18, 281–293.CrossRefGoogle ScholarPubMed
Berent, I., Lennertz, T. & Smolensky, P. (2011b). Markedness and misperception: it’s a two-way street. In Cairns, C. E. & Raimy, E. (eds.), Handbook of the Syllable (pp. 373–394), Leiden: E. J. Brill.Google Scholar
Berent, I., Lennertz, T. & Balaban, E. (2012a). Language universals and misidentification: a two way street. Language and Speech, 1–20.Google ScholarPubMed
Berent, I., Wilson, C., Marcus, G. & Bemis, D. (2012b). On the role of variables in phonology: remarks on Hayes and Wilson. Linguistic Inquiry, 43, 97–119.CrossRefGoogle ScholarPubMed
Berent, I., Dupuis, A., & Brentari, D. (forthcoming a). Amodal aspects of linguistic design. Manuscript submitted for publication.
Berent, I., Lennertz, T. & Rosselli, M. (forthcoming b). Universal phonological restrictions and language-specific repairs: evidence from Spanish. Manuscript submitted for publication.
Berent, I., Vaknin-Nusbaum, V., Balaban, E., & Galaburda, A. M. (2012). Dyslexia impairs speech recognition but can spare phonological competence. PLOS One, 7(9), e44875..CrossRefGoogle ScholarPubMed
Berkley, D. M. (2000). Gradient obligatory contour principle effects. Ph.D. thesis, Northwestern University, Dept. of Linguistics.
Bernhardt, B. H. & Stemberger, J. (1998). Handbook of Phonological Development. San Diego: Academic Press.Google Scholar
Bernhardt, B. H. & Stemberger, J. (2007). Phonological impairment in children and adults. In de Lacy, P. (ed.), The Cambridge Handbook of Phonology (pp. 575–593). Cambridge University Press.CrossRefGoogle Scholar
Berry, L. (1998). Alignment and Adjacency in Optimality Theory: Evidence from Walpiri and Arrernte. University of Sydney.Google Scholar
Bertoncini, J. & Mehler, J. (1981). Syllables as units in infant speech perception. Infant Behavior and Development, 4, 247–260.CrossRefGoogle Scholar
Berwick, R. C., Okanoya, K., Beckers, G. J. L. & Bolhuis, J. J. (2011). Songs to syntax: the linguistics of birdsong. Trends in Cognitive Sciences, 15, 113–121.CrossRefGoogle ScholarPubMed
Bidelman, G. M., Gandour, J. T. & Krishnan, A. (2009). Cross-domain effects of music and language experience on the representation of pitch in the human auditory brainstem. Journal of Cognitive Neuroscience, 23, 425–434.CrossRefGoogle ScholarPubMed
Bishop, D. V. (2006). What causes specific language impairment in children?Current Directions in Psychological Sciences, 15, 217–221.CrossRefGoogle ScholarPubMed
Bishop, D. V. (2007). Using mismatch negativity to study central auditory processing in developmental language and literacy impairments: where are we, and where should we be going?Psychological Bulletin, 133, 651–672.CrossRefGoogle ScholarPubMed
Bishop, D. V. (2009). Genes, cognition, and communication: insights from neurodevelopmental disorders. Annals of the New York Academy of Sciences, 1156, 1–18.CrossRefGoogle ScholarPubMed
Bishop, D. V. & Snowling, M. J. (2004). Developmental dyslexia and specific language impairment: same or different?Psychological Bulletin, 130, 858–886.CrossRefGoogle ScholarPubMed
Blevins, J. (2004). Evolutionary Phonology. Cambridge University Press.CrossRefGoogle Scholar
Blevins, J. (2006). A theoretical synopsis of evolutionary phonologyTheoretical Linguistics, 32, 117–165.CrossRefGoogle Scholar
Blevins, J. (2008). Consonant epenthesis: natural and unnatural histories. In Good, J. (ed.), Linguistic Universals and Language Change (pp. 79–107). Oxford; New York: Oxford University Press.CrossRefGoogle Scholar
Bloom, P. (2004). Descartes’ Baby: How the Science of Child Development Explains What Makes Us Human. New York: Basic Books.Google Scholar
Bloom, P. (2010). How do morals change?Nature, 464, 490.CrossRefGoogle ScholarPubMed
Blumstein, S. E. (1973). A Phonological Investigation of Aphasic Speech. The Hague: Mouton.Google Scholar
Blumstein, S. E. (1995). The neurobiology of the sound structure of language. In Gazzaniga, M. (ed.), The Cognitive Neurosciences. (pp. 915–929). Cambridge, MA: MIT Press.Google Scholar
Blust, R. (2004). *t to k: an Austronesian sound change revisited. Oceanic Linguistics, 43, 365.CrossRefGoogle Scholar
Boatman, D. (2004). Cortical bases of speech perception: evidence from functional lesion studies. Cognition, 92, 47–65.CrossRefGoogle ScholarPubMed
Boersma, P. & Hamann, S. (2008). The evolution of auditory dispersion in bidirectional constraint grammar. Phonology, 25, 217–270.CrossRefGoogle Scholar
Bolger, D. J., Perfetti, C. A. & Schneider, W. (2005). Cross-cultural effect on the brain revisited: universal structures plus writing system variation. Human Brain Mapping, 25, 92–104.CrossRefGoogle ScholarPubMed
Bonatti, L. L., Peña, M., Nespor, M. & Mehler, J. (2005). Linguistic constraints on statistical computations: the role of consonants and vowels in continuous speech processing. Psychological Science, 16, 451–459.Google ScholarPubMed
Bongard, S. & Nieder, A. (2010). Basic mathematical rules are encoded by primate prefrontal cortex neurons. Proceedings of the National Academy of Sciences of the United States of America, 107, 2277–2282.CrossRefGoogle ScholarPubMed
Bonte, M. L., Poelmans, H. & Blomert, L. (2007). Deviant neurophysiological responses to phonological regularities in speech in dyslexic children. Neuropsychologia, 45, 1427–1437.CrossRefGoogle ScholarPubMed
Bortolini, U. & Leonard, L. B. (2000). Phonology and children with specific language impairment: status of structural constraints in two languages. Journal of Communication Disorders, 33, 131–149.CrossRefGoogle ScholarPubMed
Bowling, D. L., Gill, K., Choi, J. D., Prinz, J. & Purves, D. (2010). Major and minor music compared to excited and subdued speech. Journal of the Acoustical Society of America, 127, 491–503.CrossRefGoogle ScholarPubMed
Breen, G. & Pensalfini, R. (2001). A language with no syllable onsets. Linguistic Inquiry, 30, 1–25.CrossRefGoogle Scholar
Brentari, D. (1998). A Prosodic Model of Sign Language Phonology. Cambridge, MA: MIT Press.Google Scholar
Brentari, D., Coppola, M., Mazzoni, L. & Goldin-Meadow, S. (2012). When does a system become phonological? Handshape production in gestures, signers and homesigners. Natural Language & Linguistic Theory, 30, 1–31.CrossRefGoogle Scholar
Bromberger, S. & Halle, M. (1989). Why phonology is different. Linguistic Inquiry, 20, 51–70.Google Scholar
Broselow, E. & Finer, D. (1991). Parameter setting in second language phonology and syntax. Second Language Research, 7, 35–59.Google Scholar
Broselow, E., Chen, S.-I. & Wang, C. (1998). The emergence of the unmarked in second language phonology. Studies in Second Language Acquisition, 20, 261–280.CrossRefGoogle Scholar
Broselow, E. & Xu, Z. (2004). Differential difficulty in the acquisition of second language phonology. International Journal of English Studies, 4, 135–163.Google Scholar
Buchanan, L. & Besner, D. (1993). Reading aloud: evidence for the use of a whole word nonsemantic pathway. Canadian Journal of Experimental Psychology, 47, 133–152.CrossRefGoogle Scholar
Buchsbaum, B. R., Olsen, R. K., Koch, P. F., Kohn, P., Kippenhan, J. S. & Berman, K. F. (2005). Reading, hearing, and the planum temporale. Neuroimage, 24, 444–454.CrossRefGoogle ScholarPubMed
Buchwald, A. B. (2009). Minimizing and optimizing structure in phonology: evidence from aphasia. Lingua, 119, 1380–1395.CrossRefGoogle Scholar
Buchwald, A. B., Rapp, B. & Stone, M. (2007). Insertion of discrete phonological units: an articulatory and acoustic investigation of aphasic speech. Language and Cognitive Processes, 22, 910–948.CrossRefGoogle Scholar
Burbridge, T. J., Wang, Y., Volz, A. J., Peschansky, V. J., Lisann, L., Galaburda, A. M., et al. (2008). Postnatal analysis of the effect of embryonic knockdown and overexpression of candidate dyslexia susceptibility gene homolog Dcdc2 in the rat. Neuroscience, 152, 723–733.CrossRefGoogle ScholarPubMed
Burns, E. M. & Ward, W. D. (1978). Categorical perception – phenomenon or epiphenomenon: evidence from experiments in the perception of melodic musical intervals. Journal of the Acoustical Society of America, 63, 456–468.CrossRefGoogle ScholarPubMed
Bybee, J. & McClelland, J. L. (2005). Alternatives to the combinatorial paradigm of linguistic theory based on domain general principles of human cognition. Linguistic Review, 22, 381–410.CrossRefGoogle Scholar
Bybee, J. L. (2008). Linguistic universals and language change. In Good, J. (ed.), Linguistic Universals and Language Change (pp. 108–121). Oxford; New York: Oxford University Press.CrossRefGoogle Scholar
Byrne, B., Delaland, C., Fielding-Barnsley, R., Quain, P., Samuelsson, S., Hoien, T., Corle, R., DeFries, J. C., Wadsworth, S., Willcutt, E. & Olson, R. K. (2002). Longitudinal twin study of early reading development in three countries: Preliminary results. Annals of Dyslexia, 52, 49–73.CrossRefGoogle Scholar
Cantlon, J. F. & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17, 401–406.CrossRefGoogle ScholarPubMed
Caramazza, A., Chialant, D., Capasso, R. & Miceli, G. (2000). Separable processing of consonants and vowels. Nature, 403, 428–430.CrossRefGoogle ScholarPubMed
Carey, S. (2009). The Origin of Concepts. Oxford; New York: Oxford University Press.CrossRefGoogle Scholar
Carey, S. & Spelke, E. (1996). Science and core knowledge. Philosophy of Science, 63, 515–533.CrossRefGoogle Scholar
Carreiras, M., Alvarez, C. J. & de Vega, M. (1993). Syllable frequency and visual word recognition in Spanish. Journal of Memory and Language, 32, 766–780.CrossRefGoogle Scholar
Carreiras, M., Ferrand, L., Grainger, J. & Perea, M. (2005). Sequential effects of phonological priming in visual word recognition. Psychological Science: A Journal of the American Psychological Society / APS 16(8), 585–589.CrossRefGoogle ScholarPubMed
Carreiras, M., Perea, M., Vergara, M. & Pollatsek, A. (2009). The time course of orthography and phonology: ERP correlates of masked priming effects in Spanish. Psychophysiology, 46, 1113–1122.CrossRefGoogle ScholarPubMed
Chater, N., Reali, F. & Christiansen, M. H. (2009). Restrictions on biological adaptation in language evolution. Proceedings of the National Academy of Sciences of the United States of America, 106, 1015–1020.CrossRefGoogle ScholarPubMed
Chen, H.-C., Yamauchi, T., Tamaoka, K. & Vaid, J. (2007). Homophonic and semantic priming of Japanese Kanji words: a time course study. Psychonomic Bulletin & Review, 14, 64–69.CrossRefGoogle ScholarPubMed
Chen, S., Swartz, K. B. & Terrace, H. S. (1997). Knowledge of the ordinal position of list items in rhesus monkeys. Psychological Science, 8, 80–86.CrossRefGoogle Scholar
Chetail, F. & Mathey, S. (2009). Syllabic priming in lexical decision and naming tasks: the syllable congruency effect re-examined in French. Canadian Journal of Experimental Psychology 63(1), 40–48.CrossRefGoogle ScholarPubMed
Chinese Character Dictionary. Retrieved May, 21, 2010, from .
Cholin, J. (2011). Do syllables exist? Psycholinguistic evidence of the retrieval of syllabic units in speech production. In Cairns, C. E. & Raimy, E. (eds.), Handbook of the Syllable (pp. 225–248). Leiden: E. J. Brill.Google Scholar
Chomsky, N. (1957). Syntactic Structures. Gravenhage: Mouton.Google Scholar
Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge: MIT Press.Google Scholar
Chomsky, N. (1972). Language and Mind (Enl. edn.). New York: Harcourt Brace Jovanovich.Google Scholar
Chomsky, N. (1976). Approaching reading through invented spelling, Paper presented at the Conference on Theory and Practice of Beginning Reading. University of Pittsburgh, Learning Research and Development Center.Google Scholar
Chomsky, N. (1980). Rules and Representations. New York: Columbia University Press.Google Scholar
Chomsky, N. (2002). On the Nature of Language. Cambridge University Press.CrossRefGoogle Scholar
Chomsky, N. (2005). Three factors in language design. Linguistic Inquiry, 36, 1–22.CrossRefGoogle Scholar
Chomsky, N. & Halle, M. (1968). The Sound Pattern of English. New York: Harper & Row.Google Scholar
Choudhury, N., Leppanen, P. H. T., Leevers, H. J. & Benasich, A. A. (2007). Infant information processing and family history of specific language impairment: converging evidence for RAP deficits from two paradigms. Developmental Science, 10, 213–236.CrossRefGoogle ScholarPubMed
Christiansen, M. H., Reali, F. & Chater, N. (2011). Biological adaptations for functional features of language in the face of cultural evolution. Human Biology, 83, 247–259.CrossRefGoogle ScholarPubMed
Clements, G. N. (1990). The role of the sonority cycle in core syllabification. In Kingston, J. & Beckman, M. (eds.), Papers in Laboratory Phonology (Vol. I: Between the Grammar and Physics of Speech, pp. 282–333). Cambridge University Press.Google Scholar
Clements, G. N. (2005). The role of features in phonological inventories. In Raimy, E. & Cairns, C. (eds.), Contemporary Views on Architecture and Representations in Phonological Theory (pp. 19–68). Cambridge, MA: MIT Press.Google Scholar
Clements, G. N. & Keyser, S. J. (1983). CV Phonology. Cambridge, MA: MIT Press.Google Scholar
Coetzee, A. (2008). Grammaticality and ungrammaticality in phonology. Language, 84, 218–257.CrossRefGoogle Scholar
Coetzee, A. (2011). Syllables in speech perception: evidence from perceptual epenthesis. In Cairns, C. & Raimy, E. (eds.), Handbook of the Syllable (pp. 295–325). Leiden: E. J. Brill.Google Scholar
Coetzee, A., W. & Pater, J. (2008). Weighted constraints and gradient restrictions on place co-occurrence in Muna and Arabic. Natural Language and Linguistic Theory, 26, 289–337.CrossRefGoogle Scholar
Coetzee, A. W. and Pretorius, R. (2010). Phonetically grounded phonology and sound change: the case of Tswana labial plosives. Journal of Phonetics, 38(3), 404–421.CrossRefGoogle Scholar
Cole, J. (2009). Emergent feature structures: harmony systems in exemplar models of phonology. Language Sciences, 31, 144–160.CrossRefGoogle Scholar
Colé, P., Magnan, A. & Grainger, J. (1999). Syllable-sized units in visual word recognition: evidence from skilled and beginning readers of French. Applied Psycholinguistics, 20(4), 507–532.CrossRefGoogle Scholar
Coleman, J. & Pierrehumbert, J. (1997). Stochastic phonological grammars and acceptability. In Coleman, J. (ed.), Third Meeting of the ACL Special Interest Group in Computational Phonology: Proceedings of the Workshop (pp. 49–56). East Stroudsburg, PA: Association for Computational Linguistics.Google Scholar
Conrad, M., Carreiras, M., Tamm, S. & Jacobs, A. M. (2009). Syllables and bigrams: orthographic redundancy and syllabic units affect visual word recognition at different processing levels. Journal of Experimental Psychology: Human Perception and Performance, 35, 461–479.Google ScholarPubMed
Corballis, M. C. (2009). Do rats learn rules?Animal Behaviour, 78, e1–e2.CrossRefGoogle Scholar
Corina, D. P., McBurney, S. L., Dodrill, C., Hinshaw, K., Brinkley, J. & Ojemann, G. (1999). Functional roles of Broca’s area and SMG: evidence from cortical stimulation mapping in a deaf signer. Neuroimage, 10, 570–581.CrossRefGoogle Scholar
Corina, D. P. & Knapp, H. (2006). Sign language processing and the mirror neuron system. Cortex, 42, 529–539.CrossRefGoogle ScholarPubMed
Cosmides, L. & Tooby, J. (1994). Origins of domain specificity: the evolution of functional organization. In Hirschfeld, L. A. & Gelman, S. A. (eds.), Mapping the Mind: Domain Specificity in Cognition and Culture (pp. 85–116). New York: Cambridge University Press.CrossRefGoogle Scholar
Costa, A. & Sebastian-Gallés, N. (1998). Abstract structure in language production: evidence from Spanish. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 886–903.Google Scholar
Cotelli, M., Abutalebi, J., Zorzi, M. & Cappa, S. F. (2003). Vowels in the buffer: a case study of acquired dysgraphia with selective vowel substitutions. Cognitive Neuropsychology, 20, 99–114.CrossRefGoogle ScholarPubMed
Crain, S. & Nakayama, M. (1987). Structure dependence in grammar formation. Language, 63, 522–543.CrossRefGoogle Scholar
Crain, S., Gualmini, A., & Pietroski, P. (2005). Brass tacks in linguistic theory: innate grammatical principles. In Carruthers, P., Laurence, S. & Stich, S. (eds.), The Innate Mind: Structure and Contents (pp. 175–197). New York: Oxford University Press.CrossRefGoogle Scholar
Crockford, C. & Boesch, C. (2005). Call combinations in wild chimpanzees. Behaviour, 142, 397–421.CrossRefGoogle Scholar
Crockford, C., Herbinger, I., Vigilant, L. & Boesch, C. (2004). Wild chimpanzees produce group-specific calls: a case for vocal learning?Ethology, 110, 221–243.CrossRefGoogle Scholar
Cubelli, R. (1991). A selective deficit for writing vowels in acquired dysgraphia. Nature, 353, 258–260.CrossRefGoogle ScholarPubMed
Cynx, J. (1990). Experimental determination of a unit of song production in the Zebra Finch (Taeniopygia guttata). Journal of Comparative Psychology, 104, 3–10.CrossRefGoogle Scholar
Daland, R., Hayes, B., Garellek, M., White, J., Davis, A. & Norrmann, I. (2011). Explaining sonority projection effects. Phonology, 28, 197–234.CrossRefGoogle Scholar
Davidson, L. (2000). Experimentally uncovering hidden strata in English phonology. In Gleitman, L. and Joshi, A. (eds.), Proceedings of the 22nd Annual Conference of the Cognitive Science Society (p. 1023). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Davidson, L. (2006a). Schwa elision in fast speech: segmental deletion or gestural overlap?Phonetica, 63, 79–112.CrossRefGoogle ScholarPubMed
Davidson, L. (2006b). Phonotactics and articulatory coordination interact in phonology: evidence from nonnative production. Cognitive Science, 30, 837–862.CrossRefGoogle ScholarPubMed
Davidson, L., Jusczyk, P., Smolensky, P., Kager, R., Pater, J. & Zonneveld, W. (2004). The initial and final states: theoretical implications and experimental explorations of richness of the base. In Smolensky, Paul & Legendre, Geraldine (eds.), Constraints in Phonological Acquisition (pp. 321–368). New York: Cambridge University Press.Google Scholar
Davidson, L., Jusczyk, P. & Smolensky, P. (2006). Optimality in language acquisition I: the initial and final state of the phonological grammar. In Smolensky, P. & Legendre, G. (eds.), The Harmonic Mind: From Neural Computation to Optimality-Theoretic Grammar (pp. 231–278). Cambridge, MA: MIT Press.Google Scholar
Dawkins, R. (1987). The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe without Design. New York: W. W. Norton & Co.Google Scholar
de Lacy, P. (2004). Markedness conflation in Optimality Theory. Phonology, 21, 145–188.CrossRefGoogle Scholar
de Lacy, P. (2006). Markedness: Reduction and Preservation in Phonology. Cambridge; New York: Cambridge University Press.CrossRefGoogle Scholar
de Lacy, P. (2007). The interaction of tone, sonority, and prosodic structure. In de Lacy, P. (ed.), The Cambridge Handbook of Phonology (pp. 281–307). Cambridge University Press.CrossRefGoogle Scholar
de Lacy, P. & Kingston, J. (2006). Synchronic explanation. Unpublished manuscript, Rutgers University and the University of Massachusetts Amherst.
Dediu, D. (2011). A Bayesian phylogenetic approach to estimating the stability of linguistic features and the genetic biasing of tone. Proceedings. Biological Sciences / The Royal Society, 278, 474–479.CrossRefGoogle Scholar
Dediu, D. & Ladd, D. R. (2007). Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and Microcephalin. Proceedings of the National Academy of Sciences of the United States of America, 104, 10944–10949.CrossRefGoogle ScholarPubMed
DeFrancis, J. (1989). Visible Speech: The Diverse Oneness of Writing Systems. Honolulu: University of Hawaii Press.Google Scholar
Dehaene, S. (2009). Reading and the Brain: The Science and Evolution of a Human Invention. New York: Viking.Google Scholar
Dehaene, S. & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15, 254–262.CrossRefGoogle ScholarPubMed
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., Dehaene-Lambertz, G., Kolinsky, R., Morais, J. & Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science (New York, N.Y.), 330(6009), 1359–1364.CrossRefGoogle Scholar
Dehaene-Lambertz, G., Dupoux, E. & Gout, A. (2000). Electrophysiological correlates of phonological processing: a cross-linguistic study. Journal of Cognitive Neuroscience, 12, 635–647.CrossRefGoogle ScholarPubMed
Dell, F. & Elmedlaoui, M. (1985). Syllabic consonants and syllabification in Imdlawn Tashlhiyt Berber. Journal of African Languages and Linguistics, 7, 105–130.CrossRefGoogle Scholar
Demuth, K. (1995). Markedness and the development of prosodic structure. In Beckman, J. (ed.), Proceedings of the North Eastern Linguistic Society 25 (pp. 13–25). Amherst, MA: GLSA, University of Massachusetts.Google Scholar
Demuth, K. (2011). The acquisition of phonology. In Goldsmith, J., Riggle, J. & Yu, A. (eds.), The Handbook of Phonological Theory (2nd edn., pp. 571–595). Malden, MA: Blackwell.CrossRefGoogle Scholar
Demuth, K. & McCullough, E. (2009). The longitudinal development of clusters in French. Journal of Child Language, 36, 425–448.CrossRefGoogle ScholarPubMed
Desai, R., Liebenthal, E., Waldron, E. & Binder, J. R. (2008). Left posterior temporal regions are sensitive to auditory categorization. Journal of Cognitive Neuroscience, 20, 1174–1188.CrossRefGoogle ScholarPubMed
Deutsch, D., Henthorn, T., Marvin, E. & Xu, H. (2006). Absolute pitch among American and Chinese conservatory students: prevalence differences, and evidence for a speech-related critical period. Journal of the Acoustical Society of America, 119, 719–722.CrossRefGoogle ScholarPubMed
Doignon, N. & Zagar, D. (2005). Illusory conjunctions in French: the nature of sublexical units in visual word recognition. Language and Cognitive Processes, 20, 443–464.CrossRefGoogle Scholar
Domahs, U., Kehrein, W., Knaus, J., Wiese, R. & Schlesewsky, M. (2009). Event-related potentials reflecting the processing of phonological constraint violations. Language and Speech, 52, 415–435.CrossRefGoogle ScholarPubMed
Dooling, R. J., Best, C. T. & Brown, S. D. (1995). Discrimination of synthetic full-formant and sinewave/ra-la/continua by budgerigars (Melopsittacus undulatus) and Zebra Finches (Taeniopygia guttata). Journal of the Acoustical Society of America, 97, 1839–1846.CrossRefGoogle Scholar
Dupoux, E., Kakehi, K., Hirose, Y., Pallier, C. & Mehler, J. (1999). Epenthetic vowels in Japanese: a perceptual illusion?Journal of Experimental Psychology: Human Perception and Performance, 25, 1568–1578.Google Scholar
Dupoux, E., Parlato, E., Frota, S., Hirose, Y. & Peperkamp, S. (2011). Where do illusory vowels come from?Journal of Memory and Language, 64, 199–210.CrossRefGoogle Scholar
Dyer, F. C. & Seeley, T. D. (1991). Dance dialects and foraging range in three Asian honey bee species. Behavioral Ecology and Sociobiology, 28, 227–233.CrossRefGoogle Scholar
Dyer, F. C. & Dickinson, J. A. (1994). Development of sun compensation by honeybees: how partially experienced bees estimate the sun’s course. Proceedings of the National Academy of Sciences of the United States of America, 91, 4471–4474.CrossRefGoogle ScholarPubMed
Eimas, P. & Seidenberg, M. (1997). Do infants learn grammar with algebra or statistics?Science, 284, 433.Google Scholar
Eimas, P. D., Siqueland, E. R., Jusczyk, P. & Vigorito, J. (1971). Speech perception in infants. Science, 171, 303–306.CrossRefGoogle ScholarPubMed
Elman, J. (1993). Learning and development in neural networks: the importance of starting small. Cognition, 48, 71–99.CrossRefGoogle ScholarPubMed
Emlen, S. T. (1975). The stellar-orientation system of a migratory bird. Scientific American, 233, 102–111.CrossRefGoogle ScholarPubMed
Emlen, S. T. (1976). Magnetic direction finding: evidence for its use in migratory indigo buntings. Science, 193, 505–508.CrossRefGoogle ScholarPubMed
Emmorey, K. (2002). Language, Cognition, and the Brain: Insights from Sign Language Research. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., et al. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–872.CrossRefGoogle ScholarPubMed
Endress, A. D., Cahill, D., Block, S., Watumull, J. & Hauser, M. D. (2009). Evidence of an evolutionary precursor to human language affixation in a non-human primate. Biological Letters, 5, 749–751.CrossRefGoogle Scholar
Evans, N. & Levinson, S. (2009). The myth of language universals: language diversity and its importance for cognitive science. Behavioral and Brain Sciences, 32, 429–492.CrossRefGoogle ScholarPubMed
Everett, D. L. (2008). Don’t Sleep, There Are Snakes: Life and Language in the Amazonian Jungle. New York: Pantheon Books.Google Scholar
Fehér, O., Wang, H., Saar, S., Mitra, P. P. & Tchernichovski, O. (2009). De novo establishment of wild-type song culture in the Zebra Finch. Nature, 459, 564–568.CrossRefGoogle ScholarPubMed
Feigenson, L., Carey, S. & Hauser, M. (2002). The representations underlying infants’ choice of more: object files versus analog magnitudes. Psychological Science, 13, 150–156.CrossRefGoogle ScholarPubMed
Ferrand, L. & Grainger, J. (1992). Phonology and orthography in visual word recognition: evidence from masked non-word priming. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 45, 353–372.CrossRefGoogle ScholarPubMed
Fikkert, P. (2007). Acquiring phonology. In de Lacy, P. (ed.), The Cambridge Handbook of Phonology (pp. 536–554). Cambridge University Press.Google Scholar
Fikkert, P. & Levelt, C. (2008). How does place fall into place? The lexicon and emergent constraints in children’s developing phonological grammar. In Avery, P., Dresher, B. E. & Rice, K. (eds.), Contrast in Phonology: Theory, Perception, Acquisition (pp. 231–268). Berlin: Mouton de Gruyter.Google Scholar
Finley, S. & Badecker, W. (2008). Analytic biases for vowel harmony languages, West Coast Conference of Formal Linguistics. UCLA.Google Scholar
Finley, S. & Badecker, W. (2009). Artificial language learning and feature-based generalization. Journal of Memory and Language, 61, 423–437.CrossRefGoogle Scholar
Finley, S. & Badecker, W. (2010). Linguistic and non-linguistic influences on learning biases for vowel harmony. In O. S. & Catrambone, R. (eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 706–711). Austin, TX: Cognitive Science Society.Google Scholar
Fischer, J. & Hammerschmidt, K. (2011) Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: insights into the evolution of vocal communication. Genes, Brain, Behavior, 10, 17–27.CrossRefGoogle ScholarPubMed
Fisher, S. & Marcus, G. (2006). The eloquent ape: genes, brains and the evolution of language. Nature Reviews, 7, 9–20.CrossRefGoogle ScholarPubMed
Fisher, S. E. & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25, 166–177.CrossRefGoogle ScholarPubMed
Fitch, W. T. (2010). The Evolution of Language. Leiden: Cambridge University Press.CrossRefGoogle ScholarPubMed
Fitch, W. T. & Fritz, J. B. (2006). Rhesus macaques spontaneously perceive formants in conspecific vocalizations. Journal of the Acoustical Society of America, 120, 2132–2141.CrossRefGoogle ScholarPubMed
Fitch, W. T. & Hauser, M. D. (2004). Computational constraints on syntactic processing in a nonhuman primate. Science, 303, 377–380.CrossRefGoogle Scholar
Fitch, W. T., Hauser, M. D. & Chomsky, N. (2005). The evolution of the language faculty: clarifications and implications. Cognition, 97, 179–210.CrossRefGoogle ScholarPubMed
Fleishhacker, H. (2001). Onset Transfer in Reduplication. Los Angeles: UCLA.Google Scholar
Flemming, E. (2001). Scalar and categorical phenomena in a unified model of phonetics and phonology. Phonology, 18, 7–44.Google Scholar
Fodor, J. A. (1983). The Modularity of Mind. Cambridge, MA: MIT Press.Google Scholar
Fodor, J. A. (1975). The Language of Thought. Cambridge, MA: Harvard University Press.Google Scholar
Fodor, J. A. & Piattelli-Palmarini, M. (2010). What Darwin Got WrongNew York: Farrar, Straus and Giroux.Google Scholar
Fodor, J. A. & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: a critical analysis. Cognition, 28, 3–71.CrossRefGoogle ScholarPubMed
Fowler, C., Treiman, R. & Gross, J. (1993). The structure of English syllables and polysyllables. Journal of Memory and Language, 32, 115–140.CrossRefGoogle Scholar
Franz, M. & Goller, F. (2002). Respiratory units of motor production and song imitation in the Zebra Finch. Journal of Neurobiology, 51, 129–141.CrossRefGoogle ScholarPubMed
French, C. A., Groszer, M., Preece, C., Coupe, A. M., Rajewsky, K. & Fisher, S. E. (2007). Generation of mice with a conditional Foxp2 null allele. Genesis, 45, 440–446.CrossRefGoogle ScholarPubMed
Friederici, A., D. & Wessels, J. M. (1993). Phonotactic knowledge of word boundaries and its use in infant speech perception. Perception and Psychophysics, 54, 287–295.CrossRefGoogle ScholarPubMed
Friedrich, M. & Friederici, A. D. (2005). Phonotactic knowledge and lexical-semantic processing in one-year-olds: brain responses to words and nonsense words in picture contexts. Journal of Cognitive Neuroscience, 17, 1785–1802.CrossRefGoogle ScholarPubMed
Frisch, S. A. & Zawaydeh, B. A. (2001). The psychological reality of OCP-place in Arabic. Language, 77, 91–106.CrossRefGoogle Scholar
Frisch, S. A., Pierrehumbert, J. B. & Broe, M. B. (2004). Similarity avoidance and the OCP. Natural Language and Linguistic Theory, 22, 197–228.CrossRefGoogle Scholar
Frost, R., Ahissar, M., Gotesman, R. & Tayeb, S. (2003). Are phonological effects fragile? The effect of luminance and exposure duration on form priming and phonological priming. Journal of Memory and Language, 48, 346–378.CrossRefGoogle Scholar
Gafos, A., I. (1999). The Articulatory Basis of Locality in Phonology. New York: Garland.Google Scholar
Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F. & Geschwind, N. (1985). Developmental dyslexia: four consecutive patients with cortical anomalies. Annals of Neurology, 18, 222–233.CrossRefGoogle ScholarPubMed
Galaburda, A. M., LoTurco, J., Ramus, F., Fitch, R. H. & Rosen, G. D. (2006). From genes to behavior in developmental dyslexia. Nature Neuroscience, 9, 1213–1217.CrossRefGoogle ScholarPubMed
Gallistel, C. R. (1990). The Organization of Learning. Cambridge, MA: MIT Press.Google Scholar
Gallistel, C. R. (2007). Learning organs (L’apprentissage de matières distinctes exige des organes distincts). In Franck, J. B. J. (ed.), Cahier n° 88: Noam Chomsky (pp. 181–187). Paris: L’Herne.Google Scholar
Gallistel, C. R. & King, A. P. (2009). Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience. Chichester; Malden, MA: Wiley-Blackwell.CrossRefGoogle Scholar
Gallon, N., Harris, J. & van der Lely, H. (2007). Non-word repetition: an investigation of phonological complexity in children with Grammatical SLI. Clinical Linguistics & Phonetics, 21, 435–455.CrossRefGoogle ScholarPubMed
Gardner, R. A. & Gardner, B. T. (1969). Teaching sign language to a chimpanzee. Science (New York, NY), 165, 664–672.CrossRefGoogle ScholarPubMed
Gaskell, M. G. & Marslen-Wilson, W. D. (1998). Mechanisms of phonological inference in speech perception. Journal of Experimental Psychology: Human Perception and Performance, 24, 380–396.Google ScholarPubMed
Gaskell, M., Hare, M. & Marslen-Wilson, W. (1995). A connectionist model of phonological representation in speech perception. Cognitive Science, 19, 407–439.CrossRefGoogle Scholar
Gathercole, S. E. & Baddeley, A. D. (1990). Phonological memory deficits in language disordered children: is there a causal connection?Journal of Memory and Language, 29, 336–360.CrossRefGoogle Scholar
Gentner, T. Q. (2008). Temporal scales of auditory objects underlying birdsong vocal recognition. Journal of the Acoustical Society of America, 124, 1350–1359.CrossRefGoogle ScholarPubMed
Gentner, T. Q. & Hulse, S. H. (2000). Perceptual classification based on the component structure of song in European starlings. Journal of the Acoustical Society of America, 107, 3369–3381.CrossRefGoogle Scholar
Gentner, T. Q., Fenn, K. M., Margoliash, D. & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440, 1204–1207.CrossRefGoogle ScholarPubMed
Gerken, L. (1994). A metrical template account of children’s weak syllable omissions from multisyllabic words. Journal of Child Language, 21, 565–584.CrossRefGoogle ScholarPubMed
Gervain, J., Macagno, F., Cogoi, S., Peña, M. & Mehler, J. (2008). The neonate brain detects speech structure. Proceedings of the National Academy of Sciences of the United States of America, 105, 14222–14227.CrossRefGoogle ScholarPubMed
Gervain, J., Berent, I. & Werker, J. (2012). Binding at birth: newborns detect identity relations and sequential position in speech. Journal of Cognitive Neuroscience, 24, 564–574.CrossRefGoogle Scholar
Gervain, J., Berent, I., Dupoux, E. & Werker, J. F. (forthcoming). Distinct networks for music and speech perception in the newborn brain.
Gibson, E. & Fedorenko, E. (2010). Weak quantitative standards in linguistics research. Trends in Cognitive Sciences, 14, 233–234.CrossRefGoogle ScholarPubMed
Gierut, J. A. (1999). Syllable onsets: clusters and adjuncts in acquisition. Journal of Speech, Language, and Hearing Research: JSLHR, 42, 708–726.CrossRefGoogle ScholarPubMed
Gill, K. Z. & Purves, D. (2009). A biological rationale for musical scales. PLoS One, 4, e8144–e8144.CrossRefGoogle ScholarPubMed
Giurfa, M., Zhang, S., Jenett, A., Menzel, R. & Srinivasan, M. V. (2001). The concepts of “sameness” and “difference” in an insect. Nature, 410, 930.CrossRefGoogle Scholar
Glushko, R. (1979). The organization and activation of orthographic knowledge in reading aloud. Journal of Experimental Psychology: Human Perception and Performance, 5, 674–691.Google Scholar
Gnanadesikan, A. (2004). Markedness and faithfulness constraints in child phonology. In Kager, R., Pater, J. & Zonneveld, W. (eds.), Constraints in Phonological Acquisition (pp. 73–108). New York: Cambridge University Press.Google Scholar
Goad, H. & Rose, Y. (2004). Input elaboration, head faithfulness, and evidence for representation in the acquisition of left-edge clusters in West Germanic. In Kager, R., Pater, J. & Zonneveld, W. (eds.), Constraints in Phonological Acquisition (pp. 109–157). New York: Cambridge University Press.Google Scholar
Goldin-Meadow, S. & Mylander, C. (1983). Gestural communication in deaf children: noneffect of parental input on language development. Science, 221, 372–374.CrossRefGoogle ScholarPubMed
Goldin-Meadow, S. & Mylander, C. (1998). Spontaneous sign systems created by deaf children in two cultures. Nature, 391, 279–281.CrossRefGoogle ScholarPubMed
Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. Psychological Review, 105, 251–279.CrossRefGoogle ScholarPubMed
Goldrick, M. & Rapp, B. (2007). Lexical and post-lexical phonological representations in spoken production. Cognition, 102, 219–260.CrossRefGoogle ScholarPubMed
Goldsmith, J. (2002) Probabilistic models of grammar: phonology as information minimization. Phonological Studies, 5, 21–46.Google Scholar
Gordon, P. (1985). Level ordering in lexical development. Cognition, 21, 73–93.CrossRefGoogle ScholarPubMed
Gordon, P. (2004). Numerical cognition without words: evidence from Amazonia. Science, 306, 496–499.CrossRefGoogle ScholarPubMed
Gough, P. M., Nobre, A. C. & Devlin, J. T. (2005). Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. Journal of Neuroscience, 25, 8010–8016.CrossRefGoogle ScholarPubMed
Gould, S. J. & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 205, 581–598.CrossRefGoogle Scholar
Gouskova, M. (2001). Falling sonority onsets, loanwords, and syllable contact. CLS, 37, 175–185.Google Scholar
Gow, D. W. J. (2001). Assimilation and anticipation in continuous spoken word recognition. Journal of Memory and Language, 45, 133–159.CrossRefGoogle Scholar
Gow, D. W. J. & Segawa, J. A. (2009). Articulatory mediation of speech perception: a causal analysis of multi-modal imaging data. Cognition, 110, 222–236.CrossRefGoogle ScholarPubMed
Graves, W. W., Grabowski, T. J., Mehta, S. & Gupta, P. (2008). The left posterior superior temporal gyrus participates specifically in accessing lexical phonology. Journal of Cognitive Neuroscience, 20, 1698–1710.CrossRefGoogle ScholarPubMed
Greenberg, J. H. (1966). Language Universals, with Special Reference to Feature Hierarchies. The Hague: Mouton.Google Scholar
Greenberg, J. H. (1978). Some generalizations concerning initial and final consonant clusters. In Greenberg, J. H., Ferguson, C. A. & Moravcsik, E. A. (eds.), Universals of Human Language (Vol. II, pp. 243–279). Stanford University Press.Google Scholar
Guion, S. G. (1996). Velar palatalization: coarticulation, perception, and sound change. Ph.D. dissertation, University of Texas at Austin.
Guion, S. G. (1998). The role of perception in the sound change of velar palatalization. Phonetica, 55, 18–52.CrossRefGoogle ScholarPubMed
Guo, T., Peng, D. & Liu, Y. (2005). The role of phonological activation in the visual semantic retrieval of Chinese characters. Cognition, 98, B21–B34.CrossRefGoogle ScholarPubMed
Haesler, S., Wada, K., Nshdejan, A., Morrisey, E. E., Lints, T., Jarvis, E. D., et al. (2004). FoxP2 expression in avian vocal learners and non-learners. Journal of Neuroscience, 24, 3164–3175.CrossRefGoogle ScholarPubMed
Haesler, S., Rochefort, C., Georgi, B., Licznerski, P., Osten, P. & Scharff, C. (2007). Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLoS Biol, 5(12), e321. .CrossRefGoogle ScholarPubMed
Hale, M. & Reiss, C. (2008). The Phonological Enterprise. Oxford; New York: Oxford University Press.Google Scholar
Halle, M. (1971). The Sound Pattern of Russian: A Linguistic and Acoustical Investigation. The Hauge, Mouton.CrossRefGoogle Scholar
Hallé, P. A., Segui, J., Frauenfelder, U. & Meunier, C. (1998). The processing of illegal consonant clusters: a case of perceptual assimilation?Journal of Experimental Psychology: Human Perception and Performance, 24, 592–608.Google ScholarPubMed
Hallé, P. A., Dominguez, A., Cuetos, F. & Segui, J. (2008). Phonological mediation in visual masked priming: evidence from phonotactic repair. Journal of Experimental Psychology: Human Perception and Performance, 34, 177–192.Google ScholarPubMed
Hamlin, J. K., Wynn, K. & Bloom, P. (2007). Social evaluation by preverbal infants. Nature, 450, 557–559.CrossRefGoogle ScholarPubMed
Hamlin, J. K., Wynn, K. & Bloom, P. (2010). Three-month-olds show a negativity bias in their social evaluations. Developmental Science, 13, 923–929.CrossRefGoogle ScholarPubMed
Harm, M. W. & Seidenberg, M. S. (1999). Phonology, reading acquisition, and dyslexia: insights from connectionist models. Psychological Review, 106, 491–528.CrossRefGoogle ScholarPubMed
Haugeland, J. (1985). Artificial Intelligence: The Very Idea. Cambridge, MA: MIT Press.Google Scholar
Hauser, M. D. (1996). The Evolution of Communication. Cambridge, MA: MIT Press.Google Scholar
Hauser, M. D. & Glynn, D. (2009). Can free-ranging rhesus monkeys (Macaca mulatta) extract artificially created rules comprised of natural vocalizations?Journal of Comparative Psychology, 123, 161–167.CrossRefGoogle ScholarPubMed
Hauser, M. D. & Konishi, M. (1999). The Design of Animal Communication. Cambridge, MA: MIT Press.Google Scholar
Hauser, M. D. & Spelke, E. (2004). Evolutionary and developmental foundations of human knowledge. In Gazzaniga, M. S. (ed.), The Cognitive Neurosciences (3rd edn., pp. 853–864). Cambridge, MA: MIT Press.Google Scholar
Hauser, M. D., Newport, E. L. & Aslin, R. N. (2001). Segmentation of the speech stream in a non-human primate: statistical learning in cotton-top tamarins. Cognition, 78, B53–64.CrossRefGoogle Scholar
Hauser, M. D., Chomsky, N. & Fitch, W. T. (2002). The faculty of language: what is it, who has it, and how did it evolve?Science, 298, 1569–1579.CrossRefGoogle ScholarPubMed
Havy, M. l. & Nazzi, T. (2009). Better processing of consonantal over vocalic information in word learning at 16 months of age. Infancy, 14, 439–456.CrossRefGoogle Scholar
Hayes, B. P. (1980). A metrical theory of stress rules. Unpublished Ph.D. thesis, Massachusetts Institute of Technology.
Hayes, B. P. (1999). Phonetically driven phonology: the role of Optimality Theory and inductive grounding. In Danell, E. A. M., Newmeyer, F., Noonan, M. & Wheatley, K. W. (eds.), Formalism and Functionalism in Linguistics (Vol. I, pp. 243–285). Amsterdam: Benjamins.CrossRefGoogle Scholar
Hayes, B. P. (2009). Introductory Phonology. Malden, MA; Oxford: Wiley-Blackwell.Google Scholar
Hayes, B. P. (forthcoming). Interpreting sonority – projection experiments: the role of phonotactic modeling. Paper presented at the Proceedings of the 17th International Congress of Phonetic Sciences, Hong Kong.
Hayes, B. & Steriade, D. (2004). A review of perceptual cues and cue robustness. In Hayes, B., Kirchner, R. M. & Steriade, D. (eds.), Phonetically Based Phonology (pp. 1–33). Cambridge University Press.CrossRefGoogle Scholar
Hayes, B. & Wilson, C. (2008). A maximum entropy model of phonotactics and phonotactic learning. Linguistic Inquiry 39, 379–440.CrossRefGoogle Scholar
Hayes, B., Kirchner, R. M. & Steriade, D. (eds.). (2004). Phonetically Based Phonology. Cambridge University Press.CrossRef
Hengeveld, K. (2006). Linguistic typology. In Mairal, R. & Gil, J. (eds.), Linguistic Universals (pp. 46–66). Cambridge University Press.CrossRefGoogle Scholar
Hickok, G. & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402.CrossRefGoogle ScholarPubMed
Hillenbrand, J. (1983). Perceptual organization of speech sounds by infants. Journal of Speech and Hearing Research, 26, 268–282.CrossRefGoogle ScholarPubMed
Hockett, C. F. (1960). The origin of speech. Scientific American, 203, 89–96.CrossRefGoogle Scholar
Hooper, J. B. (1976). An Introduction to Natural Generative Phonology. New York: Academic Press.Google Scholar
Humboldt, W. (1997). Essays on Language. Frankfurt am Main; New York: P. Lang.Google Scholar
Hurst, J. A., Baraitser, M., Auger, E., Graham, F. & Norell, S. (1990). An extended family with a dominantly inherited speech disorder. Developmental Medicine and Child Neurology, 32, 352–355.CrossRefGoogle ScholarPubMed
Hyman, L. (1985). A Theory of Phonological Weight. Dordrecht: Foris.Google Scholar
Hyman, L. (2001). On the limits of phonetic determinism in phonology: *NC revisited. In Hume, B. & Johnson, K. (eds.), The Role of Speech Perception Phenomena in Phonology (pp. 141–185). New York: Academic Press.Google Scholar
Hyman, L. (2008). Universals in phonology. The Linguistic Review, 25, 83–137.CrossRefGoogle Scholar
Hyman, L. (2011). Does Gokana really have no syllables? Or: what’s so great about being universal?Phonology, 28, 55–85.CrossRefGoogle Scholar
Immelmann, K. (1969). Song development in the Zebra Finch and other estrildid finches. In Hinde, R. A. (ed.), Bird Vocalizations (pp. 61–74). London: Cambridge University Press.Google Scholar
Israel, A. & Sandler, W. (2009). Phonological category resolution: a study of handshapes in younger and older sign languages. In Caldas, A. Castro & Mineiro, A. (eds.), Cadernos de Saúde (Vol. II, Special issue Línguas Gestuais, UCP, pp. 13–28). Lisbon: UCP.Google Scholar
Iverson, J., R. & Patel, A. D. (2008). Perception of rhythmic grouping depends on auditory experience. Journal of the Acoustical Society of America, 124, 2263–2271.CrossRefGoogle Scholar
Jackendoff, R. (2002). Foundations of Language: Brain, Meaning, Grammar, Evolution. Oxford; New York: Oxford University Press.CrossRefGoogle Scholar
Jackendoff, R. & Lerdahl, F. (2006). The capacity for music: what is it, and what’s special about it. Cognition, 100, 33–72.CrossRefGoogle Scholar
Jacquemot, C., Pallier, C., LeBihan, D., Dehaene, S. & Dupoux, E. (2003). Phonological grammar shapes the auditory cortex: a functional magnetic resonance imaging study. Journal of Neuroscience, 22/23, 9541–9546.CrossRefGoogle Scholar
Jakobson, R. (1941). Kindersprache, Aphasie und allgemeine Lautgesetze [Child language, aphasia and phonological universals]. Frankfurt: Suhrkamp.Google Scholar
Jakobson, R. (1962). Selected Writings 1: Phonological Studies (Vol. I). The Hague: Mouton.Google Scholar
Jakobson, R. (1968). Child Language Aphasia and Phonological Universals. The Hague: Mouton.CrossRefGoogle Scholar
Jared, D. (2002). Spelling-sound consistency and regularity effects in word naming. Journal of Memory and Language, 46, 723–750.CrossRefGoogle Scholar
Jared, D. & Seidenberg, M. S. (1991). Does word identification proceed from spelling to sound to meaning?Journal of Experimental Psychology: General, 120, 358–394.CrossRefGoogle Scholar
Jared, D., McRae, K. & Seidenberg, M. (1990). The basis of consistency effect in word naming. Journal of Memory and Language, 29, 687–715.CrossRefGoogle Scholar
Jeffries, K., Fritz, J. & Braun, A. (2003). Words in melody: an H(2)15O PET study of brain activation during singing and speaking. Neuroreport, 14, 749–754.CrossRefGoogle Scholar
Jun, J. (2004). Place assimilation. In Hayes, B., Kirchner, R. & Steriade, D. (eds.), Phonetically Based Phonology (pp. 58–86). Cambridge University Press.CrossRefGoogle Scholar
Jusczyk, P. W., Friederici, A. D., Wessels, J., Svenkerud, V. Y. & Jusczyk, A. M. (1993). Infants’ sensitivity to the sound patterns of native language words. Journal of Memory and Language, 32, 402–420.CrossRefGoogle Scholar
Jusczyk, P. W., Luce, P. A. & Luce, C. J. (1994). Infants’ sensitivity to phonotactic patterns in the native language. Journal of Memory and Language, 33, 630–645.CrossRefGoogle Scholar
Jusczyk, P. W., Smolensky, P. & Allocco, T. (2002). How English-learning infants respond to markedness and faithfulness constraints. Language Acquisition, 10, 31–73.CrossRefGoogle Scholar
Kager, R. & Pater, J. (2012). Phonotactics as phonology: knowledge of a complex constraint in Dutch. Phonology, 29, 81–111.CrossRefGoogle Scholar
Kaminski, J., Call, J. & Fischer, J. (2004). Word learning in a domestic dog: evidence for “fast mapping.”Science, 304, 1682–1683.CrossRefGoogle Scholar
Kang, K.-S. (2003). The status of onglides in Korean: evidence from speech errors. Studies in Phonetics, Phonology, and Morphology, 9, 1–15.Google Scholar
Kavitskaya, D. & Babyonyshev, M. (2011). The role of syllable structure: the case of Russian-speaking children with SLI. In Cairns, C. E. & Raimy, E. (eds.), Handbook of the Syllable (pp. 353–369). Leiden: E. J. Brill.Google Scholar
Kavitskaya, D., Babyonyshev, M., Walls, T. & Grigorenko, E. (2011). Investigating the effects of syllable complexity in Russian-speaking children with SLI. Journal of Child Language, FirstView, 1–20.Google ScholarPubMed
Kawahara, S., Ono, H. & Sudo, K. (2006). Consonant co-occurrence restrictions in Yamato Japanese. In Vance, T. & Jones, K. (eds.), Japanese/Korean Linguistics (Vol. XIV, pp. 27–38). Stanford: CSLI Publications.Google Scholar
Kawasaki-Fukumori, H. (1992). An acoustical basis for universal phonotactic constraints. Language and Speech, 35, 73–86.CrossRefGoogle ScholarPubMed
Keating, P. A. (1984). Phonetic and phonological representation of stop consonant voicing. Language, 60, 286–319.CrossRefGoogle Scholar
Keating, P. A. (1985). Universal phonetics and the organization of grammars. In Fromkin, V. (ed.), Phonetic Linguistics: Essays in Honor of Peter Ladefoged (pp. 115–132). Orlando, FL: Academic.Google Scholar
Keating, P. A. (1988). The phonology-phonetics interface. In Newmeyer, F. (ed.), Linguistics: The Cambridge Survey (Vol. I, pp. 281–302). Cambridge University Press.Google Scholar
Keil, F. C. (1986). The acquisition of natural kind and artifact term. In Demopoulos, W. & Marras, A. (eds.), Language Learning and Concept Acquisition (pp. 133–153). Norwood, NJ: Ablex.Google Scholar
Keller, T. A., Carpenter, P. A. & Just, M. A. (2003). Brain imaging of tongue-twister sentence comprehension: twisting the tongue and the brain. Brain and Language, 84, 189–203.CrossRefGoogle Scholar
Kennison, S. M., Sieck, J. P. & Briesch, K. A. (2003). Evidence for a late-occurring effect of phoneme repetition during silent reading. Journal of Psycholinguistic Research, 32, 297–312.CrossRefGoogle ScholarPubMed
Kenstowicz, M. (1994). Phonology in Generative Grammar. Cambridge, MA: Blackwell.Google Scholar
Kim, J. W. & Kim, H. (1991). The characters of Korean glides. Studies in the Linguistic Sciences, 21, 113–125.Google Scholar
Kiparsky, P. (1979). Metrical structure assignment is cyclic. Linguistic Inquiry, 10, 421–442.Google Scholar
Kiparsky, P. (2008). Universals constrain change; change results in typological generalizations. In Good, J. (ed.), Language Universals and Language Change (pp. 23–53). Oxford University Press.Google Scholar
Kirchner, R. (2000). Geminate inalterability and lenition. Language, 76, 509–545.CrossRefGoogle Scholar
Kirk, C. (2008). Substitution errors in the production of word-initial and word-final consonant clusters. Journal of Speech, Language & Hearing Research, 51, 35–48.CrossRefGoogle ScholarPubMed
Kirk, C. & Demuth, K. (2005). Asymmetries in the acquisition of word-initial and word-final consonant clusters. Journal of Child Language, 32, 709–734.CrossRefGoogle ScholarPubMed
Kirkham, N. Z., Slemmer, J. A. & Johnson, S. P. (2002). Visual statistical learning in infancy: evidence for a domain general learning mechanism. Cognition, 83, B35–42.CrossRefGoogle ScholarPubMed
Kisilevsky, B. S., Hains, S. M. J., Brown, C. A., Lee, C. T., Cowperthwaite, B., Stutzman, S. S. et al. (2009). Fetal sensitivity to properties of maternal speech and language. Infant Behavior and Development, 32, 59–71.CrossRefGoogle ScholarPubMed
Kluender, K. R., Lotto, A. J., Holt, L. L. & Bloedel, S. L. (1998). Role of experience for language-specific functional mappings of vowel sounds. Journal of the Acoustical Society of America, 104(6), 3568–3582.CrossRefGoogle ScholarPubMed
Knobel, M. & Caramazza, A. (2007). Evaluating computational models in cognitive neuropsychology: the case from the consonant/vowel distinction. Brain and Language, 100, 95–100.CrossRefGoogle ScholarPubMed
Koelsch, S. (2006). Significance of Broca’s area and ventral premotor cortex for music-syntactic processing. Cortex: A Journal Devoted To The Study of the Nervous System And Behavior, 42, 518–520.CrossRefGoogle ScholarPubMed
Koelsch, S., Gunter, T., Cramon, D., Zysset, S., Lohmann, G. & Friederici, A. (2002). Bach speaks: a cortical “language-network” serves the processing of music. Neuroimage, 17, 956–966.CrossRefGoogle ScholarPubMed
Kuhl, P. K. (1991). Human adults and human infants show a “perceptual magnet effect” for the prototypes of speech categories, monkeys do not. Perception and Psychophysics, 50, 93–107.CrossRefGoogle ScholarPubMed
Kuhl, P. K. & Miller, J. D. (1975). Speech perception by the chinchilla: voiced-voiceless distinction in alveolar plosive consonants. Science, 190, 69–72.CrossRefGoogle ScholarPubMed
Kuhl, P. K. & Padden, D. M. (1983). Enhanced discriminability at the phonetic boundaries for the place feature in macaques. Journal of the Acoustical Society of America, 73, 1003–1010.CrossRefGoogle ScholarPubMed
Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N. & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255, 606–608.CrossRefGoogle ScholarPubMed
Kusumoto, K. & Moreton, E. (1997). Native language determines parsing of nonlinguistic rhythmic stimuli. Journal of the Acoustical Society of America, 102, 3204.CrossRefGoogle Scholar
Lachlan, R. F., Verhagen, L., Peters, S. & ten Cate, C. (2010). Are there species-universal categories in bird song phonology and syntax? A comparative study of chaffinches (Fringilla coelebs), Zebra Finches (Taenopygia guttata), and Swamp Sparrows (Melospiza georgiana). Journal of Comparative Psychology, 124, 92–108.CrossRefGoogle Scholar
Ladefoged, P. (1975). A Course in Phonetics (2nd edn.). New York: Harcourt Brace Jovanovich.Google Scholar
Laganaro, M. & Alario, F. X. (2006). On the locus of the syllable frequency effect in speech production. Journal of Memory and Language, 55, 178–196.CrossRefGoogle Scholar
Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F. & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523.CrossRefGoogle Scholar
Lenneberg, E. H. (1967). Biological Foundations of Language. Oxford: Wiley.Google Scholar
Lennertz, T. & Berent, I. (2011). People’s knowledge of phonological universals: evidence from fricatives and stops. Unpublished manuscript.
Leppänen, P. H., Richardson, U., Pihko, E., Eklund, K. M., Guttorm, T. K., Aro, M., et al. (2002). Brain responses to changes in speech sound durations differ between infants with and without familial risk for dyslexia. Developmental Neuropsychology, 22, 407–422.CrossRefGoogle ScholarPubMed
Lerdahl, F. & Jackendoff, R. (1983). A Generative Theory of Tonal Music. Cambridge, MA: MIT Press.Google Scholar
Levelt, C. C. (2009). An experimental approach to coda-omissions in early child language. Paper presented at the Boston University Conference on Language Development, Boston, MA.
Levelt, C. C., Schiller, N. O. & Levelt, W. J. (1999). A developmental grammar for syllable structure in the production of child language. Brain and Language, 68, 291–299.CrossRefGoogle ScholarPubMed
Levitt, A., Healy, A. F. & Fendrich, D. W. (1991). Syllable-internal structure and the sonority hierarchy: differential evidence from lexical decision, naming, and reading. Journal of Psycholinguistic Research, 20, 337–363.CrossRefGoogle Scholar
Lewkowicz, D. J. & Berent, I. (2009). Sequence learning in 4-month-old infants: do infants represent ordinal information?Child Development, 80, 1811–1823.CrossRefGoogle ScholarPubMed
Liberman, A. M. & Mattingly, I. G. (1989). A specialization for speech perception. Science, 243, 489–494.CrossRefGoogle ScholarPubMed
Liberman, A. M., Harris, K. S., Kinney, J. A. & Lane, H. (1961). The discrimination of relative onset-time of the components of certain speech and nonspeech patterns. Journal of Experimental Psychology, 61, 379–388.CrossRefGoogle ScholarPubMed
Liberman, A. M., Cooper, F. S., Shankweiler, D. P. & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74, 431–461.CrossRefGoogle ScholarPubMed
Liberman, I. Y. (1973). Segmentation of the spoken word and reading acquisition. Bulletin of the Orton Society, 23, 65–77.CrossRefGoogle Scholar
Liberman, I. Y. (1989). Phonology and beginning reading revisited. In von Euler, C. (ed.), Wenner-Gren International Symposium Series: Brain and Reading (pp. 207–220). Hampshire, UK: Macmillan.Google Scholar
Liddell, S. K. & Johnson, R. E. (1989). American sign language: the phonological base. Sign Language Studies, 64, 195–278.CrossRefGoogle Scholar
Lidz, J., Waxman, S. & Freedman, J. (2003). What infants know about syntax but couldn’t have learned: experimental evidence for syntactic structure at 18 months. Cognition, 89, B65–B73.CrossRefGoogle ScholarPubMed
Liebenthal, E., Binder, J. R., Piorkowski, R. L. & Remez, R. E. (2003). Short-term reorganization of auditory analysis induced by phonetic experience. Journal of Cognitive Neuroscience, 15, 549–558.CrossRefGoogle ScholarPubMed
Liebenthal, E., Binder, J. R., Spitzer, S. M., Possing, E. T. & Medler, D. A. (2005). Neural substrates of phonemic perception. Cerebral Cortex, 15, 1621–1631.CrossRefGoogle ScholarPubMed
Lieberman, P. (2006). Toward an Evolutionary Biology of Language. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
Liegeois, F., Baldeweg, T., Connelly, A., Gadian, D. G., Mishkin, M. & Vargha-Khadem, F. (2003). Language fMRI abnormalities associated with FOXP2 gene mutation. Nature Neuroscience, 6, 1230–1237.CrossRefGoogle ScholarPubMed
Lindblom, B. (1998). Systemic constraints and adaptive changes in the formation of sound structure. In Hurford, J. R., Studdert-Kennedy, M. & Knight, C. (eds.), Approaches to the Evolution of Language: Social and Cognitive Bases (pp. 242–263). Cambridge University Press.Google Scholar
Lisker, L. & Abramson, A. (1964). A cross-language study of voicing in initial stops: acoustical measurements. Word, 20, 384–422.CrossRefGoogle Scholar
Liu, L., Deng, X., Peng, D., Cao, F., Ding, G., Jin, Z., et al. (2009). Modality- and task-specific brain regions involved in Chinese lexical processing. Journal of Cognitive Neuroscience, 21, 1473–1487.CrossRefGoogle ScholarPubMed
Lombardi, L. (1999). Positional faithfulness and voicing assimilation in optimality theory. Natural Language & Linguistic Theory, 17, 267–302.CrossRefGoogle Scholar
Lotto, A. J., Kluender, K. R. & Holt, L. L. (1997). Perceptual compensation for coarticulation by Japanese quail (Coturnix coturnix japonica). Journal of the Acoustical Society of America, 102, 1134–1140.CrossRefGoogle Scholar
Lowe, C. B., Kellis, M., Siepel, A., Raney, B. J., Clamp, M., Salama, S. R., et al. (2011). Three periods of regulatory innovation during vertebrate evolution. Science, 333, 1019–1024.CrossRefGoogle ScholarPubMed
Lukaszewicz, B. (2007). Reduction in syllable onsets in the acquisition of Polish: deletion, coalescence, metathesis and gemination. Journal of Child Language, 34, 53–82.CrossRefGoogle ScholarPubMed
Lukatela, G., Eaton, T. & Turvey, M. T. (2001). Does visual word identification involve a sub-phonemic level?Cognition, 78, B41–B52.CrossRefGoogle ScholarPubMed
Lukatela, G., Eaton, T., Sabadini, L. & Turvey, M. T. (2004). Vowel duration affects visual word identification: evidence that the mediating phonology is phonetically informed. Journal of Experimental Psychology: Human Perception and Performance, 30, 151–162.Google ScholarPubMed
MacNeilage, P. F. (1998). The frame/content theory of evolution of speech production. Behavioral and Brain Sciences, 21, 499–511.CrossRefGoogle ScholarPubMed
MacNeilage, P. F. (2008). The Origin of Speech. Oxford; New York: Oxford University Press.Google Scholar
MacNeilage, P. F. & Davis, B. L. (2000). On the origin of internal structure of word forms. Science, 288, 527–531.CrossRefGoogle ScholarPubMed
MacSweeney, M., Waters, D., Brammer, M. J., Woll, B. & Goswami, U. (2008). Phonological processing in deaf signers and the impact of age of first language acquisition. Neuroimage, 40, 1369–1379.CrossRefGoogle ScholarPubMed
Maess, B., Koelsch, S., Gunter, T. C. & Friederici, A. D. (2001). Musical syntax is processed in Broca’s area: an MEG study. Nature Neuroscience, 4, 540.CrossRefGoogle ScholarPubMed
Mandell, J., Schulze, K. & Schlaug, G. (2007). Congenital amusia: an auditory-motor feedback disorder?Restorative Neurology and Neuroscience, 25, 323–334.Google ScholarPubMed
Manis, F. R., McBride-Chang, C., Seidenberg, M. S., Keating, P., Doi, L. M., Munson, B., et al. (1997). Are speech perception deficits associated with developmental dyslexia?Journal of Experimental Child Psychology, 66, 211–235.CrossRefGoogle ScholarPubMed
Marcus, G. F. (1998). Rethinking eliminative connectionism. Cognitive Psychology, 37, 243–282.CrossRefGoogle ScholarPubMed
Marcus, G. F. (2001). The Algebraic Mind: Integrating Connectionism and Cognitive Science. Cambridge: MIT Press.Google Scholar
Marcus, G. F. (2004). The Birth of the Mind: How a Tiny Number of Genes Creates the Complexities of Human Thought. New York: Basic Books.Google Scholar
Marcus, G. F. (2006). Cognitive architecture and descent with modification. Cognition, 101, 443–465.CrossRefGoogle ScholarPubMed
Marcus, G. F. & Fisher, S. E. (2003). FOXP2 in focus: what can genes tell us about speech and language?Trends in Cognitive Sciences, 7, 257–262.CrossRefGoogle ScholarPubMed
Marcus, G. & Rabagliati, H. (2006). What developmental disorders can tell us about the nature and origins of language. Nature Neuroscience, 9, 1226–1229.CrossRefGoogle ScholarPubMed
Marcus, G. F., Vijayan, S., Bandi Rao, S. & Vishton, P. M. (1999). Rule learning by seven-month-old infants. Science, 283, 77–80.CrossRefGoogle ScholarPubMed
Marcus, G. F., Fernandes, K. J. & Johnson, S. P. (2007). Infant rule learning facilitated by speech. Psychological Sciences, 18, 387–391.CrossRefGoogle ScholarPubMed
Marler, P. (1997). Three models of song learning: evidence from behavior. Journal of Neurobiology, 33, 501–516.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Marler, P. & Peters, S. (1988). The role of song phonology and syntax in vocal learning preferences in the Song Sparrow, Melospiza melodia. Ethology, 77, 125–149.CrossRefGoogle Scholar
Marler, P. & Pickert, R. (1984). Species-universal microstructure in the learned song of the Swamp Sparrow (Melospiza georgiana). Animal Behaviour, 32, 673–689.CrossRefGoogle Scholar
Marler, P. & Sherman, V. (1985). Innate differences in singing behaviour of sparrows reared in isolation from adult conspecific song. Animal Behaviour, 33, 57–71.CrossRefGoogle Scholar
Marom, M. & Berent, I. (2010). Phonological constraints on the assembly of skeletal structure in reading. Journal of Psycholinguistic Research, 39, 67–88.CrossRefGoogle ScholarPubMed
Marshall, A. J., Wrangham, R. W. & Arcadi, A. C. (1999). Does learning affect the structure of vocalizations in chimpanzees?Animal Behaviour, 58, 825–830.CrossRefGoogle ScholarPubMed
Marshall, C. R. & van der Lely, H. K. (2005). A challenge to current models of past tense inflection: the impact of phonotactics. Cognition, 100, 302–20.CrossRefGoogle ScholarPubMed
Marshall, C. R. & van der Lely, H. K. (2009). Effects of word position and stress on onset cluster production: evidence from typical development, specific language impairment, and dyslexia. Language, 85, 39–57.CrossRefGoogle Scholar
Marshall, C. R., Harcourt-Brown, S., Ramus, F. & van der Lely, H. K. (2009). The link between prosody and language skills in children with specific language impairment (SLI) and/or dyslexia. International Journal of Language and Communication Disorders, 44, 466–488.CrossRefGoogle ScholarPubMed
Massaro, D. W. & Cohen, M. M. (1983). Phonological constraints in speech perception. Perception and Psychophysics, 34, 338–348.CrossRefGoogle Scholar
Mattingly, I. G. (1981). Phonetic representation and speech synthesis by rule. In Myers, T., Laver, J. & Anderson, J. (eds.), The Cognitive Representation of Speech (pp. 415–420). Amsterdam: North Holland.CrossRefGoogle Scholar
Mattys, S. L. & Jusczyk, P. W. (2001). Phonotactic cues for segmentation of fluent speech by infants. Cognition, 78, 91–121.CrossRefGoogle ScholarPubMed
Mattys, S. L., Jusczyk, P. W., Luce, P. A. & Morgan, J. L. (1999). Phonotactic and prosodic effects on word segmentation in infants. Cognitive Psychology, 38, 465–494.CrossRefGoogle ScholarPubMed
Mayberry, R. I. (2007). When timing is everything: age of first-language acquisition effects on second-language learning. Applied Psycholinguistics, 28, 537–549.CrossRefGoogle Scholar
Mayberry, R. I. & Witcher, P. (2005). What Age of Acquisition Effects Reveal about the Nature of Phonological Processing. San Diego, La Jolla: University of California.Google Scholar
Maye, J., Werker, J. F. & Gerken, L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82, B101–111.CrossRefGoogle ScholarPubMed
Mazuka, R., Cao, Y., Dupoux, E. & Christophe, A. (2012). The development of a phonological illusion: a cross-linguistic study with Japanese and French infants. Developmental Science, 14, 693–699.CrossRefGoogle Scholar
McCarthy, J. (1979). Formal Problems in Semitic Phonology and Morphology. Doctoral dissertation, MIT. New York: Garland Press, 1985.Google Scholar
McCarthy, J. (1981). A prosodic theory of nonconcatenative morphology. Linguistic Inquiry, 12, 373–418.Google Scholar
McCarthy, J. (1982). Prosodic structure and expletive infixation. Language, 58, 574–590.CrossRefGoogle Scholar
McCarthy, J. (1994). The phonetics and phonology of Semitic pharyngeals. In Keating, P. (ed.), Papers in Laboratory Phonology III (pp. 191–283). Cambridge University Press, Cambridge.Google Scholar
McCarthy, J. (forthcoming). Autosegmental spreading in Optimality Theory. In Goldsmith, J., Hume, E. & Wetzels, L. (eds.), Tones and Features (Clements Memorial Volume). Berlin: Mouton de Gruyter.
McCarthy, J. J. & Prince, A. (1986). Prosodic Morphology. Rutgers: Rutgers University Center for Cognitive Science.Google Scholar
McCarthy, J. J. & Prince, A. (1993). Prosodic Morphology I: Constraint Interaction and Satisfaction (Report no. RuCCS-TR-3). New Brunswick, NJ: Rutgers University Center for Cognitive Science.Google Scholar
McCarthy, J. J. & Prince, A. (1995). Prosodic morphology. In Goldsmith, J. A. (ed.), Phonological Theory (pp. 318–366). Oxford: Blackwell.Google Scholar
McCarthy, J. J. & Prince, A. (1998). Prosodic morphology. In Spencer, A. & Zwicky, A. M. (eds.), Handbook of Morphology (pp. 283–305). Oxford: Blackwell.Google Scholar
McClelland, J. L. & Patterson, K. (2002). Rules or connections in past-tense inflections: what does the evidence rule out?Trends in Cognitive Sciences, 6, 465–472.CrossRefGoogle ScholarPubMed
McCutchen, D. & Perfetti, C. A. (1982). The visual tongue-twister effect: phonological activation in silent reading. Journal of Verbal Learning & Verbal Behavior, 21, 672–687.CrossRefGoogle Scholar
McCutchen, D., Bell, L. C., France, I. M. & Perfetti, C. A. (1991). Phoneme-specific interference in reading: the tongue-twister effect revisited. Reading Research Quarterly, 26, 87–103.CrossRefGoogle Scholar
McIntosh, J. B. (1944). Huichol phonemes. International Journal of American Linguistics, 11, 31–35.CrossRefGoogle Scholar
McMurray, B. & Aslin, R. N. (2005). Infants are sensitive to within-category variation in speech perception. Cognition, 95, B15–26.CrossRefGoogle ScholarPubMed
Mehler, J., Jusczyk, P., Lambertz, G., Halsted, N., Bertoncini, J. & Amiel-Tison, C. (1988). A precursor of language acquisition in young infants. Cognition, 29, 143–178.CrossRefGoogle ScholarPubMed
Mester, A. R. & Ito, J. (1989). Feature predictability and underspecification: palatal prosody in Japanese mimetics. Language, 65, 258–293.CrossRefGoogle Scholar
Miceli, G., Capasso, R., Benvegnú, B. & Caramazza, A. (2004). The categorical distinction of vowel and consonant representations: evidence from dysgraphia. Neurocase: Case Studies in Neuropsychology, Neuropsychiatry, and Behavioural Neurology, 10, 109–121.CrossRefGoogle ScholarPubMed
Midrash, Tanhuma. [Tanhuma, R.] Exodus, parashat pekudei. Retrieved November 24, 2010, from
Miksis-Olds, J. L., Buck, J. R., Noad, M. J., Cato, D. H. & Stokes, M. D. (2008). Information theory analysis of Australian humpback whale song. Journal of the Acoustical Society of America, 124, 2385–2393.CrossRefGoogle ScholarPubMed
Miller, J. L. (2001). Mapping from acoustic signal to phonetic category: Internal category structure, context effects and speeded categorization. Language and Cognitive Processes, 16, 683–690.CrossRefGoogle Scholar
Miller, J. L. & Volaitis, L. E. (1989). Effect of speaking rate on the perceptual structure of a phonetic category. Perception and Psychophysics, 46, 505–512.CrossRefGoogle ScholarPubMed
Mody, M., Studdert-Kennedy, M. & Brady, S. (1997). Speech perception deficits in poor readers: auditory processing or phonological coding?Journal of Experimental Child Psychology, 64, 199–231.CrossRefGoogle ScholarPubMed
Molfese, D. L. (2000). Predicting dyslexia at 8 years of age using neonatal brain response. Brain and Language, 72, 238–245.CrossRefGoogle Scholar
Monaghan, P. & Shillcock, R. (2003). Connectionist modelling of the separable processing of consonants and vowels. Brain and Language, 86, 83–98.CrossRefGoogle ScholarPubMed
Morais, J., Cary, L., Alegria, J. & Bertelson, P. (1979). Does awareness of speech as a sequence of phonemes arise spontaneously?Cognition, 7, 323–331.CrossRefGoogle Scholar
Morely, R. L. (2008). Generalization, lexical statistics, and a typologically rare system. Ph.D. dissertation, Johns Hopkins University, Baltimore.
Moreton, E. (2002). Structural constraints in the perception of English stop-sonorant clusters. Cognition, 84, 55–71.CrossRefGoogle ScholarPubMed
Moreton, E. (2008). Analytic bias and phonological typology. Phonology, 25, 83–127.CrossRefGoogle Scholar
Morillon, B., Lehongre, K., Frackowiak, R. S. J., Ducorps, A., Kleinschmidt, A., et al. (2010). Neurophysiological origin of human brain asymmetry for speech and language. Proceedings of the National Academy of Sciences of the United States of America, 107, 18688–18693.CrossRefGoogle ScholarPubMed
Murphy, R. A., Mondragón, E. & Murphy, V. A. (2008). Rule learning by rats. Science, 319, 1849–1851.CrossRefGoogle ScholarPubMed
Naatanen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., et al. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385, 432–434.CrossRefGoogle ScholarPubMed
Nag, S., Treiman, R. & Snowling, M. (2010). Learning to spell in an alphasyllabary: the case of Kannada. Writing Systems Research, 2, 41–52.CrossRefGoogle Scholar
Naish, P. (1980). Phonological recoding and the Stroop effect. British Journal of Psychology, 71, 395–400.CrossRefGoogle ScholarPubMed
Nazzi, T. (2005). Use of phonetic specificity during the acquisition of new words: differences between consonants and vowels, Cognition, 98(1), 13–30.CrossRefGoogle ScholarPubMed
Nazzi, T. & Bertoncini, J. (2009). Phonetic specificity in early lexical acquisition: new evidence from consonants in coda positions. Language and Speech, 52, 463–480.CrossRefGoogle ScholarPubMed
Nazzi, T. & New, B. (2007). Beyond stop consonants: consonantal specificity in early lexical acquisition. Cognitive Development, 22, 271–279.CrossRefGoogle Scholar
Nazzi, T., Bertoncini, J. & Mehler, J. (1998). Language discrimination by newborns: toward an understanding of the role of rhythm. Journal of Experimental Psychology: Human Perception and Performance, 24, 756–766.Google ScholarPubMed
Nazzi, T., Dilley, L. C., Jusczyk, A. M., Shattuck-Hufnagel, S. & Jusczyk, P. W. (2005). English-learning infants’ segmentation of verbs from fluent speech. Language & Speech, 48(Part 3), 279–298.CrossRefGoogle ScholarPubMed
Nazzi, T., Floccia, C., Moquet, B. & Butler, J. (2009). Bias for consonantal information over vocalic information in 30-month-olds: cross-linguistic evidence from French and English. Journal of Experimental Child Psychology, 102, 522–537.CrossRefGoogle ScholarPubMed
Nelson, D. A. & Marler, P. (1989). Categorical perception of a natural stimulus continuum: birdsong. Science, 244, 976.CrossRefGoogle ScholarPubMed
Nespor, M., Peña, M. & Mehler, J. (2003). On the different roles of vowels and consonants in speech processing and language acquisition. Lingue e Linguaggio, 2, 223–229.Google Scholar
Nevins, A. (2009). On formal universals in phonology. Behavioral and Brain Sciences, 32, 461–432.CrossRefGoogle Scholar
Newbury, D. F. & Monaco, A. P. (2010). Genetic advances in the study of speech and language disorders. Neuron, 68, 309–320.CrossRefGoogle Scholar
Newport, E. L. (2002). Critical periods in language development. In Nadel, L. (ed.), Encyclopedia of Cognitive Science (pp. 737–740). London: Macmillan Publishers Ltd. / Nature Publishing Group.Google Scholar
Newport, E. L., Hauser, M. D., Spaepen, G. & Aslin, R. N. (2004). Learning at a distance II: statistical learning of non-adjacent dependencies in a non-human primate. Cognitive Psychology, 49, 85–117.CrossRefGoogle Scholar
Niddah, (Slotski, I. W., trans.). (1947). In Epstein, I. (ed.), Babylonian Talmud. London: Soncino Press.Google Scholar
Nishimura, H., Hashikawa, K., Doi, K., Iwaki, T., Watanabe, Y., Kusuoka, H., et al. (1999). Sign language “heard” in the auditory cortex. Nature, 397, 116.CrossRefGoogle ScholarPubMed
Nowak, M. A. & Krakauer, D. C. (1999). The evolution of language. Proceedings of the National Academy of Sciences of the United States of America, 96, 8028–8033.CrossRefGoogle ScholarPubMed
Obleser, J., Leaver, A., VanMeter, J. & Rauschecker, J. P. (2010). Segregation of vowels and consonants in human auditory cortex: evidence for distributed hierarchical organization. Frontiers in Psychology, 1. Available at: .Google ScholarPubMed
Ohala, D. K. (1999). The influence of sonority on children’s cluster reductions. Journal of Communication Disorders, 32, 397–421.CrossRefGoogle ScholarPubMed
Ohala, J. J. (1975). Phonetic explanations for nasal sound patterns. In Ferguson, C. A., Hyman, L. M. & Ohala, J. J. (eds.), Nasalfest: Papers from a symposium on nasals and nasalization (pp. 289–316). Stanford: Language Universals Project.Google Scholar
Ohala, J. J. (1989). Sound change is drawn from a pool of synchronic variation. In Breivik, L. E. & Jahr, E. H. (eds.), Language Change: Contributions to the Study of Its Causes (pp. 173–198). Berlin: Mouton de Gruyter.Google Scholar
Ohala, J. J. (1990). Alternatives to the sonority hierarchy for explaining segmental sequential constraints. Papers from the Regional Meetings, Chicago Linguistic Society, 2, 319–338.Google Scholar
Ohala, J. J. & Riordan, C. J. (1979). Passive vocal tract enlargement during voiced stops. In Wolf, J. J. & Klatt, D. H. (eds.), Speech Communication Papers (pp. 89–92). New York: Acoustical Society of America.Google Scholar
Okada, K. & Hickok, G. (2006). Identification of lexical-phonological networks in the superior temporal sulcus using functional magnetic resonance imaging. Neuroreport, 17, 1293–1296.CrossRefGoogle ScholarPubMed
Onishi, K. H. & Baillargeon, R. (2005). Do 15-month-old infants understand false beliefs?Science, 308, 255–258.CrossRefGoogle ScholarPubMed
Ota, M. (2006). Input frequency and word truncation in child Japanese: structural and lexical effects. Language and Speech, 49, 261–295.CrossRefGoogle ScholarPubMed
Ouattara, K., Lemasson, A. & Zuberbühler, K. (2009). Campbell’s monkeys concatenate vocalizations into context-specific call sequences. Proceedings of the National Academy of Sciences of the United States of America, 106, 22026–22031.CrossRefGoogle ScholarPubMed
Oudeyer, P.-Y. (2001). The origins of syllable systems: an operational model. In Moore, J. & Stenning, K. (eds.), Proceedings of the 23rd Annual Conference of the Cognitive Science Society, COGSCI’2001 (pp. 744–749). London: Lawrence Erlbaum.Google Scholar
Oudeyer, P.-Y. (2006). Self-Organization in the Evolution of Speech. Oxford; New York: Oxford University Press.CrossRefGoogle Scholar
Padden, C. A. & Perlmutter, D. M. (1987). American Sign Language and the architecture of phonological theory. Natural Language & Linguistic Theory, 5, 335–375.CrossRefGoogle Scholar
Padgett, J. (1995). Structure in Feature Geometry. Stanford: CSLI Publications.Google Scholar
Parker, S. (2002). Quantifying the sonority hierarchy. Ph.D. dissertation, University of Massachusetts, Amherst, MA.
Parker, S. (2008). Sound level protrusions as phsycial correlates of sonority. Journal of Phonetics, 36, 55–90.CrossRefGoogle Scholar
Pascual-Leone, A. & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427–445.CrossRefGoogle Scholar
Patel, A. D. (2008). Music, Language, and the Brain. Oxford; New York: Oxford University Press.Google Scholar
Patel, A. D., Iversen, J. R. & Rosenberg, J. C. (2006). Comparing the rhythm and melody of speech and music: the case of British English and French. Journal of the Acoustical Society of America, 119, 3034–3047.CrossRefGoogle ScholarPubMed
Patel, A. D., Wong, M., Foxton, J., Lochy, A. & Peretz, I. (2008). Speech intonation perception deficits in musical tone deafness (congenital amusia). Music Perception, 25, 357–368.CrossRefGoogle Scholar
Pater, J. (1997a). Metrical parameter missetting in second language acquisition. In Hannahs, S. J. & Young-Scholten, M. (eds.), Focus on Phonological Acquisition (pp. 235–261). Amsterdam: John Benjamins.Google Scholar
Pater, J. (1997b). Minimal violation and phonological development. Language Acquisition, 6, 201.CrossRefGoogle Scholar
Pater, J. (2004). Bridging the gap between receptive and productive development with minimally violable constraints. In Kager, R., Pater, J. & Zonneveld, W. (eds.), Constraints in Phonological Acquisition (pp. 219–244). New York: Cambridge University Press.Google Scholar
Pater, J. & Barlow, J. A. (2003). Constraint conflict in cluster reduction. Journal of Child Language, 30, 487–526.CrossRefGoogle ScholarPubMed
Pater, J., Stager, C. & Werker, J. (2004). The perceptual acquisition of phonological contrasts. Language, 80, 384–402.CrossRefGoogle Scholar
Patterson, F. G. (1978). The gesture of a gorilla: language acquisition in another pongid. Brain and Language, 5, 72–97.CrossRefGoogle ScholarPubMed
Paulesu, E., Demonet, J. F., Fazio, F., McCrory, E., Chanoine, V., Brunswick, N. & Frith, U. (2001). Dyslexia: cultural diversity and biological unity. Science, 291, 2165–2167.CrossRefGoogle ScholarPubMed
Payne, R. S. & McVay, S. (1971). Songs of humpback whales. Science, 173, 585–597.CrossRefGoogle ScholarPubMed
Peiffer, A. M., Friedman, J. T., Rosen, G. D. & Fitch, R. H. (2004). Impaired gap detection in juvenile microgyric rats. Brain Research/Developmental Brain Research, 152, 93–98.CrossRefGoogle ScholarPubMed
Pennington, B. F. & Bishop, D. V. M. (2009). Relations among speech, language, and reading disorders. Annual Review of Psychology, 60, 283–306.CrossRefGoogle ScholarPubMed
Peperkamp, S. (2007). Do we have innate knowledge about phonological markedness? Comments on Berent, Steriade, Lennertz, and Vaknin. Cognition, 104, 638–643.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. (2002). Cognitive and communicative abilities of grey parrots. Current Directions in Psychological Science, 11, 83.CrossRefGoogle Scholar
Peretz, I. (2006). The nature of music from a biological perspective. Cognition, 100, 1–32.CrossRefGoogle ScholarPubMed
Perfetti, C. A. (1985). Reading Ability. New York: Oxford University Press.Google Scholar
Perfetti, C. A. & Bell, L. (1991). Phonemic activation during the first 40 ms. of word identification: evidence from backward masking and priming. Journal of Memory and Language, 30, 473–485.CrossRefGoogle Scholar
Perfetti, C. A. & Zhang, S. (1991). Phonological processes in reading Chinese words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 633–643.Google Scholar
Perfetti, C. A. & Zhang, S. (1995). Very early phonological activation in Chinese reading. Journal of Experimental Psychology: Learning Memory and Cognition, 21, 24–33.Google Scholar
Perfetti, C. A., Bell, L. C. & Delaney, S. M. (1988). Automatic (pre-lexical) phonetic activation in silent reading: evidence from backward masking. Journal of Memory and Language, 32, 57–68.Google Scholar
Perfetti, C. A., Zhang, S. & Berent, I. (1992). Reading in English and Chinese: evidence for a “universal” phonological principle. In Frost, R. & Katz, L. (eds.), Orthography, Phonology, Morphology, and Meaning (pp. 227–248). Amsterdam: North-Holland.CrossRefGoogle Scholar
Perlmutter, D. M. (1992). Sonority and syllable structure in American Sign Language. Linguistic Inquiry, 407–442.Google Scholar
Pertz, D. L. & Bever, T. G. (1975). Sensitivity to phonological universals in children and adolescents. Language, 51, 149–162.CrossRefGoogle Scholar
Petitto, L. A., Zatorre, R. J., Gauna, K., Nikelski, E. J., Dostie, D. & Evans, A. C. (2000). Speech-like cerebral activity in profoundly deaf people processing signed languages: implications for the neural basis of human language. Proceedings of the National Academy of Sciences of the United States of America, 97, 13961–13966.CrossRefGoogle ScholarPubMed
Phillips, C., Pellathy, T., Marantz, A., Yellin, E., Wexler, K., Poeppel, D., et al. (2000). Auditory cortex accesses phonological categories: an MEG mismatch study. Journal of Cognitive Neuroscience, 12, 1038–1055.CrossRefGoogle ScholarPubMed
Pierrehumbert, J. B. (1975). The phonology and phonetics of English intonation. Ph.D. dissertation, MIT.
Pierrehumbert, J. B. (1990). Phonological and phonetic representation. Journal of Phonetics, 18, 375–394.Google Scholar
Pierrehumbert, J. B. (2001). Stochastic phonology. GLOT, 5(6), 1–13.Google Scholar
Pinker, S. (1994). The Language Instinct. New York: Morrow.CrossRefGoogle Scholar
Pinker, S. (1997). How the Mind Works. New York: Norton.Google Scholar
Pinker, S. (1999). Words and Rules: The Ingredients of Language. New York: Basic Books.Google Scholar
Pinker, S. (2002). The Blank Slate: The Modern Denial of Human Nature. New York: Viking.Google Scholar
Pinker, S. & Bloom, P. (1994). Natural language and natural selection. Behavioral and Brain Sciences, 13, 707–784.CrossRefGoogle Scholar
Pinker, S. & Jackendoff, R. (2005). The faculty of language: what’s special about it?Cognition, 95, 201–236.CrossRefGoogle Scholar
Pinker, S. & Prince, A. (1988). On language and connectionism: analysis of a parallel distributed processing model of language acquisition. Cognition, 28, 73–193.CrossRefGoogle ScholarPubMed
Pitt, M. A. (1998). Phonological processes and the perception of phonotactically illegal consonant clusters. Perception and Psychophysics, 60, 941–951.CrossRefGoogle ScholarPubMed
Poeppel, D. (2003). The analysis of speech in different temporal integration windows: cerebral lateralization as “asymmetric sampling in time.”Speech Communication, 41, 245.CrossRefGoogle Scholar
Poeppel, D. (2011). The biology of language. Talk delivered at the Annual Meeting of the Cognitive Science Society. Boston, MA.Google Scholar
Poeppel, D., Idsardi, W. J. & van Wassenhove, V. (2008). Speech perception at the interface of neurobiology and linguistics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 1071–1086.CrossRefGoogle ScholarPubMed
Pons, F. & Toro, J. M. (2010). Structural generalizations over consonants and vowels in 11-month-old infants. Cognition, 116, 361–367.CrossRefGoogle ScholarPubMed
Poole, J. H., Tyack, P. L., Stoeger-Horwath, A. S. & Watwood, S. (2005). Animal behaviour: elephants are capable of vocal learning. Nature, 434, 455–456.CrossRefGoogle ScholarPubMed
Prasada, S. & Pinker, S. (1993). Generalization of regular and irregular morphological patterns. Language and Cognitive Processes, 8, 1–55.CrossRefGoogle Scholar
Prieto, P. (2006). The relevance of metrical information in early prosodic word acquisition: a comparison of Catalan and Spanish. Language and Speech, 49, 231–259.CrossRefGoogle ScholarPubMed
Prince, A. & Smolensky, P. (1993/2004). Optimality Theory: Constraint Interaction in Generative Grammar. Malden, MA: Blackwell.Google Scholar
Pycha, A., Nowak, P., Shin, E. & Shosted, R. (2003). Phonological rule-learning and its implications for a theory of vowel harmony. In Garding, G. & Tsujimura, M. (eds.), Proceedings of the West Coast Conference on Formal Linguistics 22 (pp. 423–435). Somerville, MA: Cascadilla Press.Google Scholar
Pylyshyn, Z. (1984). Computation and Cognition: Towards a Foundation for Cognitive Science. Cambridge: MIT Press.Google Scholar
Rack, J. P., Snowling, M. J. & Olson, R. K. (1992). The nonword reading deficit in developmental dyslexia: a review. Reading Research Quarterly, 27(1), 28–53.CrossRefGoogle Scholar
Ramus, F. (2001). Outstanding questions about phonological processing in dyslexia. Dyslexia, 7, 197–216.CrossRefGoogle ScholarPubMed
Ramus, F. & Mehler, J. (1999). Language identification with suprasegmental cues: a study based on speech resynthesis. Journal of the Acoustical Society of America, 105, 512–521.CrossRefGoogle ScholarPubMed
Ramus, F. & Szenkovits, G. (2006). What phonological deficit?Quarterly Journal of Experimental Psychology, 61, 129–141.CrossRefGoogle Scholar
Ramus, F., Hauser, M. D., Miller, C., Morris, D. & Mehler, J. (2000). Language discrimination by human newborns and by cotton-top tamarin monkeys. Science, 288, 349–351.CrossRefGoogle ScholarPubMed
Ramus, F., Rosen, S., Dakin, S. C., Day, B. L., Castellote, J. M., White, S., et al. (2003). Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. Brain, 126, 841–865.CrossRefGoogle ScholarPubMed
Rapp, B. C. (1992). The nature of sublexical orthographic organization: The bigram trough hypothesis examined. Journal of Memory and Language, 31, 33–53.CrossRefGoogle Scholar
Rapp, B. C. & Goldrick, M. (2006). Speaking words: contributions of cognitive neuropsychological research. Cognitive Neuropsychology, 23, 39–73.CrossRefGoogle ScholarPubMed
Rapp, B. C., McCloskey, M., Rothlein, D., Lipka, K. & Vindiola, M. (2009). Vowel-specific synesthesia: evidence for orthographic consonants and vowels. Paper presented at the annual meeting of the Psychonomic Society. Boston, MA.
Read, C. (1971). Pre-school children’s knowledge of English phonology. Harvard Educational Review, 41, 1–34.CrossRefGoogle Scholar
Reali, F. & Christiansen, M. H. (2005). Uncovering the richness of the stimulus: structure dependence and indirect statistical evidence. Cognitive Science: A Multidisciplinary Journal, 29, 1007–1028.CrossRefGoogle ScholarPubMed
Redford, M. A. (2008). Production constraints on learning novel onset phonotactics. Cognition, 107, 785–816.CrossRefGoogle ScholarPubMed
Redford, M. A., Chen, C. C. & Miikkulainen, R. (2001). Constrained emergence of universals and variation in syllable systems. Language and Speech, 44, 27–56.CrossRefGoogle ScholarPubMed
Ren, J., Gao, L. & Morgan, J. L. (2010). Mandarin speakers’ knowledge of the sonority sequencing principle. Paper presented at the 20th Colloquium of Generative Grammar, University of Pompeu Fabra, Barcelona.
Rice, K. (2007). Markedness in phonology. In de Lacy, P. (ed.), The Cambridge Handbook of Phonology (pp. 79–97). Cambridge University Press.CrossRefGoogle Scholar
Ridley, M. (2008). Evolution (3rd edn.). Oxford; New York: Oxford University Press.Google ScholarPubMed
Riede, T. & Zuberbühler, K. (2003). The relationship between acoustic structure and semantic information in Diana monkey alarm vocalization. Journal of the Acoustical Society of America, 114, 1132–1142.CrossRefGoogle ScholarPubMed
Robinson, J. G. (1984). Syntactic structures in the vocalizations of wedge-capped capuchin monkeys, Cebus olivaceu. Behaviour, 90, 46–79.CrossRefGoogle Scholar
Roelofs, A. & Meyer, A. S. (1998). Metrical structure in planning the production of spoken words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 922–939.Google Scholar
Rogers, H. (2005). Writing Systems: A Linguistic Approach. Malden, MA: Blackwell.Google Scholar
Romani, C. & Calabrese, A. (1998a). Syllabic constraints in the phonological errors of an aphasic patient. Brain and Language, 64, 83–121.CrossRefGoogle ScholarPubMed
Romani, C. & Calabrese, A. (1998b). Syllabic constraints on the phonological errors of an aphasic patient. Brain and Language, 64, 83–121.CrossRefGoogle ScholarPubMed
Rumelhart, D. E. & McClelland, J. L. (1986). On learning the past tense of English verbs: implicit rules or parallel distributed processing? In Rumelhart, D., McClelland, E. J. & the PDP Research Group (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Vol. II, pp. 216–271). Cambridge, MA: MIT Press.Google Scholar
Rutter, M., Caspi, A., Fergusson, D., Horwood, L. J., Goodman, R., Maughan, B., et al. (2004). Sex differences in developmental reading disability: new findings from 4 epidemiological studies. JAMA: The Journal of the American Medical Association, 291, 2007–2012.CrossRefGoogle ScholarPubMed
Saffran, J. R. (2003a). Statistical language learning: mechanisms and constraints. Current Directions in Psychological Sciences, 12, 110–114.CrossRefGoogle Scholar
Saffran, J. R. (2003b). Musical learning and language development. Annals of the New York Academy of Sciences, 999, 397–401.CrossRefGoogle ScholarPubMed
Saffran, J. R., Aslin, R. N. & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 1926–1298.CrossRefGoogle ScholarPubMed
Sahin, N. T., Pinker, S., Cash, S. S., Schomer, D. & Halgren, E. (2009). Sequential processing of lexical, grammatical, and phonological information within Broca’s Area. Science, 326, 445–449.CrossRefGoogle ScholarPubMed
Samuels, R. (2004). Innateness in cognitive science. Trends in Cognitive Sciences, 8, 136–141.CrossRefGoogle ScholarPubMed
Samuels, R. (2007). Is innateness a confused concept? In Carruthers, P., Laurence, S. & Stich, S. (eds.), The Innate Mind: Foundations and the Future (pp. 17–34). Oxford University Press.Google Scholar
Sandler, W. (1989). Phonological Representation of the Sign: Linearity and Nonlinearity in American Sign Language. Dordrecht: Foris.CrossRefGoogle Scholar
Sandler, W. (1993). A sonority cycle in American Sign Language. Phonology, 10, 242–279.CrossRefGoogle Scholar
Sandler, W. (2008). The syllable in sign language: considering the other natural language modality. In Davis, B. L. & Zajdó, K. (eds.), The Syllable in Speech Production (pp. 379–408). New York: Lawrence Erlbaum.Google Scholar
Sandler, W. (2011). The phonology of movement in sign language. In Oostendorp, M., Ewen, C., Hume, B. & Rice, K. (eds.), The Blackwell Companion to Phonology. Oxford: Wiley-Blackwell.Google Scholar
Sandler, W. & Lillo-Martin, D. C. (2006). Sign Language and Linguistic Universals. Cambridge University Press.CrossRefGoogle Scholar
Sandler, W., Meir, I., Padden, C. & Aronoff, M. (2005). The emergence of grammar: systematic structure in a new language. Proceedings of the National Academy of Sciences of the United States of America, 102, 2661–2665.CrossRefGoogle Scholar
Sandler, W., Aronoff, M., Meir, I. & Padden, C. (2011). The gradual emergence of phonological form in a new language. Natural Language and Linguistic Theory, 29, 505–543.CrossRefGoogle Scholar
Saussure, F. (1915/1959). Course in General Linguistics. New York: Philosophical Library.Google Scholar
Scerri, T. S. & Schulte-Körne, G. (2010). Genetics of developmental dyslexia. European Child and Adolescent Psychiatry, 19, 179–197.CrossRefGoogle ScholarPubMed
Schachner, A., Brady, T. F., Pepperberg, I. M. & Hauser, M. D. (2009). Spontaneous motor entrainment to music in multiple vocal mimicking species. Current Biology: CB, 19, 831–836.CrossRefGoogle ScholarPubMed
Schane, S. A., Tranel, B. & Lane, H. (1974). On the psychological reality of a natural rule of syllable structure. Cognition, 3, 351–358.CrossRefGoogle Scholar
Scharff, C. & Haesler, S. (2005). An evolutionary perspective on FoxP2: strictly for the birds?Current Opinion in Neurobiology, 15(6), 694–703. .CrossRefGoogle ScholarPubMed
Schiller, N. O. & Caramazza, A. (2002). The selection of grammatical features in word production: the case of plural nouns in German. Brain and Language, 81, 342–357.CrossRefGoogle ScholarPubMed
Schlaug, G., Jäncke, L., Huang, Y. & Steinmetz, H. (1995). In vivo evidence of structural brain asymmetry in musicians. Science, 267, 699–701.CrossRefGoogle ScholarPubMed
Schusterman, R. J., Reichmuth Kastak, C. & Kastak, D. (2003). Equivalence classification as an approach to social knowledge: from sea lions to simians. In DeWaal, F. B. M. & Tyack, P. L. (eds.), Animal Social Complexity: Intelligence, Culture, and Individualized Societies (pp. 179–206). Cambridge, MA: Harvard University Press.Google Scholar
Seidenberg, M. (1985). The time course of phonological code activation in two writing systems. Cognition, 10, 645–657.Google Scholar
Seidenberg, M. (1987). Sublexical structures in visual word recognition: Access units of orthographic redundancy? In Coltheart, M. (ed.), Attention and Performance (Vol. XII: The Psychology of Reading, pp. 245–263). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Seidenberg, M. S., Waters, G. S., Barnes, M. A. & Tanenhaus, M. K. (1984). When does irregular spelling or pronunciation influence word recognition?Journal of Verbal Learning and Verbal Behavior, 23, 383–404.CrossRefGoogle Scholar
Seidl, A. & Cristia, A. (2008). Developmental changes in the weighting of prosodic cues. Developmental Science, 11, 596–606.CrossRefGoogle ScholarPubMed
Seidl, A. & Johnson, E. K. (2008). Boundary alignment enables 11-month-olds to segment vowel initial words from speech. Journal of Child Language, 35, 1–24.CrossRefGoogle ScholarPubMed
Seidl, A., Cristià, A., Bernard, A. & Onishi, K. H. (2009). Allophonic and phonemic contrasts in infants’ learning of sound patterns. Language Learning & Development, 5, 191–202.CrossRefGoogle Scholar
Selkirk, E., O. (1984). On the major class features and syllable theory. In Aronoff, M. & Oerhle, R. T. (eds.), Language Sound Structure: Studies in Phonology Presented to Morris Halle by His Teacher and Students (pp. 107–136). Cambridge, MA: MIT Press.Google Scholar
Senghas, A. & Coppola, M. (2001). Children creating language: how Nicaraguan sign language acquired a spatial grammar. Psychological Science, 12, 323–328.CrossRefGoogle ScholarPubMed
Senghas, A., Kita, S. & Ozyurek, A. (2004). Children creating core properties of language: evidence from an emerging sign language in Nicaragua. Science, 305, 1779–1782.CrossRefGoogle ScholarPubMed
Serniclaes, W., Sprenger-Charolles, L., Carre, R. & Demonet, J.-F. (2001). Perceptual discrimination of speech sounds in developmental dyslexia. Journal of Speech, Language, and Hearing Research, 44, 384–399.CrossRefGoogle ScholarPubMed
Sevald, C., Dell, G. & Cole, J. (1995). Syllable structure in speech production: are syllables chunks or schemas?Journal of Memory and Language, 34, 807–820.CrossRefGoogle Scholar
Seyfarth, R. M., Cheney, D. L. & Marler, P. (1980). Monkey responses to three different alarm calls: evidence of predator classification and semantic communication. Science (New York, N.Y.), 210, 801–803.CrossRefGoogle ScholarPubMed
Shannon, C. E. S. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.CrossRefGoogle Scholar
Share, D. L. (2008). On the Anglocentricities of current reading research and practice: the perils of overreliance on an “outlier” orthography. Psychological Bulletin, 134, 584–615.CrossRefGoogle Scholar
Sharma, A., Kraus, N., McGee, T., Carrell, T. & Nicol, T. (1993). Acoustic versus phonetic representation of speech as reflected by the mismatch negativity event-related potential. Electroencephalography and Clinical Neurophysiology, 88, 64–71.CrossRefGoogle ScholarPubMed
Shastry, B. S. (2007). Developmental dyslexia: an update. Journal of Human Genetics, 52, 104–109.CrossRefGoogle ScholarPubMed
Shattuck-Hufnagel, S. (1992). The role of word structure in segmental serial ordering. Cognition, 42, 213–259.CrossRefGoogle ScholarPubMed
Shattuck-Hufnagel, S. (2011). The role of the syllable in speech production in American English: a fresh consideration of the evidence. In Cairns, C. E. & Raimy, E. (eds.), Handbook of the Syllable (pp. 197–224). Leiden: E. J. Brill.Google Scholar
Shaywitz, S. (1998). Dyslexia. The New England Journal of Medicine, 338, 307–312.CrossRefGoogle ScholarPubMed
Shriberg, L. D., Ballard, K. J., Tomblin, J. B., Duffy, J. R., Odell, K. H. & Williams, C. A. (2006). Speech, prosody, and voice characteristics of a mother and daughter with a 7;13 translocation affecting FOXP2. Journal of Speech, Language & Hearing Research, 49, 500–525.CrossRefGoogle ScholarPubMed
Shu, W., Cho, J. Y., Jiang, Y., Zhang, M., Weisz, D., Elder, G. A., et al. (2005). Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proceedings of the National Academy of Sciences of the United States of America, 102, 9643–9648.CrossRefGoogle ScholarPubMed
Simos, P. G., Breier, J. I., Fletcher, J. M., Foorman, B. R., Castillo, E. M. & Papanicolaou, A. C. (2002). Brain mechanisms for reading words and pseudowords: an integrated approach. Cerebral Cortex, 12, 297–305.CrossRefGoogle ScholarPubMed
Simos, P. G., Pugh, K., Mencl, E., Frost, S., Fletcher, J. M., Sarkari, S., et al. (2009). Temporal course of word recognition in skilled readers: a magnetoencephalography study. Behavioural Brain Research, 197, 45–54.CrossRefGoogle ScholarPubMed
Simpson, G. B. & Kang, H. (2004). Syllable processing in alphabetic Korean. Reading and Writing, 17, 137–151.CrossRefGoogle Scholar
Siok, W. T., Niu, Z., Jin, Z., Perfetti, C. A. & Tan, L. H. (2008). A structural-functional basis for dyslexia in the cortex of Chinese readers. Proceedings of the National Academy of Sciences of the United States of America, 105, 5561–5566.CrossRefGoogle ScholarPubMed
Skoruppa, K., Pons, F., Christophe, A., Bosch, L., Dupoux, E., Sebastián-Gallés, N., Limissuri, R. A. & Peperkamp, S. (2009). Language-specific stress perception by 9-month-old French and Spanish infants. Developmental Science, 12(6), 914–919.CrossRefGoogle ScholarPubMed
Smith, J. L. (2005). Phonological Augmentation in Prominent Positions. New York: Routledge.Google Scholar
Smith, N. (2009). Acquiring Phonology: A Cross-Generational Case-Study. Leiden: Cambridge University Press.CrossRefGoogle Scholar
Smolensky, P. (1996). On the comprehension production dilemma in child language. Linguistic Inquiry, 27, 720–731.Google Scholar
Smolensky, P. (2006). Optimality in phonology II: harmonic completeness, local constraint conjunction, and feature domain markedness. In Smolensky, P. & Legendre, G. (eds.), The Harmonic Mind: From Neural Computation to Optimality-Theoretic Grammar (Vol. II: Linguistic and Philosophical Implications, pp. 27–160). Cambridge, MA: MIT Press.Google Scholar
Smolensky, P. & Legendre, G. (2006). Principles of integrated connectionist/symbolic cognitive architecture. In Smolensky, P. & Legendre, G. (eds.), The Harmonic Mind: From Neural Computation to Optimality-Theoretic Grammar (Vol. I: Cognitive Architecture, pp. 63–97). Cambridge, MA: MIT Press.Google Scholar
Soha, J. A. & Marler, P. (2001). Vocal syntax development in the white-crowned sparrow (Zonotrichia leucophrys). Journal of Comparative Psychology, 115, 172–180.CrossRefGoogle Scholar
Spaepen, E., Coppola, M., Spelke, E. S., Carey, S. E. & Goldin-Meadow, S. (2011). Number without a language model. Proceedings of the National Academy of Sciences of the United States of America, 108, 3163–3168.CrossRefGoogle ScholarPubMed
Spelke, E. S. (1994). Initial knowledge: six suggestions. Cognition, 50, 431–445.CrossRefGoogle ScholarPubMed
Spelke, E. S. (2000). Core knowledge. American Psychologist, 55, 1233–1243.CrossRefGoogle ScholarPubMed
Spelke, E. S. & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 89–96.CrossRefGoogle ScholarPubMed
Spinks, J. A., Liu, Y., Perfetti, C. A. & Tan, L. H. (2000). Reading Chinese characters for meaning: the role of phonological information. Cognition, 76, B1–B11.CrossRefGoogle ScholarPubMed
Stampe, D. (1973). A dissertation on natural phonology. Ph.D. dissertation, University of Chicago.
Stein, J. & Walsh, V. (1997). To see but not to read: the magnocellular theory of dyslexia. Trends in Neurosciences, 20, 147–152.CrossRefGoogle Scholar
Stemberger, J. P. (1984). Length as a suprasegmental: evidence from speech errors. Language, 60, 895–913.CrossRefGoogle Scholar
Stemberger, J. P. & Treiman, R. (1986). The internal structure of word-initial consonant clusters. Journal of Memory and Language, 25, 163–180.CrossRefGoogle Scholar
Stenneken, P., Bastiaanse, R., Huber, W. & Jacobs, A. M. (2005). Syllable structure and sonority in language inventory and aphasic neologisms. Brain and Language, 95, 280–292.CrossRefGoogle ScholarPubMed
Steriade, D. (1982). Greek prosodies and the nature of syllabification. Ph.D. dissertation, MIT, Cambridge, MA (available from MITWPL, Department of Linguistics and Philosophy, MIT).Google Scholar
Steriade, D. (1997). Phonetics in phonology: the case of laryngeal neutralization. Unpublished manuscript.
Steriade, D. (1999). Alternatives to the syllabic interpretation of consonantal phonotactics. In Fujimura, O., Joseph, B. & Palek, B. (eds.), Proceedings of the 1998 Linguistics and Phonetics Conference (pp. 205–242). Prague: The Karolinum Press.Google Scholar
Steriade, D. (2001). The phonology of perceptibility effects: the P-map and its consequences for constraint organization. Unpublished manuscript.
Steriade, D. (2007). Contrast. In de Lacy, P. (ed.), The Cambridge Handbook of Phonology (pp. 139–157). Cambridge University Press.CrossRefGoogle Scholar
Stokoe, W. C. (1960). Sign language structure: an outline of the visual communication systems of the American Deaf. Journal of Deaf Studies and Deaf Education, 10, 3–37.CrossRefGoogle Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.CrossRefGoogle Scholar
Suarez, R., Golby, A., Whalen, S., Sato, S., Theodore, W. H., Kufta, C. V., Devinsky, O., Balish, M., Bromfield, E. B. (2010). Contributions to singing ability by the posterior portion of the superior temporal gyrus of the non-language-dominant hemisphere: first evidence from subdural cortical stimulation, Wada testing, and fMRI. Cortex, 46, 343–353.CrossRefGoogle ScholarPubMed
Suge, R. & Okanoya, K. (2010). Perceptual chunking in the self-produced songs of Bengalese finches (Lonchura striata var. domestica). Animal Cognition, 13, 515–523.CrossRefGoogle Scholar
Suthers, R. A. & Zollinger, S. A. (2004). Producing song: the vocal apparatus. Annals of the New York Academy of Sciences, 1016, 109–129.CrossRefGoogle ScholarPubMed
Suzuki, K. (1998). A typological investigation of dissimilation. Ph.D. dissertation, University of Arizona, Tucson, AZ.
Suzuki, R., Buck, J. R. & Tyack, P. L. (2006). Information entropy of humpback whale songs. Journal of the Acoustical Society of America, 119, 1849–1866.CrossRefGoogle ScholarPubMed
Szenkovits, G., Darma, Q., Darcy, I. & F., R. (2011). Exploring dyslexics’ phonological deficit II: phonological grammar. Unpublished manuscript.
Tallal, P. (2004). Improving language and literacy is a matter of time. Nature Reviews Neuroscience, 5, 721–728.CrossRefGoogle Scholar
Tallal, P. & Piercy, M. (1973). Defects of non-verbal auditory perception in children with developmental aphasia. Nature, 241, 468–469.CrossRefGoogle ScholarPubMed
Tan, L. H. & Perfetti, C. A. (1997). Visual Chinese character recognition: does phonological information mediate access to meaning?Journal of Memory and Language, 37, 41–57.CrossRefGoogle Scholar
Temple, E., Poldrack, R., Protopapas, A., Nagarajan, S., Salz, T., Tallal, P., et al. (2000). Disruption of the neural response to rapid acoustic stimuli in dyslexia: evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 97, 13907–13912.CrossRefGoogle ScholarPubMed
Temple, E., Deutsch, G. K., Poldrack, R. A., Miller, S. L., Tallal, P., Merzenich, M. M., et al. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proceedings of the National Academy of Science, 100, 2860–2865.CrossRefGoogle ScholarPubMed
Tervaniemi, M., Kujala, A., Alho, K., Virtanen, J., Ilmoniemi, R. J. & Naatanen, R. (1999). Functional specialization of the human auditory cortex in processing phonetic and musical sounds: a magnetoencephalographic (MEG) study. Neuroimage, 9, 330–336.CrossRefGoogle ScholarPubMed
Theodore, R. M. & Miller, J. L. (2010). Characteristics of listener sensitivity to talker-specific phonetic detail. Journal of the Acoustical Society of America, 128, 2090–2099.CrossRefGoogle ScholarPubMed
Theodore, R. M. & Schmidt, A. M. (2003). Perceptual prothesis in native Spanish speakers. Journal of the Acoustical Society of America, 113, 256.CrossRefGoogle Scholar
Theodore, R. M., Miller, J. L. & DeSteno, D. (2009). Individual talker differences in voice-onset-time: contextual influences. Journal of the Acoustical Society of America, 125, 3974–3982.CrossRefGoogle ScholarPubMed
Tillmann, B., Koelsch, S., Escoffier, N., Bigand, E., Lalitte, P., Friederici, A. D., et al. (2006). Cognitive priming in sung and instrumental music: activation of inferior frontal cortex. Neuroimage, 31, 1771–1782.CrossRefGoogle Scholar
Tincoff, R., Hauser, M., Tsao, F., Spaepen, G., Ramus, F. & Mehler, J. (2005). The role of speech rhythm in language discrimination: further tests with a non-human primate. Developmental Science, 8, 26–35.CrossRefGoogle ScholarPubMed
Toro, J. M. & Trobalón, J. B. (2005). Statistical computations over a speech stream in a rodent. Perception and Psychophysics, 67, 867–875.CrossRefGoogle Scholar
Toro, J. M., Nespor, M., Mehler, J. & Bonatti, L. L. (2008). Finding words and rules in a speech stream: functional differences between vowels and consonants. Psychological Science, 19, 137–144.CrossRefGoogle Scholar
Trainor, L. J., McDonald, K. L. & Alain, C. (2002). Automatic and controlled processing of melodic contour and interval information measured by electrical brain activity. Journal of Cognitive Neuroscience, 14, 430–442.CrossRefGoogle ScholarPubMed
Treiman, R. (1984). On the status of final consonant clusters in English syllables. Journal of Verbal Learning and Verbal Behavior, 23, 343–356.CrossRefGoogle Scholar
Treiman, R. (1986). The division between onsets and rimes in English Syllables. Journal of Memory and Language, 25, 476–491.CrossRefGoogle Scholar
Treiman, R. (2004). Phonology and spelling. In Bryant, P. & Nunes, T. (eds.), Handbook of Children’s Literacy (pp. 31–42). Dordrecht: Kluwer.CrossRefGoogle Scholar
Treiman, R. & Cassar, M. (1997). Spelling acquisition in English. In Perfetti, C., Rieben, A. L. & Fayol, M. (eds.), Learning to Spell: Research, Theory and Practice across Languages. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Treiman, R. & Danis, C. (1988). Syllabification of intervocalic consonants. Journal of Memory and Language, 27, 87–104.CrossRefGoogle Scholar
Treiman, R. & Kessler, B. (1995). In defense of an onset-rime syllable structure for English. Language and Speech, 38 (Pt 2), 127–142.CrossRefGoogle ScholarPubMed
Treiman, R., Bowey, J. & Bourassa, D. (2002). Segmentation of spoken words into syllables by English-speaking children as compared to adults. Journal of Experimental Child Psychology, 83, 213–238.CrossRefGoogle ScholarPubMed
Trout, J. (2003). Biological specialization for speech: what can the animals tell us?Current Directions in Psychological Sciences, 12, 155–159.CrossRefGoogle Scholar
Trubetzkoy, N. S. (1969). Principles of Phonology (trans. Baltaxe, C. A. M.). Berkeley: University of California Press.Google Scholar
Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 24, 230–265.Google Scholar
Tzelgov, J., Henik, A., Sneg, R. & Baruch, O. (1996). Unintentional word reading via the phonological route: the Stroop effect with cross-script homophones. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 336–349.Google Scholar
Ullman, M. T. & Pierpont, E. I. (2005). Specific language impairment is not specific to language: the procedural deficit hypothesis. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 41, 399–433.CrossRefGoogle Scholar
van der Hulst, H. (2000). Modularity and modality in phonology. In Burton-Roberts, N., Carr, P. & Docherty, G. (eds.), Phonological Knowledge: Conceptual and Empirical Issues (pp. 207–243). Oxford University Press.Google Scholar
van der Hulst, H. (2009). Two phonologies. In Grijzenhout, J. & Kabak, B. (eds.), Phonological Domains: Universals and Deviations (pp. 315–352). New York and Berlin: Mouton de Gruyter.CrossRefGoogle Scholar
van der Lely, H. K. (2005). Domain-specific cognitive systems: insight from Grammatical-SLI. Trends in Cognitve Sciences, 9, 53–59.CrossRefGoogle ScholarPubMed
van der Lely, H. K., Rosen, S. & Adlard, A. (2004). Grammatical language impairment and the specificity of cognitive domains: relations between auditory and language abilities. Cognition, 94, 167–183.CrossRefGoogle ScholarPubMed
van Heijningen, C. A., de Visser, J., Zuidema, W. & ten Cate, C. (2009). Simple rules can explain discrimination of putative recursive syntactic structures by a songbird species. Proceedings of the National Academy of Sciences of the United States of America, 106, 20538–20543.CrossRefGoogle ScholarPubMed
van Leeuwen, T., Been, P., van Herten, M., Zwarts, F., Maassen, B. & van der Leij, A. (2007). Cortical categorization failure in 2-month-old infants at risk for dyslexia. Neuroreport, 18, 857–861.CrossRefGoogle ScholarPubMed
Van Orden, G. C. (1987). A ROWS is a ROSE: spelling, sound and reading. Memory and Cognition, 15, 181–190.CrossRefGoogle Scholar
Van Orden, G. C., Johnston, J. C. & Hale, B. L. (1988). Word identification in reading proceeds from spelling to sound to meaning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 371–386.Google ScholarPubMed
Van Orden, G. C., Pennington, B. F. & Stone, G. O. (1990). Word identification in reading and the promise of subsymbolic psycholinguistics. Psychological Review, 97, 488–522.CrossRefGoogle ScholarPubMed
Vargha-Khadem, F., Watkins, K., Alcock, K., Fletcher, P. & Passingham, R. (1995). Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proceedings of the National Academy of Sciences of the United States of America, 92, 930–933.CrossRefGoogle Scholar
Vargha-Khadem, F., Watkins, K. E., Price, C. J., Ashburner, J., Alcock, K. J., Connelly, A., et al. (1998). Neural basis of an inherited speech and language disorder. Proceedings of the National Academy of Sciences of the United States of America, 95, 12695–12700.CrossRefGoogle ScholarPubMed
Vargha-Khadem, F., Gadian, D. G., Copp, A. & Mishkin, M. (2005). FOXP2 and the neuroanatomy of speech and language. Nature Reviews Neuroscience, 6, 131–138.CrossRefGoogle ScholarPubMed
Vaux, B. (2002). Consonantal epenthesis and the problem of unnatural phonology. Unpublished manuscript.
Vennemann, T. (1972). On the theory of syllable phonology. Linguistische Berichte, 18, 1–18.Google Scholar
Vouloumanos, A. & Werker, J. F. (2007). Listening to language at birth: evidence for a bias for speech in neonates. Developmental Science, 10, 159–164.CrossRefGoogle ScholarPubMed
Vouloumanos, A., Kiehl, K. A., Werker, J. F. & Liddle, P. F. (2001). Detection of sounds in the auditory stream: event-related fMRI evidence for differential activation to speech and nonspeech. Journal of Cognitive Neuroscience, 13, 994–1005.CrossRefGoogle ScholarPubMed
Vouloumanos, A., Hauser, M. D., Werker, J. F. & Martin, A. (2010). The tuning of human neonates’ preference for speech. Child Development, 81, 517–527.CrossRefGoogle ScholarPubMed
Walker, R. L. (1998). Nasalization, neutral segments, and opacity effects. Ph.D. dissertation, University of California, Santa Cruz.
Wang, K., Mecklinger, A., Hofmann, J. & Weng, X. (2010). From orthography to meaning: an electrophysiological investigation of the role of phonology in accessing meaning of Chinese single-character words. Neuroscience, 165, 101–106.CrossRefGoogle ScholarPubMed
Warren, W. C., Clayton, D. F., Ellegren, H., Arnold, A. P., Hillier, L. W., Künstner, A., et al. (2010). The genome of a songbird. Nature, 464, 757–762.CrossRefGoogle ScholarPubMed
Werker, J. F. & Tees, R. C. (1984). Cross-language speech perception: evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7, 49–63.CrossRefGoogle Scholar
Wilkinson, K. (1988). Prosodic structure and Lardil phonology. Linguistic Inquiry, 19, 325–334.Google Scholar
Wilson, C. (2003). Experimental investigation of phonological naturalness. In Garding, G. & Tsujimura, M. (eds.), Proceedings of the 22nd West Coast Conference on Formal Linguistics (pp. 533–546). Somerville, MA: Cascadilla.Google Scholar
Wilson, C. (2006). Learning phonology with substantive bias: an experimental and computational study of velar palatalization. Cognitive Science, 30, 945–982.CrossRefGoogle ScholarPubMed
Wilson, S. M. & Iacoboni, M. (2006). Neural responses to non-native phonemes varying in producibility: evidence for the sensorimotor nature of speech perception. Neuroimage, 33, 316–325.CrossRefGoogle ScholarPubMed
Wilson, S. J., Lusher, D., Wan, C. Y., Dudgeon, P., & Reutens, D. C. (2009). The neurocognitive components of pitch processing: insights from absolute pitch. Cerebral Cortex (New York, N.Y.: 1991), 19, 724–732.CrossRefGoogle ScholarPubMed
Wolf, M., Bally, H. & Morris, R. (1986). Automaticity, retrieval processes, and reading: a longitudinal study in average and impaired readers. Child Development, 57, 988–1000.CrossRefGoogle ScholarPubMed
Wolmetz, M., Poeppel, D. & Rapp, B. (2011). What does the right hemisphere know about phoneme categories?Journal of Cognitive Neuroscience, 23, 552–569.CrossRefGoogle ScholarPubMed
Wong, P. C., Skoe, E., Russo, N. M., Dees, T. & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10, 420–422.CrossRefGoogle ScholarPubMed
Wright, R. (2004). A review of perceptual cues and robustness. In Steriade, D., Kirchner, R. & Hayes, B. (eds.), Phonetically-Based Phonology (pp. 34–57). Cambridge University Press.CrossRefGoogle Scholar
Wydell, T. N., Patterson, K. E. & Humphreys, G. W. (1993). Phonologically mediated access to meaning for Kanji: is a rows still a rose in Japanese Kanji?Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 491–514.Google Scholar
Wyllie-Smith, L., McLeod, S. et al. (2006). Typically developing and speech-impaired children’s adherence to the sonority hypothesis. Clinical Linguistics & Phonetics 20(4), 271–291.CrossRefGoogle ScholarPubMed
Wyttenbach, R. A., May, M. L. & Hoy, R. R. (1996). Categorical perception of sound frequency by crickets. Science, 273, 1542–1544.CrossRefGoogle ScholarPubMed
Yang, C. D. (2004). Universal Grammar, statistics or both?Trends in Cognitive Sciences, 8, 451–456.CrossRefGoogle ScholarPubMed
Yavas, M., Ben-David, A., Gerrits, E., Kristoffersen, K. E. & Simonsen, H. G. (2008). Sonority and cross-linguistic acquisition of initial s-clusters. Clinical Linguistics & Phonetics, 22, 421–441.CrossRefGoogle ScholarPubMed
Yip, M. (1989). Feature geometry and cooccurrence restrictions. Phonology, 6, 349–374.CrossRefGoogle Scholar
Yip, M. (2006). The search for phonology in other species. Trends in Cognitive Sciences, 10, 442–446.CrossRefGoogle ScholarPubMed
Yun, Y. (2004). Glides and high vowels in Korean syllables. Ph.D. dissertation, University of Washington.
Zec, D. (2007). The syllable. In de Lacy, P. (ed.), The Cambridge Handbook of Phonology (pp. 161–194). Cambridge University Press.CrossRefGoogle Scholar
Zhang, J. (2004). The role of contrast-specific and language-specific phonetics in contour tone distribution. In Hayes, B., Kirchner, R. & Steriade, D. (eds.), Phonetically-Based Phonology (pp. 157–190). Cambridge University Press.CrossRefGoogle Scholar
Zhang, S. & Perfetti, C. A. (1993). The tongue-twister effect in reading Chinese. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1082–1093.Google Scholar
Zhao, X. & Berent, I. (2011). Are markedness constraints universal? Evidence from Mandarin Chinese speakers. Paper presented at the Boston University Conference on Language Development. Boston, MA.
Ziegler, J. C., Benraïss, A. & Besson, M. (1999). From print to meaning: an electrophysiological investigation of the role of phonology in accessing word meaning. Psychophysiology, 36, 775–785.CrossRefGoogle ScholarPubMed
Ziegler, J. C., Pech-Georgel, C., George, F., Alario, F. X. & Lorenzi, C. (2005). Deficits in speech perception predict language learning impairment. Proceedings of the National Academy of Sciences of the United States of America, 102, 14110–14115.CrossRefGoogle ScholarPubMed
Ziegler, J. C., Pech-Georgel, C., George, F. & Lorenzi, C. (2009). Speech-perception-in-noise deficits in dyslexia. Developmental Science, 12, 732–745.CrossRefGoogle ScholarPubMed
Zsiga, E. C. (2000). Phonetic alignment constraints: consonant overlap and palatalization in English and Russian. Journal of Phonetics, 28, 69–102.CrossRefGoogle Scholar
Zuraw, K. (2007). The role of phonetic knowledge in phonological patterning: corpus and survey evidence from Tagalog infixation. Language, 83, 277–316.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Iris Berent, Northeastern University, Boston
  • Book: The Phonological Mind
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139049610.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Iris Berent, Northeastern University, Boston
  • Book: The Phonological Mind
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139049610.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Iris Berent, Northeastern University, Boston
  • Book: The Phonological Mind
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139049610.019
Available formats
×