Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-03T00:15:18.962Z Has data issue: false hasContentIssue false

5 - Correlation functions

from Part II - Foundations of theory for many-body systems

Published online by Cambridge University Press:  05 June 2016

Richard M. Martin
Affiliation:
University of Illinois, Urbana-Champaign
Lucia Reining
Affiliation:
École Polytechnique, Paris
David M. Ceperley
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Preparation, I have often said, is rightly two-thirds of any venture.

Amelia Earhart

Summary

Correlation functions provide a direct way to characterize and analyze many-body systems, both theoretically and experimentally. In this chapter we review the properties of one- and two-body correlation functions in quantum systems, with emphasis on several key quantities: static density correlations that determine the energy and thermodynamic potentials, dynamic correlation functions such as response functions that describe excitations of the system, and Green's functions that are basic tools in the theory of interacting many-body systems.

Correlation functions are central quantities in the description of interacting many-body systems, both in the theoretical formulation and in the analysis of experiments. In contrast to single numbers like the total energy, correlation functions reveal far more information about the electrons, how they arrange themselves, and the spectra of their excitations. In contrast to the many-body wavefunctions that contain all the information on the system, correlation functions extract the information most directly relevant to experimentally measurable properties. Dynamic current–current correlation functions are sufficient to determine the electrical and optical properties: one-body Green's functions describe the spectra of excitations when one electron is added to or removed from the system, static and dynamic correlations are measured using scattering techniques, and so forth. In this chapter we present the basic definitions and properties of correlation functions and Green's functions that are the basis for much of the developments in the following chapters.

In general, a correlation function quantifies the correlation between two or more quantities at different points in space r, time t, or spin σ. Very often the correlation function can be specified as a function of the Fourier-transformed variables, momentum (wavevector) k, and frequency ω. It is useful to distinguish between a dynamic correlation function which describes the correlation between events at different times and a static or equal-time correlation function, by which we mean that of a property measured or computed with “snapshots” of the system. Also, the different correlation functions can be classified by the number of particles and/or fields involved.

Type
Chapter
Information
Interacting Electrons
Theory and Computational Approaches
, pp. 84 - 121
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×