Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T07:02:05.190Z Has data issue: false hasContentIssue false

13 - Auditory Filter Models

from Part III - The Auditory Periphery

Published online by Cambridge University Press:  28 April 2017

Richard F. Lyon
Affiliation:
Google, Inc., Mountain View, California
Get access

Summary

The original aim of this research was to obtain a mathematical expression for the amplitude characteristic of the hypothetical auditory filter that could be used to predict the power that a tone must have to be just audible in the presence of a given noise.

– “Auditory filter shape,” Patterson (1974)

The auditory filter may be considered as a weighting function representing frequency selectivity at a particular centre frequency. Its shape can be derived using the power-spectrum model of masking which assumes: (1) in detecting a signal in a masker the observer uses the single auditory filter giving the highest signal-to-masker ratio; (2) threshold corresponds to a fixed signal-to-masker ratio at the output of that filter.

– “Formulae describing frequency selectivity as a function of frequency and level, and their use in calculating excitation patterns,” Moore and Glasberg (1987)

Over the last half century, many auditory filter models have been developed, analyzed, and applied to hearing-related problems. Linear filter models, along with more realistic quasi-linear level-dependent models, have been explored. We review several lines of development, and several criteria that filter models might try to satisfy, and show how the pole–zero filter cascade (PZFC) models achieve these desired properties.

Early attempts at describing auditory function by filters used three kinds of filter shapes: simple resonances, Gaussian filters, and rectangular filters. Most more modern auditory filter models can be seen as belonging to three main families (detailed in Section 13.4.1): the rounded exponential (roex) family, the gammatone family, and the filter cascade family. In many cases, independent efforts led to somewhat similar results, without necessarily sharing a name or any other relationship. I have discovered some of these relationships in retrospect, such as the early 1960s work by Jim Flanagan (1960, 1962) on gammatone, one-zero gammatone, and related pole– zero filter models of basilar membrane motion, long before the term gammatone was coined.

Transmission-line models of wave propagation on the basilar membrane go even further back, but the basis for approximating these systems as cascade-structured filter models was not made clear until after Zweig, Lipes, and Pierce (1976) showed how to apply theWentzel–Kramers–Brillouin (WKB) approximation in their 1976 “cochlear compromise” paper.

Type
Chapter
Information
Human and Machine Hearing
Extracting Meaning from Sound
, pp. 239 - 264
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×