Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T12:50:41.841Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2013

Mark E. Everett
Affiliation:
Texas A & M University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, J., Schmitt, D. R., Rokosh, C. D., and Pawlowicz, J. G. (2009). High-resolution seismic and resistivity profiling of a buried Quaternary subglacial valley: Northern Alberta, Canada. Geological Society of America Bulletin, 121, 1570–1583.CrossRefGoogle Scholar
Ajo-Franklin, J. B., Geller, J. T., and Harris, J. M. (2007). Ultrasonic properties of granular media saturated with DNAPL/water mixtures. Geophysical Research Letters, 34, 2006GL029200.CrossRefGoogle Scholar
Aki, K. (1957). Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bulletin of the Earthquake Research Institiute, University of Tokyo, 35, 415–456.Google Scholar
al-Garni, M. and Everett, M. E. (2003). The paradox of anisotropy in electromagnetic loop–loop responses over a uniaxial halfspace. Geophysics, 68, 892–899.CrossRefGoogle Scholar
Alnes, H., Eiken, O., and Stenvold, T. (2008). Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics, 73, WA155–WA161.CrossRefGoogle Scholar
Anderson, W. L. (1979). Computer program: numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering. Geophysics, 44, 1287–1305.CrossRefGoogle Scholar
Andrew, E. R. (2007). Magnetic resonance imaging: a historical overview. In Encyclopedia of Magnetic Resonance: Historical Perspectives. New York: John Wiley & Sons.Google Scholar
Annan, A. P. (2009). Electromagnetic principles of ground-penetrating radar. In Ground Penetrating Radar: Theory and Applications, ed. Jol, J. M.. Amsterdam: Elsevier, pp. 3–40.Google Scholar
Annan, A. P. and Davis, J. L. (1997). Ground penetrating radar – coming of age at last!! In Proceedings of Exploration 97: 4th Decennial International Conference on Mineral Exploration, ed. A. G. Gubins. pp. 515–522.Google Scholar
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 146, 54–61.Google Scholar
Arfken, G., Weber, , , H., and Harris, , , F.E. (2012). Mathematical Methods for Physicists, 7th edn. Waltham, MA: Academic Press.Google Scholar
Arms, R. J. and Hama, F. R. (1965). Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Physics of Fluids, 8, 553–559.CrossRefGoogle Scholar
Asquith, G. B. (1995). Determining carbonate pore types from petrophysical logs. In Carbonate Facies and Sequence Stratigraphy: Practical Applications of Carbonate Models, ed. Pause, P. H. and Candelaria, M. P.. Tulsa, OK: Society of Economic and Paleontological Mineralogists – Permian Basin Section, pp. 69–80.Google Scholar
Aster, R. C., Borchers, B., and Thurber, C. H. (2012). Parameter Estimation and Inverse Problems, 2nd ed. San Diego, CA: Academic Press.Google Scholar
ASTM. (2011). Standard Guide for Selecting Surface Geophysical Methods. ASTMD6429–99.Google Scholar
Auken, E., Pellerin, L., Christensen, N. B., and Sørensen, K. (2006). A survey of current trends in near-surface electrical and electromagnetic methods. Geophysics, 71, G249–G260.CrossRefGoogle Scholar
Auken, E., Violette, S., d’Ozouville, N., et al. (2009). An integrated study of the hydrogeology of volcanic islands using helicopter borne transient electromagnetic: application in the Galápagos Archipelago. Comptes Rendus Geoscience, 341, 899–907.CrossRefGoogle Scholar
Aziz, Z., van Geen, A., Stute, M., et al. (2008). Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh. Water Resources Research, 44, 2007WR006000.CrossRefGoogle Scholar
Baker, G. S. (1999). Processing near-surface seismic-reflection data: a primer. In Course Notes Series 9, ed. Young, R. A.. Tulsa, OK, Society of Exploration Geophysicists Press.Google Scholar
Baker, G. S., Steeples, D. W., Schmeissner, C., and Spikes, K. T. (2000). Source-dependent frequency content of ultrashallow seismic reflection data. Bulletin of the Seismological Society of America, 90, 494–499.CrossRefGoogle Scholar
Baker, G. S., Strasser, J. C., Evenson, E. B., et al. (2003). Near-surface seismic reflection profiling of the Matanuska Glacier, Alaska. Geophysics, 68, 147–156.CrossRefGoogle Scholar
Bard, A. J. and Faulkner, L. R. (2001). Electrochemical Methods: Fundamentals and Applications, 2nd edition. New York, NY: John Wiley & Sons.Google Scholar
Baumgartner, F. and Christensen, N. B. (1998). Analysis and application of a non-conventional underwater geoelectrical method in Lake Geneva, Switzerland. Geophysical Prospecting, 46, 527–541.CrossRefGoogle Scholar
Beamish, D. (2000). Quantitative 2-D VLF data interpretation. Journal of Applied Geophysics, 45, 33–47.CrossRefGoogle Scholar
Beamish, D. (2011). Low induction number, ground conductivity meters: a correction procedure in the absence of magnetic effects. Journal of Applied Geophysics, 75, 244–253.CrossRefGoogle Scholar
Becker, E. D., Fisk, C. L., and Khetrapal, C. L. (2007). Development of NMR: from the early beginnings to the early 1990s. In Encyclopedia of Magnetic Resonance: Historical Perspectives. New York, NY: John Wiley & Sons.Google Scholar
Bellman, R. E. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.Google ScholarPubMed
Benavides, A. and Everett, M. E. (2005). Target signal enhancement in near-surface controlled source electromagnetic data. Geophysics, 70, G59–67.CrossRefGoogle Scholar
Benavides, A., Everett, M. E., and Pierce, C. (2009). Unexploded ordnance discrimination using time-domain electromagnetic induction and self-organizing maps. Stochastic Environmental Research and Risk Assessment, 23, 169–179.CrossRefGoogle Scholar
Berkhout, A. J. (1977). Least-squares inverse filtering and wavelet deconvolution. Geophysics, 42, 1369–1383.CrossRefGoogle Scholar
Berkowitz, B. and Scher, H. (2005). Quantification of non-Fickian transport in fractured formations. In Dynamics of Fluids and Transport in Fractured Rock, eds. Faybishenko, B., Witherspoon, P. A. and Bale, J.. AGU Geophysical Monograph 162, 23–31.Google Scholar
Bexfield, C. E., McBride, J. H., Pugin, A. J. M., et al. (2006). Integration of P- and SH-wave high-resolution seismic reflection and micro-gravity techniques to improve interpretation of shallow subsurface structure: new Madrid seismic zone. Tectonophysics, 420, 5–21.CrossRefGoogle Scholar
Bhattacharya, P. K. and Patra, H. P. (1968). Direct Current Geoelectric Sounding. Amsterdam: Elsevier.Google Scholar
Blakely, R. C. (1995). Potential Theory in Gravity and Magnetic Applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bloom, A. L. (1962). Principles of operation of the rubidium vapor magnetometer. Applied Optics, 1, 61–68.CrossRefGoogle Scholar
Boadu, F. K., Gyamfi, J., and Owusu, E. (2005). Determining subsurface fracture characteristics from azimuthal resistivity surveys: a case study at Nsawam, Ghana. Geophysics, 70, B35–B42.CrossRefGoogle Scholar
Bonnet, E., Bour, O., Odling, N. E., et al. (2001). Scaling of fracture systems in geological media. Reviews of Geophysics, 39, 347–383.CrossRefGoogle Scholar
Borchers, B., Uram, T., and Henrickx, J. M. H. (1997). Tikhonov regularization of electrical conductivity depth profiles in field soils. Soil Science Society of America Journal, 61, 1004–1009.CrossRefGoogle Scholar
Boschetti, F., Dentith, M., and List, R. (1997). Inversion of potential field data by genetic algorithms. Geophysical Prospecting, 45, 461–478.CrossRefGoogle Scholar
Boudreault, J. P., Dube, J. S., Chouteau, M., Winiarski, T., and Hardy, E. (2010). Geophysical characterization of contaminated urban fills. Engineering Geology, 116, 196–206.CrossRefGoogle Scholar
Bracewell, R. N. (2000). The Fourier Transform and its Applications, 3rd edn. New York. NY: McGraw-Hill.Google Scholar
Bradford, J. H. and Deeds, J. C. (2006). Ground-penetrating radar theory and application of thin-bed offset-dependent reflectivity. Geophysics, 71, K47–K57.CrossRefGoogle Scholar
Branston, M. W. and Styles, P. (2003). The application of time-lapse micro gravity for the investigation and monitoring of susidence at Northwich, Chesire. Quarterly Journal of Engineering Geology and Hydrogeology, 36, 231–244.CrossRefGoogle Scholar
Brigham, E. O. (1988). The Fast Fourier Transform and its Applications. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Budker, D. and Romalis, M. (2007). Optical magnetometry. Nature Physics, 3, 227–234.CrossRefGoogle Scholar
Butler, D. K. (2003). Implications of magnetic backgrounds for unexploded ordnance detection, Journal of Applied Geophysics, 54, 111–125.CrossRefGoogle Scholar
Butler, D. W. (2005). What is near-surface geophysics? In Near-Surface Geophysics, ed. Butler, D. W.. Tulsa, OK: Society of Exploration Geophysicists Press, pp. 1–6.CrossRefGoogle Scholar
Butler, K. E. (2009). Trends in waterborne electrical and EM induction methods for high resolution sub-bottom imaging. Near Surface Geophysics, 7, 241–246.CrossRefGoogle Scholar
Calderon-Macias, C., Sen, M. K., and Stoffa, P. L. (2000). Artificial neural networks for parameter estimation in geophysics. Geophysical Prospecting, 48, 21–47.CrossRefGoogle Scholar
Campbell, W. H. (2003). Introduction to Geomagnetic Fields, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Candansayar, M. E. and Tezkan, B. (2008). Two-dimensional joint inversion of radiomagnetotelluric and direct current resistivity data. Geophysical Prospecting, 56, 737–749.CrossRefGoogle Scholar
Cassidy, N. J. (2009). Ground penetrating radar data processing, modelling and analysis. In Ground Penetrating Radar: Theory and Applications, ed. Jol, H. M.. Amsterdam: Elsevier, pp. 141–176.CrossRefGoogle Scholar
Castagna, J. P. (1993). AVO analysis – tutorial and review. In Offset-Dependent Reflectivity – Theory and Practice of AVO Analysis, ed. Castagna, J. P. and Backus, M. M.. Tulsa, OK, Society of Exploration Geophysicists, pp. 3–36.CrossRefGoogle Scholar
Cavinato, G. P., Di Luzio, E., Moscatelli, M., et al. (2006). The new Col di Tenda tunnel between Italy and France: integrated geological investigations and geophysical prospections for preliminary studies on the Italian side. Engineering Geology, 88, 90–109.CrossRefGoogle Scholar
Chambers, J. E., Wilkinson, P. B., Kuras, O., et al. (2011). Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland basin, UK. Geomorphology, 125, 472–484.CrossRefGoogle Scholar
Chapman, C. H. (2004). Fundamentals of Seismic Wave Propagation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chave, A. D. (1983). Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics, 48, 1671–1686.CrossRefGoogle Scholar
Chave, A. D. and Jones, A. G. (2012). The Magnetotelluric Method: Theory and Practice. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chelidze, T. L. and Gueguen, Y. (1999). Electrical spectroscopy of porous rocks: a review – I. Theoretical models. Geophysical Journal International, 137, 1–15.CrossRefGoogle Scholar
Chen, Q. F., Liu, L. B., Wang, W. J., and Rohrbach, E. (2009). Site effects on earthquake ground motion based on microtremor measurements for metropolitain Beijing. Chinese Science Bulletin, 54, 280–287.Google Scholar
Cheo, B. R. S. (1965). A reciprocity theorem for electromagnetic fields with general time dependence. IEEE Transactions on Antennas and Propagation, 13, 278–284.CrossRefGoogle Scholar
Chib, S. and Greenberg, E. (1995). Understanding the Metropolis–Hastings algorithm. American Statistician, 49, 327–335.Google Scholar
Ciminale, M. and Gallo, D. (2008). High-resolution magnetic survey in a quasi-urban environment. Near Surface Geophysics, 9, 97–103.Google Scholar
Clark, D. A. (1997). Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. Journal of Australian Geology and Geophysics, 17, 83–103.Google Scholar
Cole, K. S. and Cole, R. H. (1941). Dispersion and absorption in dielectrics. I. Alternating current characteristics. Journal of Chemical Physics, 9, 341–351.CrossRefGoogle Scholar
Collins, J. L., Everett, M. E., and Johnson, B. (2006). Detection of near-surface horizontal anisotropy in a weathered metamorphic schist at Llano Uplift (Texas) by transient electromagnetic induction. Physics of the Earth and Planetary Interiors, 158, 159–173.CrossRefGoogle Scholar
Conway, B. E. and Barradas, R. G. (1966). Chemical Physics of Ionic Solutions, New York, NY:John Wiley & Sons.Google Scholar
Conyers, L. B. (2011). Discovery, mapping and interpretation of buried cultural resources non-invasively with ground-penetrating radar. Journal of Geophysical Engineering, 8, S13–S22.CrossRefGoogle Scholar
Cooper, G. R. J. and Cowan, D. R., (2011). A generalized derivative operator for potential field data. Geophysical Prospecting, 59, 188–194.CrossRefGoogle Scholar
Corrington, M. S. and Kidd, M. C. (1951). Amplitude and phase measurements on loudspeaker cones. Proceedings of the Institute of Radio Engineers, 39, 1021–1026.Google Scholar
Cullity, B. D. and Graham, C. D. (2009). Introduction to Magnetic Materials, 2nd edn. Hoboken, NJ: Wiley–IEEE Press.Google Scholar
Dahlin, T. (2001). The development of DC resistivity imaging techniques. Computers and Geosciences, 27, 1019–1029.CrossRefGoogle Scholar
Daily, W. and Owen, E. (1991). Cross-borehole resistivity tomography. Geophysics, 56, 1228–1235.CrossRefGoogle Scholar
Davis, J. L. and Annan, A. P. (1989). Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 37, 531–551.CrossRefGoogle Scholar
Day-Lewis, F. D., White, E. A., Johnson, C. D., and Lane, J. W.., (2006). Continuous resistivity profiling to delineate submarine groundwater discharge – examples and limitations. The Leading Edge, 25, 724–728.CrossRefGoogle Scholar
Dean, E. B. (1988). Linear least squares for correlated data. Proceedings, 10th Annual Conference of the International Society of Parametric Analysts, Brighton, UK.
Dekkers, M. J. (1997). Environmental magnetism: an introduction. Geologie en Mijnbouw, 76, 163–182.CrossRefGoogle Scholar
Delgado, A. V., Gonzalez-Caballero, F., Hunter, R. J., Koopal, L. K., and Lyklema, J. (2005). Measurement and interpretation of electrokinetic phenomena. Pure and Applied Chemistry, 77, 1753–1805.CrossRefGoogle Scholar
Deparis, J. and Garambois, S. (2009). On the use of dispersive APVO GPR curves for thin-bed properties estimation: theory and application to fracture characterization. Geophysics, 74, J1–J12.CrossRefGoogle Scholar
Deregowski, S. M. (1986). What is DMO?First Break, 4, 7–24.CrossRefGoogle Scholar
Dey, A. and Ward, S. H. (1970). Inductive sounding of a layered Earth with a horizontal magnetic dipole. Geophysics, 35, 660–703.CrossRefGoogle Scholar
Dias, C. A. (2000). Developments in a model to describe low-frequency electrical polarization of rocks. Geophysics, 65, 437–451.CrossRefGoogle Scholar
Diebold, J. B. and Stoffa, P. L. (1981). The traveltime equation, tau–p mapping, and inversion of common midpoint data, Geophysics, 46, 238–254.CrossRefGoogle Scholar
Docherty, P. and Kappius, R. (1993). A workstation implementation of 3-D refraction statics. SEG Expanded Abstracts, 63rdAnnual Meeting, Washington, DC, pp. 1166–1169.Google Scholar
Doherty, R., Kulessa, B., Ferguson, A. S., et al. (2010). A microbial fuel cell in contaminated ground delineated by electrical self-potential and normalized induced polarization data. Journal of Geophysical Research, 115, 2009JG001131.CrossRefGoogle Scholar
Doll, W. E., Miller, R. D., and Bradford, J. (2012). The emergence and future of near-surface geophysics. The Leading Edge, 31, 684–692.CrossRefGoogle Scholar
Domenico, P. A. and Schwartz, F. W. (1998). Physical and Chemical Hydrogeology, 2nd edition. Chichester: Wiley.Google Scholar
Doyle, P. G. and Snell, J. L. (1984). Random walks and electric networks. Carus Mathematical Monographs, 22.Google Scholar
Dupuis, J. C., Butler, K. E., and Kepic, A. W. (2007). Seismoelectric imaging of the vadose zone of a sand aquifer. Geophysics, 72, A81–A85.CrossRefGoogle Scholar
Duque, C., Calvache, M. L., Pedrera, A., Martin-Rosales, W., and López-Chicano, M. (2008). Combined time domain electromagnetic soundings and gravimetry to determine marine intrusion in a detrital coastal aquifer (southern Spain). Journal of Hydrology, 349, 536–547.CrossRefGoogle Scholar
Eke, A., Herman, P., Bassingthwaighte, J. B., et al. (2000). Physiological time series: distinguishing fractal noises from motions. Pflugers Archiv European Journal of Physiology, 439, 403–415.CrossRefGoogle ScholarPubMed
Eliseevnin, V. A. (1965). Analysis of waves propagating in an inhomogeneous medium. Soviet Physics Acoustics, 10, 242–245.Google Scholar
Engheta, N., Papas, C. H., and Elachi, C. (1982). Radiation patterns of interfacial dipole antennas. Radio Science, 17, 1557–1566.CrossRefGoogle Scholar
Eskola, L., Puranen, R., and Soininen, H. (1999). Measurements of magnetic properties of steel sheets. Geophysical Prospecting, 47, 593–662.CrossRefGoogle Scholar
Etgen, J., Gray, S. H., and Zhang, Y. (2009). An overview of depth imaging in exploration geophysics. Geophysics, 74, WCA5–WCA17.CrossRefGoogle Scholar
Everett, M. E. (2005). What do electromagnetic induction responses measure?The Leading Edge, 24, 154–157.CrossRefGoogle Scholar
Everett, M. E. (2012). Theoretical developments in electromagnetic induction geophysics with selected applications in the near surface. Surveys in Geophysics, 33, 29–63.CrossRefGoogle Scholar
Everett, M. E. and Constable, S. (1999). Electric dipole fields over an anisotropic seafloor: theory and application to the structure of 40 Ma Pacific Ocean lithosphere. Geophysical Journal International, 136, 41–56.CrossRefGoogle Scholar
Everett, M. E. and Meju, M. A. (2005). Near-surface controlled-source electromagnetic induction: background and recent advances. In Hydrogeophysics, ed. Rubin, Y. and Hubbard, S. S.. New York, NY: Springer, pp. 157–183.CrossRefGoogle Scholar
Everett, M. E. and Schultz, A. (1993). Two-dimensional nonlinear magnetotelluric inversion using a genetic algorithm. Journal of Geomagnetism and Geoelectricity, 45, 1013–1026.CrossRefGoogle Scholar
Everett, M. E. and Weiss, C. J. (2002). Geological noise in near-surface electromagnetic induction data. Geophysical Research Letters, 29, 2001GL014049.CrossRefGoogle Scholar
Everett, M. E., Pierce, C. J., Save, N., et al. (2006). Geophysical investigation of the June 6, 1944 D-Day invasion site at Pointe du Hoc, Normandy, France. Near Surface Geophysics, 4, 289–304.CrossRefGoogle Scholar
Fassbinder, J. W. E., Stanjek, H., and Vali, H. (1990). Occurrence of magnetic bacteria in soil. Nature, 343, 161–163.CrossRefGoogle ScholarPubMed
Finizola, A., Revil, A., Rizzo, E., et al. (2006). Hydrogeological insights at Stromboli volcano (Italy) from geoelectrical, temperature, and CO2 soil degassing investigations. Geophysical Research Letters, 33, 2006GL026842.CrossRefGoogle Scholar
Finlay, C. C., Maus, S., Beggan, C. D., et al. (2010). International Geomagnetic Reference Field: the eleventh generation. Geophysical Journal International, 183, 1216–1230.Google Scholar
Fischer, T. and Guest, A. (2011). Shear and tensile earthquakes caused by fluid injection. Geophysical Research Letters, 38, 2010GL045447.CrossRefGoogle Scholar
Fitterman, D. V. and Anderson, W. L. (1987). Effect of transmitter turn-off time on transient soundings. Geoexploration, 24, 131–146.CrossRefGoogle Scholar
Fitterman, D. V. and Labson, V. F. (2005). Electromagnetic induction methods for environmental problems. In Near-Surface Geophysics, ed. Butler, D. K.. Tulsa, OK: Society of Exploration Geophysicists, pp. 301–356.CrossRefGoogle Scholar
Fletcher, R. and Reeves, C. M. (1964). Function minimization by conjugate gradients. Computer Journal, 7, 149–154.CrossRefGoogle Scholar
Florsch, N., Llubes, M., Tereygeol, F., Ghorbani, A., and Roblet, P. (2011). Quantification of slag heap volumes and masses through the use of induced polarization: application to the Castel-Minier site. Journal of Archaeological Science, 38, 438–451.CrossRefGoogle Scholar
Focke, J. W. and Munn, D. (1987). Cementation exponents in Middle Eastern carbonate reservoirs, Society of Petroleum Engineers Formation Evaluation, 2, 155–167.CrossRefGoogle Scholar
Fowler, C. M. R. (2005). The Solid Earth: An Introduction to Global Geophysics, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
French, A. P. (1971). Vibrations and Waves. New York, NY: W.W. Norton and Co.Google Scholar
Frigui, H., Zhang, L., Gader, P., et al. (2012). An evaluation of several fusion algorithms for anti-tank landmine detection and discrimination. Infomation Fusion, 13, 161–174.CrossRefGoogle Scholar
Frisch, U. and Sornette, D. (1997). Extreme deviations and applications. Journal de Physique I France, 7, 1155–1171.CrossRefGoogle Scholar
Frohlich, C., Hayward, C., Stump, B., and Potter, E. (2011). The Dallas–Fort Worth earthquake sequence: October 2008 through May 2009. Bulletin of the Seismological Society of America, 101, 327–340.CrossRefGoogle Scholar
Furman, A., Ferre, T. P .A., and Warrick, A. W. (2003). A sensitivity analysis of electrical resistivity tomography array types using analytical element modeling. Vadose Zone Journal, 2, 416–423.CrossRefGoogle Scholar
Gaffney, C. F., Gater, J. A., Linford, P., Gaffney, V. L., and White, R. (2000). Large-scale systematic fluxgate gradiometry at the Roman city of Wroxeter. Archaeological Prospection, 7, 81–99.3.3.CO;2-Y>CrossRefGoogle Scholar
Gal, D., Dvorkin, J., and Nur, A. (1999). Elastic-wave velocities in sandstones with non-load-bearing clay. Geophysical Research Letters, 26, 939–942.CrossRefGoogle Scholar
Gallagher, K., Sambridge, M., and Drijkoningen, G. (1991). Genetic algorithms: an evolution from Monte Carlo methods for strongly non-linear geophysical optimization problems. Geophysical Research Letters, 18, 2177–2180.CrossRefGoogle Scholar
Garambois, S. and Dietrich, M. (2001). Seismoelectric wave conversions in porous media: field measurements and transfer function analysis. Geophysics, 66, 1417–1430.CrossRefGoogle Scholar
Gardner, L. W. (1967). Refraction seismograph profile interpretation. In Seismic Refraction Prospecting, ed. Musgrave, A. W.. Tulsa, OK: Society of Exploration Geophysicists Press, pp. 338–347.Google Scholar
Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.CrossRefGoogle ScholarPubMed
Gharibi, M. and Bentley, L. R. (2005), Resolution of 3-D electrical resistivity images from inversions of 2-D orthogonal lines. Journal of Environmental and Engineering Geophysics, 10, 339–349.CrossRefGoogle Scholar
Gill, P. E., Murray, W., and Wright, M. H. (1982). Practical Optimization. Bingley: Emerald Publishing Group.Google Scholar
Gjoystdal, H., Iversen, E., Lecomte, I., et al. (2007). Improved applicabilty of ray tracing in seismic acquisition, imaging, and interpretation. Geophysics, 72, SM261–SM271.CrossRefGoogle Scholar
Goldstein, M. A. and Strangway, D. W. (1975). Audio-frequency magnetotellurics with a grounded electric dipole source. Geophysics, 40, 669–683.CrossRefGoogle Scholar
Golub, G. H. and van Loan, C. F. (1996). Matrix Computations, 3rd edn. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Gorham, P., Saltzberg, D., Odian, A., et al. (2002). Measurements of the suitability of large rock salt formations for radio detection of high-energy neutrinos. Nuclear Instruments and Methods A, 490, 476–491.CrossRefGoogle Scholar
Goring, D. G. and Nikora, V. I. (2002). Despiking acoustic Doppler velocimeter data. ASCE Journal of Hydraulic Engineering, 128, 117–126.CrossRefGoogle Scholar
Gorman, E. M., Everett, M. E., and Johnson, B. (1998). Controlled-source electromagnetic mapping of a faulted sandstone aquifer in central Texas. Proceedings of SAGEEP, 11, 975–984.Google Scholar
Grant, F. S. and West, G. F. (1965). Interpretation Theory in Applied Geophysics. New York, NY: McGraw-Hill.Google Scholar
Grauch, V. J. S. (2002). High Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada. USGS Open-File Report, 02–0384.
Gray, S. H., Etgen, J., Dellinger, J., and Whitmore, D. (2001). Seismic migration problems and solutions. Geophysics, 66, 1622–1640.CrossRefGoogle Scholar
Grotzinger, J. and Jordan, T. H. (2010). Understanding Earth, 6th edn. New York, NY: W. H. Freeman.Google Scholar
Gubbins, D. (2004). Time Series Analysis and Inverse Theory for Geophysicists. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gudmundsson, A. (2011). Rock Fractures in Geological Processes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gueguen, Y. and Palciauskas, V. (1994). VIII. Electrical conductivity. In Introduction to the Physics of Rocks. Princeton, NJ: Princeton University Press, pp. 182–211.Google Scholar
Guptasarma, D. and Singh, B. (1997). New digital linear filters for Hankel J0 and J1 transforms. Geophysical Prospecting, 45, 745–762.CrossRefGoogle Scholar
Gurer, A., Bayrak, M., Gurer, O. F., and Sahin, S. Y. (2008). Delineation of weathering in the Catalca granite quarry with the very low frequency (VLF) electromagnetic method. Pure and Applied Geophysics, 165, 429–441.CrossRefGoogle Scholar
Haartsen, M. W. and Pride, S. R. (1997). Electroseismic waves from point sources in layered media. Journal of Geophysical Research, 102, 24745–24769.CrossRefGoogle Scholar
Hansen, P. C. (1987). The truncated SVD as a method for regularization. BIT, 27, 534–553.CrossRefGoogle Scholar
Hansen, R. O., Racic, L., and Grauch, V. J. S. (2005). Magnetic methods in near-surface geophysics. In Near-Surface Geophysics, ed. Butler, D. W.. Tulsa, OK: Society of Exploration Geophysicists Press, pp. 151–176.CrossRefGoogle Scholar
Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the Institute of Electrical and Electronics Engineers, 66, 51–83.CrossRefGoogle Scholar
Haskell, N. A. (1953). The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43, 17–34.Google Scholar
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.CrossRefGoogle Scholar
Hauser, J., Sambridge, M., and Rawlinson, N. (2008). Multiarrival wavefront tracking and its applications. Geochemistry, Geophysics, Geosystems, 9, 2008GC018779.CrossRefGoogle Scholar
Hertrich, M. (2008). Imaging of groundwater with nuclear magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 53, 227–248.CrossRefGoogle Scholar
Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal Research National Bureau of Standards, 49, 409–436.CrossRefGoogle Scholar
Hintz, K. J. (2004). SNR improvements in NIITEK ground penetrating radar. Proceedings SPIE, 5415, 399–408.CrossRefGoogle Scholar
Hizem, M., Budan, H., Deville, B., et al. (2008). Dielectric dispersion: a new wireline petrophysical measurement, Society of Petroleum Engineers Technical Papers, 116130.Google Scholar
Holland, A. (2011). Examination of Possibly Induced Seismicity from Hydraulic Fracturing in the Eola Field, Garvin County, Oklahoma, Oklahoma Geological Survey Open-File Report, OF1–2011.
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University Michigan Press.Google Scholar
Hollender, F. and Tillard, S. (1998). Modeling ground-penetrating radar wave propagation and reflection with the Jonscher parameterization. Geophysics, 63, 1933–1942.CrossRefGoogle Scholar
Huang, H. and Palacky, G. J. (1991). Damped least-squares inversion of time-domain airborne EM data based on singular value decomposition. Geophysical Prospecting, 39, 827–844.CrossRefGoogle Scholar
Huang, H. and Won, I. J. (2003). Automated anomaly picking from broadband electromagnetic data in an unexploded ordnance (UXO) survey. Geophysics, 68, 1870–1876.CrossRefGoogle Scholar
Hughes, L. J. (2009). Mapping contaminant-transport structures in karst bedrock with ground-penetrating radar. Geophysics, 74, B197–B208.CrossRefGoogle Scholar
Huntley, D. (1986). Relations between permeability and electrical resistivity in granular aquifers. Ground Water, 24, 466–474.CrossRefGoogle Scholar
Hunziker, J., Slob, E., Fan, Y., Snieder, R., and Wapenaar, K. (2012). Two-dimensional controlled-source electromagnetic interferometry by multidimensional deconvolution: spatial sampling aspects, Geophysical Prospecting, 60, 974–994.CrossRefGoogle Scholar
Hurlimann, M. P. (2012). Well logging. In Encyclopedia of Magnetic Resonance. New York, NY: John Wiley & Sons.Google Scholar
Ingber, L. (1989). Very fast simulated re-annealing. Mathematical and Computer Modeling, 12, 967–973.CrossRefGoogle Scholar
Irving, J. D. and Knight, R. J. (2003). Removal of wavelet dispersion from ground-penetrating radar data. Geophysics, 68, 960–970.CrossRefGoogle Scholar
Ismail, N. and Pedersen, L. (2011). The electrical conductivity distribution of the Hallandas horst, Sweden: a controlled source radiomagnetotelluric study. Near Surface Geophysics, 9, 45–54.CrossRefGoogle Scholar
Jackson, J. D. (1998). Classical Electrodynamics, 3rd edn. New York, NY: John Wiley & Sons.Google Scholar
Jacob, T., Bayer, R., Chery, J., and Le Moigne, N. (2010). Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. Journal of Geophysical Research, 115, 2009JB006616.CrossRefGoogle Scholar
Jahns, H. O. (1966). A rapid method for obtaining a two-dimensional reservoir description from well pressure response data. Society of Petroleum Engineers Journal, 6, 315–327.CrossRefGoogle Scholar
Jaynes, E. T. (1986). Bayesian methods: general background. In Maximum Entropy and Bayesian Methods in Applied Statistics, ed. Justice, J. H.. Cambridge: Cambridge University Press, pp. 1–25.Google Scholar
Johnson, W. E. (1932). Probability: the deductive and inductive problems. Mind, 41, 409–423.CrossRefGoogle Scholar
Jones, D. S. (1964). Theory of Electromagnetism. New York, NY: Macmillan.Google Scholar
Jonscher, A. K. (1977). The univerzal dielectric response. Nature, 267, 673–679.CrossRefGoogle Scholar
Jouniaux, L., Maineult, A., Naudet, V., Pessel, M., and Sailhac, P. (2009). Review of self-potential methods in hydrogeophysics. Comptes Rendus Geoscience, 341, 928–936.CrossRefGoogle Scholar
Kaiser, A. E., Horstmeyer, H., Green, A. G., et al. (2011). Detailed images of the shallow Alpine fault zone, New Zealand, determined from narrow-azimuth 3D seismic reflection data. Geophysics, 76, B19–B32.CrossRefGoogle Scholar
Kaiser, G. (1994). A Friendly Guide to Wavelets. Cambridge, MA: Birkhauser.Google Scholar
Kanasewich, E. R. (1981). Time Sequence Analysis in Geophysics, 3rd edn. Edmonton, Alberta: University of Alberta Press.Google Scholar
Katz, A. J. and Thompson, A. H. (1986). Quantitative prediction of permeability in porous rock. Physical Review B, 34, 8179–8181.CrossRefGoogle ScholarPubMed
Keating, P. and Sailhac, P. (2004). Use of the analytic signal to identify magnetic anomalies due to kimberlite pipes. Geophysics, 69, 180–190.CrossRefGoogle Scholar
Keller, G. V. and Frischknecht, F. C. (1966). Electrical Methods in Geophysical Prospecting. New York, NY: Pergamon Press.Google Scholar
Keller, J. B. (1957). Diffraction by an aperture. Journal of Applied Physics, 28, 426–442.CrossRefGoogle Scholar
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.CrossRefGoogle ScholarPubMed
Kittel, C. (2004). Introduction to Solid State Physics, 8th edn. New York, NY: John Wiley & Sons.Google Scholar
Klein, J. D. and Sill, W. R. (1982). Electrical properties of artificial clay-bearing sandstone. Geophysics, 47, 1593–1605.CrossRefGoogle Scholar
Kleinberg, R. L. (1996). Probing oil wells with NMR. The Industrial Physicist, 2, 18–21.Google Scholar
Knapp, R. W. and Steeples, D. W. (1986). High-resolution common-depth-point seismic reflection profiling; field acquisition parameter design. Geophysics, 51, 283–294.CrossRefGoogle Scholar
Knight, R. (2001). Ground penetrating radar for environmental applications. Annual Review of Earth and Planetary Science, 29, 229–255.CrossRefGoogle Scholar
Knight, R. J. and Endres, A. L. (2005). An introduction to rock physics principles for near-surface geophysics. In Near-Surface Geophysics, ed. Butler, D. K.. Tulsa, OK: Society of Exploration Geophysicists Press, pp. 31–70.CrossRefGoogle Scholar
Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78, 1464–1480.CrossRefGoogle Scholar
Kowalik, J. S. and Osborne, M. R. (1968). Methods for Unconstrained Optimization Problems, Amsterdam: Elsevier.Google Scholar
Krawczyk, C. M., Polom, U., Trabs, S., and Dahm, T. (2011). Sinkholes in the city of Hamburg – new urban shear-wave reflection seismic system enables high-resolution imaging of subrosion structures. Journal of Applied Geophysics, 78, 133–143.CrossRefGoogle Scholar
Krohn, C. E. (1984). Geophone ground coupling. Geophysics, 49, 722–731.CrossRefGoogle Scholar
Kruschwitz, S., Binley, A., Lesmes, D., and Elshenawy, A. (2010). Textural controls on low-frequency electrical spectra of porous media. Geophysics, 75, WA113–WA123.CrossRefGoogle Scholar
Ku, C. C. and Sharp, J. A. (1983). Werner deconvolution for automated magnetic interpretation and its refinement using Marquardt’s inverse modeling. Geophysics, 48, 754–774.CrossRefGoogle Scholar
Kumar, P. and Foufoula-Georgiou, E. (1997). Wavelet analysis for geophysical applications. Reviews of Geophysics, 35, 385–412.CrossRefGoogle Scholar
LaBrecque, D. and Daily, W. (2008). Assessment of measurement errors for galvanic-resistivity electrodes of different composition. Geophysics, 73, F55–F64.CrossRefGoogle Scholar
Lamb, H. (1994). Hydrodynamics, 6th edn. Cambridge: Cambridge University Press.Google Scholar
Lange, A. L. and Barner, W. L. (1995). Application of the natural electrical field for detecting karst conduits on Guam. In Karst Geohazards, ed. Beck, B. F.. Rotterdam: Balkema, pp. 425–441.Google Scholar
Langel, R. A. and Estes, R. H. (1982). A geomagnetic field spectrum, Geophysical Research Letters, 9, 250–253.CrossRefGoogle Scholar
Le Masne, D. and Vasseur, G. (1981). Electromagnetic field of sources at the surface of a homogeneous conducting halfspace with horizontal anisotropy: applications to fissured media. Geophysical Prospecting, 29, 803–821.CrossRefGoogle Scholar
Lee, Y. H. and Shih, Y. X. (2011). Coseismic displacement, bilateral rupture, and structural characteristics at the southern end of the 1999 Chi-Chi earthquake rupture, central Taiwan. Journal of Geophysical Research, 116, 2010JB007760.CrossRefGoogle Scholar
Legchenko, A. and Valla, P. (1998). Processing of surface proton magnetic resonance signals using nonlinear fitting. Journal of Applied Geophysics, 39, 77–83.CrossRefGoogle Scholar
Leroy, P., Revil, A., Kemna, A., Cosenza, P., and Ghorbani, A. (2008). Complex conductivity of water-saturated packs of glass beads. Journal of Colloid and Interface Science, 321, 103–117.CrossRefGoogle ScholarPubMed
Lesmes, D. P. and Friedman, S. P. (2005). Relationships between the electrical and hydrogeological properties of rocks and soils. In Hydrogeophysics, ed. Rubin, Y. and Hubbard, S. S.. Dordrecht: Springer, pp. 87–128.CrossRefGoogle Scholar
Lesmes, D. P. and Morgan, F. D. (2001). Dielectric spectroscopy of sedimentary rocks. Journal of Geophysical Research, 106, 13329–13346.CrossRefGoogle Scholar
Levine, S., Marriott, J. R., Neale, G., and Epstein, N. (1975). Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. Journal of Colloid and Interface Science, 52, 136–149.CrossRefGoogle Scholar
Lindley, D. V. (1956). On a measure of the information provided by an experiment. The Annals of Mathematical Statistics, 27, 986–1005.CrossRefGoogle Scholar
Lindsey, J. P. (1989). The Fresnel zone and its interpretive significance. The Leading Edge, 8, 33–39.CrossRefGoogle Scholar
Liner, C. L. (1999). Concepts of normal and dip moveout. Geophysics, 64, 1637–1647.CrossRefGoogle Scholar
Lines, L. R. and Treitel, S. (1984). A review of least-squares inversion and its application to geophysical problems. Geophysical Prospecting, 32, 159–186.CrossRefGoogle Scholar
Linford, N. (2006). The application of geophysical methods to archaeological prospection. Reports on Progress in Physics, 69, 2205–2257.CrossRefGoogle Scholar
Loewenthal, D., Lu, L., Roberson, R., and Sherwood, J. (1976). The wave equation applied to migration. Geophysical Prospecting, 24, 380–399.CrossRefGoogle Scholar
Loke, M. H. (1999). Electrical Imaging Surveys for Environmental and Engineering Studies: A Practical Guide to 2-D and 3-D Surveys. Available at .
Louie, J. N. (2001). Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bulletin of the Seismological Society of America., 91, 347–364.CrossRefGoogle Scholar
Lucia, F. J. (1983). Petrophysical parameters estimated from visual descriptions of carbonate rocks: a field classification of carbonate pore space. Journal of Petroleum Technology, 35, 629–637.CrossRefGoogle Scholar
MacDonald, A. M., Burleigh, J., and Burgess, W. G. (1999). Estimating transmissivity from surface resistivity soundings: an example from the Thames Gravels. Quarterly Journal of Engineering Geology, 32, 199–205.CrossRefGoogle Scholar
MacDonald, J., Knopman, D., Clancy, N., Mc Ever, J., and Willis, H. (2004). Transferring Army BRAC Lands Containing Unexploded Ordnance: Lessons Learned and Future Options. Santa Monica, CA: The RAND Corporation.Google Scholar
Mackay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4, 415–447.CrossRefGoogle Scholar
Malinverno, A. (2002). Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophysical Journal International, 151, 675–688.CrossRefGoogle Scholar
Mandelbrot, B. B. and van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10, 422–437.CrossRefGoogle Scholar
Maraschini, M., Ernst, F., Foti, S., and Socco, L. V. (2010). A new misfit function for multimodal inversion of surface waves. Geophysics, 75, G31–G43.CrossRefGoogle Scholar
Marion, D., Nur, A., Yin, H., and Han, D. (1992). Compressional velocity and porosity in sand–clay mixtures. Geophysics, 57, 554–563.CrossRefGoogle Scholar
Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431–441.CrossRefGoogle Scholar
Martí, D., Carbonell, R., Flecha, I., et al. (2008). High-resolution seismic characterization in an urban area: Subway tunnel construction in Barcelona, Spain. Geophysics, 73, B41–B50.CrossRefGoogle Scholar
Martin, J. S., Larson, G. D., and Scott, Jr. W. R. (2006). An investigation of surface-contacting sensors for the seismic detection of buried landmines. Journal of the Acoustical Society of America, 120, 2676–2685.CrossRefGoogle Scholar
Mauri, G., Williams-Jones, G., and Saracco, G. (2010). Depth determinations of shallow hydrothermal systems by self-potential and multi-scale wavelet tomography. Journal of Volcanology and Geothermal Research, 191, 233–244.CrossRefGoogle Scholar
McGillivray, P. R., Oldenburg, D. W., Ellis, R. G., and Habashy, T. M. (1994). Calculation of sensitivities for the frequency-domain electromagnetic problem. Geophysical Journal International, 116, 1–4.CrossRefGoogle Scholar
McNeill, J. D. (1980). Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers. Mississauga, Ontario: Geonics Ltd, Technical Note TN-6.Google Scholar
McNeill, J. D. (1990). Use of electromagnetic methods for groundwater studies. In Geotechnical and Environmental Geophysics, ed. Ward, S. H.. Tulsa, OK: Society of Exploration Geophysicists, pp. 191–218.CrossRefGoogle Scholar
McNeill, J. D. and Labson, V. F. (1991). Geological mapping using VLF radio fields. In Electromagnetic Methods in Applied Geophysics, vol. 2, ed. Nabighian, M. N.. Tulsa, OK: Society of Exploration Geophysicists, pp. 521–640.CrossRefGoogle Scholar
Menke, W. (1984). Geophysical Data Analysis: Discrete Inverse Theory. San Diego, CA: Academic Press.Google Scholar
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.CrossRefGoogle Scholar
Metwaly, M. (2007). Detection of metallic and plastic landmines using the GPR and 2-D resistivity techniques. Natural Hazards and Earth Systems Science, 7, 755–763.CrossRefGoogle Scholar
Metz, C. E. (1978). Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8, 283–298.CrossRefGoogle ScholarPubMed
Meurant, G. (2006). The Lanczos and Conjugate Gradient Algorithms. Philadelphia, PA: SIAM.CrossRefGoogle Scholar
Miller, G. F. and Pursey, H. (1955). On the partition of energy between elastic waves in a semi-infinite solid. Proceedings of the Royal Society of London A, 233, 55–69.CrossRefGoogle Scholar
Minsley, B. J., Sogade, J., and Morgan, F. D. (2007). Three-dimensional source inversion of self-potential data. Journal of Geophysical Research, 112, 2006JB004262.CrossRefGoogle Scholar
Moreau, F., Gibert, D., Holschneider, M., and Saracco, G. (1997). Wavelet analysis of potential fields. Inverse Problems, 13, 165–178.CrossRefGoogle Scholar
Moreau, F., Gibert, D., Holschneider, M., and Saracco, G. (1999). Identification of sources of potential fields with the continuous wavelet transform: basic theory. Journal of Geophysical Research, 104, 5003–5013.CrossRefGoogle Scholar
Morrison, H. F., Phillips, R. J., and O’Brien, D. P. (1969). Quantitative interpretation of transient electromagnetic fields over a layered half space. Geophysical Prospecting, 17, 82–101.CrossRefGoogle Scholar
Motulsky, H. J. and Ransnas, L. A. (1987). Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB Journal, 1, 365–374.CrossRefGoogle ScholarPubMed
Muller, T. M., Gurevich, B., and Lebedev, M. (2010). Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks – a review. Geophysics, 75, 75A147–75A164.CrossRefGoogle Scholar
Muller-Petke, M. and Yaramanci, U. (2010). QT inversion-comprehensive use of the complete surface NMR data set. Geophysics, 75, WA199–WA209.CrossRefGoogle Scholar
Muller-Petke, M., Dlugosch, R., and Yaramanci, U. (2011). Evaluation of surface nuclear magnetic resonance-estimated subsurface water content. New Journal of Physics, 13, 095002.CrossRefGoogle Scholar
Nabighian, M. N. (ed.) (1988). Electromagnetic Methods in Applied Geophysics, Volume 1, Theory. Tulsa, OK: Society of Exploration Geophysicists.CrossRefGoogle Scholar
Nabighian, M. N. (ed.) (1991). Electromagnetic Methods in Applied Geophysics, Volume 2, Application. Tulsa, OK: Society of Exploration Geophysicists.CrossRefGoogle Scholar
Nabighian, M. N. and Macnae, J. C. (1991). Time domain electromagnetic prospecting methods. In Electromagnetic Methods in Applied Geophysics, Volume 2, ed. Nabighian, M. N.. Tulsa, OK: Society of Exploration Geophysicists, pp. 427–450.CrossRefGoogle Scholar
Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., et al. (2005). The historical development of the magnetic method in exploration. Geophysics, 70, 33ND–61ND.CrossRefGoogle Scholar
Nadler, A., Dasberg, S., and Lapid, I. (1991). Time-domain reflectometry measurements of water content and electrical conductivity of layered soil columns. Soil Science Society of America Journal, 55, 938–943.CrossRefGoogle Scholar
Nazarian, S. and StokoeII, K. H. (1986). Use of surface waves in pavement evaluation. Transportation Research Record, 1070, 132–144.Google Scholar
Nazarian, S., Stokoe I I, K. H., and Hudson, W. R. (1983). Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems.Transportation Research Record, 930, 38–45.Google Scholar
NCHRP. (2006). Use of Geophysics for Transportation Projects. NCHRP Synthesis 357. Washington, DC: Transportation Research Board.Google Scholar
Neal, A. (2004). Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Science Reviews, 66, 261–330.CrossRefGoogle Scholar
Nicolson, H., Curtis, A., Baptie, B., and Galetti, E. (2012). Seismic interferometry and ambient noise tomography in the British Isles. Proceedings of the Geologists’ Association, 123, 74–86.CrossRefGoogle Scholar
Nobes, D. C. (1996). Troubled waters: environmental applications of electrical and electomagnetic methods. Surveys in Geophysics, 17, 393–454.CrossRefGoogle Scholar
Nocedal, J. and Wright, S. J. (2006). Numerical Optimization, 2nd edn. Berlin: Springer.Google Scholar
Noutchogwe, C. T., Koumetio, F., and Manguelle-Dicoum, E. (2010). Structural features of South-Adamawa (Cameroon) inferred from magnetic anomalies: Hydrogeological implications. Comptes Rendus Geoscience, 342, 467–474.CrossRefGoogle Scholar
Olhoeft, G. R. (1985). Low-frequency electrical properties. Geophysics, 50, 2492–2503.CrossRefGoogle Scholar
Olhoeft, G. R. (1986). Direct detection of hydrocarbon and organic chemicals with ground penetrating radar and complex resistivity. In Proceedings of the NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water. Worthington, OH: National Water Well Association, pp. 284–305.Google Scholar
Paillet, F. L. and Ellefsen, K. J. (2005). Downhole applications of geophysics. In Near-Surface Geophysics, ed. Butler, D. W.. Tulsa, OK: Society of Exploration Geophysicists Press, pp. 439–471.CrossRefGoogle Scholar
Paine, J. G. (2003). Determining salinization extent, identifying salinity sources, and estimating chloride mass using surface, borehole, and airborne electromagnetic induction methods. Water Resources Research, 39, 2001WR000710.CrossRefGoogle Scholar
Painter, S. (1996). Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations. Water Resources Research, 32, 1183–1195.CrossRefGoogle Scholar
Pape, H., Riepe, L., and Schopper, J. R. (1987). Interlayer conductivity of rocks – a fractal model of interface irregularities for calculating interlayer conductivity of natural porous mineral systems. Colloids and Surfaces, 27, 97–122.CrossRefGoogle Scholar
Parasnis, D. S. (1997). Principles of Applied Geophysics, 5th edn. London: Chapman and Hall.Google Scholar
Park, C. B., Miller, R. D., and Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64, 800–808.CrossRefGoogle Scholar
Park, C. B., Miller, R. D., and Xia, J. (1998). Imaging dispersion curves of surface waves on multi-channel record. SEG Expanded Abstracts, 1377–1380.Google Scholar
Parker, R. L. (1994). Geophysical Inverse Theory. Princeton, NJ: Princeton University Press.Google Scholar
Parsons, R. (1990). Electrical double layer: recent experimental and theoretical developments. Chemical Reviews, 90, 813–826.CrossRefGoogle Scholar
Pasion, L. R. (2007). Inversion of time domain electromagnetic data for the detection of unexploded ordnance. PhD Thesis, University of British Columbia.
Passalacqua, H. (1983). Electromagnetic fields due to a thin resistive layer. Geophysical Prospecting, 31, 945–976.CrossRefGoogle Scholar
Passaro, S. (2010). Marine electrical resistivity tomography for shipwreck detection in very shallow water: a case study from Agropoli (Salerno, southern Italy). Journal of Archaeological Science, 37, 1989–1998.CrossRefGoogle Scholar
Paul, M. K. (1965). Direct interpretation of self-potential anomalies caused by inclined sheets of infinite horizontal extensions. Geophysics, 30, 418–423.CrossRefGoogle Scholar
Pellerin, L. (2002). Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surveys in Geophysics, 23, 101–132.CrossRefGoogle Scholar
Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R., and Nelson, P. H. (1978). Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics, 43, 588–609.CrossRefGoogle Scholar
Petiau, G. (2000). Second generation of lead–lead chloride electrodes for geophysical applications. Pure and Applied Geophysics, 157, 357–382.CrossRefGoogle Scholar
Phillips, R. J., Zuber, M. T., Smrekar, S. E, Mellon, M. T., et al. (2008). Mars north polar deposits: stratigraphy, age and geodynamical response. Science, 320, 1182–1185.CrossRefGoogle ScholarPubMed
Poddar, M. (1983). A rectangular loop source of current on multilayered Earth. Geophysics, 48, 107–109.CrossRefGoogle Scholar
Polak, E. (1971). Computational Methods in Optimization. San Diego, CA: Academic Press.Google Scholar
Pride, S. R. (1994). Governing equations for the coupled electromagnetics and acoustics of porous media. Physical Review B, 50, 15678–15696.CrossRefGoogle ScholarPubMed
Pride, S. R., Berryman, J. G., and Harris, J. M. (2004). Seismic attenuation due to wave-induced flow. Journal of Geophysical Research, 109, 2003JB002639.CrossRefGoogle Scholar
Radzevicius, S. J. and Daniels, J. J. (2000). Ground penetrating radar polarization and scattering from cylinders. Journal of Applied Geophysics, 45, 111–125.CrossRefGoogle Scholar
Ravat, D. (1996). Magnetic properties of unrusted steel drums from laboratory and field-magnetic measurements. Geophysics, 61, 1325–1357.CrossRefGoogle Scholar
Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., and Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55, 80–91.CrossRefGoogle Scholar
Revil, A., Karaoulis, M., Johnson, T., and Kemna, A. (2012). Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal, 20, 617–658.CrossRefGoogle Scholar
Reynolds, J. M. (2011). An Introduction to Applied and Environmental Geophysics. New York, NY: Wiley-Blackwell.Google Scholar
Rice, C. L. and Whitehead, R. (1965). Electrokinetic flow in a narrow cylindrical capillary. Journal of Physical Chemistry, 69, 4017–4024.CrossRefGoogle Scholar
Richart, F. E., Hall, J. R., and Woods, R. D. (1970). Vibrations of Soils and Foundations. Englewood Cliffs, NJ: Prentice-Hall Inc.Google Scholar
Robinson, D. A. and Friedman, S. P. (2001). Effect of particle size distribution on the effective dielectric permittivity of saturated granular media. Water Resources Research, 37, 2000WR900227.CrossRefGoogle Scholar
Rodi, W. and Mackie, R. L. (2001). Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66, 174–187.CrossRefGoogle Scholar
Roest, W. R., and Pilkington, M. (1993). Identifying remanent magnetization effects in magnetic data. Geophysics, 58, 653–659.CrossRefGoogle Scholar
Romdhane, A., Grandjean, G., Brossier, R., et al. (2011). Shallow-structure characterization by 2D elastic full-waveform inversion. Geophysics, 76, R81–R93.CrossRefGoogle Scholar
Rosenblad, B. L., Bailey, J., Csontos, R., and van Arsdale, R. (2010). Shear wave velocities of Mississippi embayment soils from low frequency surface wave measurements. Soil Dynamics and Earthquake Engineering, 30, 691–701.CrossRefGoogle Scholar
Rucker, D. F., Loke, M. H., Levitt, M. T., and Noonan, G. E. (2010). Electrical-resistivity characterization of an industrial site using long electrodes. Geophysics, 75, WA95–WA104.CrossRefGoogle Scholar
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536.CrossRefGoogle Scholar
Ryden, N. and Park, C. B. (2006). Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra. Geophysics, 71, R49–R58.CrossRefGoogle Scholar
Ryu, J., Morrison, H. F., and Ward, S. H. (1970). Electromagnetic fields about a loop source of current. Geophysics, 35, 862–896.CrossRefGoogle Scholar
Saccorotti, G., Chouet, B., and Dawson, P. (2003). Shallow-velocity models at the Kilauea volcano, Hawaii, determined from array analyses of tremor wavefields. Geophysical Journal International, 152, 633–648.CrossRefGoogle Scholar
Santamarina, J. C., Rinaldi, V. A., Fratta, D., et al. (2005). A survey of elastic and electromagnetic properties of near-surface soils. In Near-Surface Geophysics, ed. Butler, D. K.. Tulsa, OK: Society of Exploration Geophysicists Press, pp. 71–88.CrossRefGoogle Scholar
Sassen, D. S. (2009). GPR methods for the detection and characterization of fractures and karst features: polarimetry, attribute extraction, inverse modeling and data mining techniques. Ph.D dissertation, Texas A&M University.
Sassen, D. S. and Everett, M. E. (2005). Multi-component ground penetrating radar for improved imaging and target discrimination. Proceedings of SAGEEP, 18, 11–20.Google Scholar
Sassen, D. S. and Everett, M. E. (2009). 3D Polarimetric GPR coherency attributes and full-waveform inversion of transmission data for characterizing of fractured rock. Geophysics, 74, J23–J34.CrossRefGoogle Scholar
Sato, M. and Mooney, H. M. (1960). The electrochemical mechanism of sulphide self-potentials. Geophysics, 25, 226–249.CrossRefGoogle Scholar
Sato, M. and Takahashi, K. (2012). ALIS deployment in Cambodia. Proceedings SPIE, 8357, 83571A.CrossRefGoogle Scholar
Scales, J. A. (1987). Tomographic inversion via the conjugate gradient method. Geophysics, 52, 179–185.CrossRefGoogle Scholar
Scales, J. A. and Snieder, R. (1997). To Bayes or not to Bayes?Geophysics, 62, 1045–1046.CrossRefGoogle Scholar
Schuster, G. T. (2010). Seismic Interferometry. Cambridge: Cambridge University Press.Google Scholar
Schwarzbach, C., Boerner, R. U., and Spitzer, K. (2005). Two-dimensional inversion of direct current resistivity data using a parallel, multi-objective genetic algorithm. Geophysical Journal International, 162, 685–695.CrossRefGoogle Scholar
Schwindt, P. D. D., Knappe, S., Shah, V., et al. (2004). Chip-scale atomic magnetometer. Applied Physics Letters, 85, 6409–6411.CrossRefGoogle Scholar
Seber, G. A. F. and Wild, C. J. (2003). Nonlinear Regression. Hoboken, NJ: Wiley–Interscience.Google Scholar
Segall, P. (1989). Earthquakes triggered by fluid extraction. Geology, 17, 942–946.2.3.CO;2>CrossRefGoogle Scholar
Segall, P., Grasso, J. R., and Mossop, A. (1994). Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France. Journal of Geophysical Research, 99, 15423–15438.CrossRefGoogle Scholar
Sein, J. J. (1982). Derivation of the laws of reflection and refraction by Huygens’ construction. American Journal of Physics, 50, 180–181.CrossRefGoogle Scholar
Selvan, K. T. (2009). A revisiting of scientific and philosophical perspectives on Maxwell’s displacement current. IEEE Antennas and Propagation Magazine, 51, 36–46.CrossRefGoogle Scholar
Sen, M. K. and Stoffa, P. L. (2013). Global Optimization Methods in Geophysical Inversion, 2nd edn. Amsterdam: Elsevier.CrossRefGoogle Scholar
Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, NJ: Princeton University Press.Google Scholar
Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H. (2005). High-resolution surface wave tomography from ambient seismic noise. Science, 307, 1615–1618.CrossRefGoogle ScholarPubMed
Sharma, P. V. (1997). Environmental and Engineering Geophysics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shuey, R. T. (1985). A simplification of the Zoeppritz equations. Geophysics, 50, 609–614.CrossRefGoogle Scholar
Simpson, F. and Bahr, K. (2005). Practical Magnetotellurics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Slater, L. (2007). Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries – a review. Surveys in Geophysics, 28, 169–197.CrossRefGoogle Scholar
Slater, L., Knight, R., Singha, K., Binley, A., and Atekwana, E. (2006a). Near-surface geophysics: A new focus group. Eos, 87, 249–250.CrossRefGoogle Scholar
Slater, L., Ntarlagiannis, D., and Wishart, D. (2006b). On the relationship between induced polarization and surface area in metal–sand and clay–sand mixtures. Geophysics, 71, A1–A5.CrossRefGoogle Scholar
Slichter, C. P. (1996). Principles of Magnetic Resonance, 3rd edn. Berlin: Springer.Google Scholar
Slob, E. and Wapenaar, K. (2008). Practical representations of electromagnetic interferometry for GPR applications: a tutorial. Near Surface Geophysics, 6, 391–402.CrossRefGoogle Scholar
Smith, L. (2001). An introduction to neural networks. See
Smythe, W. R. (1950). Static and Dynamic Electricity, 2nd edn. New York, NY: McGraw-Hill.Google Scholar
Socco, L. V. and Strobbia, C. (2004). Surface-wave method for near-surface characterization: a tutorial. Near-Surface Geophysics, 4, 165–185.Google Scholar
Socco, L. V., Foti, S., and Boiero, D. (2010). Surface-wave analysis for building near-surface velocity models – established approaches and new perspectives. Geophysics, 75, 75A83–75A102.CrossRefGoogle Scholar
Sogade, J. A., Scira-Scappuzzo, F., Vichabian, Y., et al. (2006). Induced-polarization detection and mapping of contaminant plumes. Geophysics, 71, B75–B84.CrossRefGoogle Scholar
Song, L. P. and Zhang, S. Y. (1999). Singular value decomposition-based reconstruction algorithm for seismic traveltime tomography. IEEE Transactions on Image Processing, 8, 1152–1154.CrossRefGoogle ScholarPubMed
Soupios, P. M., Kouli, M., Vallianatos, F., Vafidis, A., and Stavroulakis, G. (2007). Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Keritis basin in Chania (Crete – Greece). Journal of Hydrology, 338, 122–131.CrossRefGoogle Scholar
Spies, B. R. and Frischknecht, F. C. (1991). Electromagnetic sounding. In Electromagnetic Methods in Applied Geophysics, Volume 2, ed. Nabighian, M. N.. Tulsa, OK: Society of Exploration Geophysicists, pp. 285–425.CrossRefGoogle Scholar
Spitzer, R., Nitsche, F. O., and Green, A. G. (2001). Reducing source-generated noise in shallow seismic data using linear and hyperbolic τ–p transformations. Geophysics, 66, 1612–1621.CrossRefGoogle Scholar
Spitzer, R., Nitsche, F. O., Green, A. G., and Horstmeyer, H. (2003). Efficient acquisition, processing, and interpretation strategy for shallow 3D seismic surveying. Geophysics, 68, 1792–1806.CrossRefGoogle Scholar
Stein, S. and Wysession, M. (2003). An Introduction to Seismology, Earthquakes, and Earth Structure. Chichester: Wiley-Blackwell.Google Scholar
Stratton, J. A. (1941). Electromagnetic Theory. New York, NY: McGraw-Hill.Google Scholar
Streich, R. (2007). Accurate 3-D vector-imaging of ground-penetrating radar data based on exact-field radiation patterns. PhD thesis, ETH Zurich (Swiss Federal Institute of Technology).
Streich, R. and van der Kruk, J. (2007). Accurate imaging of multicomponent GPR data based on exact radiation patterns. IEEE Transactions on Geoscience and Remote Sensing, 45, 93–103.CrossRefGoogle Scholar
Streich, R., van der Kruk, J., and Green, A. G. (2007). Vector-migration of standard copolarized 3D GPR data. Geophysics, 72, J65–J75.CrossRefGoogle Scholar
Strobbia, C. and Cassiani, G. (2007). Multilayer ground-penetrating radar guided waves in shallow soil layers for estimating soil water content. Geophysics, 72, J17–J29.CrossRefGoogle Scholar
Stummer, P., Maurer, H., and Green, A. G. (2004). Experimental design: electrical resistivity data sets that provide optimum subsurface information. Geophysics, 69, 120–139.CrossRefGoogle Scholar
Szu, H. and Hartley, R. (1987). Fast simulated annealing. Physics Letters A, 122, 157–162.CrossRefGoogle Scholar
Tarantola, A. (2004). Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia, PA: Society for Industrial and Applied Mathematics.Google Scholar
Taylor, G. I. (1958). On the dissipation of eddies. In The Scientific Papers of Sir Geoffrey Ingram Taylor, Volume 2, ed. Batchelor, G. K.. Cambridge: Cambridge University Press, pp. 96–101.Google Scholar
Telford, W. M., Geldart, L. P., and Sheriff, R. E. (1990). Applied Geophysics, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Tezkan, B. (1999). A review of environmental applications of quasi-stationary electromagnetic techniques. Surveys in Geophysics, 20, 279–308.CrossRefGoogle Scholar
Thompson, A. H. and Gist, G. A. (1993). Geophysical applications of electrokinetic conversion. The Leading Edge, 12, 1169–1173.CrossRefGoogle Scholar
Thompson, D. T. (1982). EULDPH – a new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47, 31–37.CrossRefGoogle Scholar
Thomson, W. T. (1950). Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics, 21, 89–93.CrossRefGoogle Scholar
Tipler, P. A. and Mosca, G. (2007). Physics for Scientists and Engineers, 6th edn. New York: W. H. Freeman.Google Scholar
Tite, M. S. and Mullins, C. E. (1971). Enhancement of the magnetic susceptibility of soils on archaeological sites. Archaeometry, 13, 209–219.CrossRefGoogle Scholar
Titov, K., Komarov, V., Tarasov, V., and Levitski, A. (2002). Theoretical and experimental study of time domain-induced polarization in water-saturated sands. Journal of Applied Geophysics, 50, 417–433.CrossRefGoogle Scholar
Toole, F. E. (1986). Loudspeaker measurements and their relationship to listener preferences. Journal of the Audio Engineering Society, 34, 227–235; 323–348.Google Scholar
Topp, G. C., Davis, J. L., and Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16, 574–582.CrossRefGoogle Scholar
Tsui, F. and Matthews, S. L. (1997). Analytic modelling of the dielectric properties of concrete for subsurface radar applications. Construction and Building Materials, 11, 149–161.CrossRefGoogle Scholar
Ulrych, T. J., Sacchi, M. D., and Woodbury, A. (2001). A Bayes tour of inversion: a tutorial. Geophysics, 66, 55–69.CrossRefGoogle Scholar
Ultsch, A. (2005). Clustering with SOM: U*C. Proceedings, Workshop on Self-Organizing Maps, Paris, pp.75–82.
Unsworth, M. J., Lu, X., and Watts, M. D. (2000). CSAMT exploration at Sellafield: characterization of a potential radioactive waste disposal site. Geophysics, 65, 1070–1079.CrossRefGoogle Scholar
Vallee, M. A., Keating, P., Smith, R. S., and St-Hilaire, C. (2004). Estimating depth and model type using the continuous wavelet transform of magnetic data. Geophysics, 69, 191–199.CrossRefGoogle Scholar
van Dam, R. L., Nichol, S. L., Augustinus, P. C., et al. (2003). GPR stratigraphy of a large active dune on Parengarenga Sandspit, New Zealand. The Leading Edge, 22, 865–881.CrossRefGoogle Scholar
van Dam, R. L., Harrison, J. B. J., Hendrickx, J. M. H., et al. (2005). Mineralogy of magnetic soils at a UXO remediation site in Kaho’olawe Hawaii. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems 2005, Atlanta, GA.CrossRef
van der Baan, M. and Jutten, C. (2000). Neural networks in geophysical applications. Geophysics, 65, 1032–1047.CrossRefGoogle Scholar
van der Kruk, J. (2001). Three-dimensional imaging of multi-component ground penetrating radar data. PhD thesis, Technische Universiteit, Delft.
van der Kruk, J., Vereecken, H., and Jacob, R. W. (2009). Identifying dispersive GPR signals and inverting for surface wave-guide properties. The Leading Edge, 28, 1234–1239.CrossRefGoogle Scholar
van Eck, T., Goutbeek, F., Haak, H., and Dost, B. (2006). Seismic hazard due to small magnitude, shallow-source, induced earthquakes in The Netherlands. Engineering Geology, 87, 105–121.CrossRefGoogle Scholar
Vanhala, H., Soininen, H., and Kukkonen, I. (1992). Detecting organic chemical contaminants by spectral-induced polarization method in glacial till environment. Geophysics, 57, 1014–1017.CrossRefGoogle Scholar
Varian, R. (1962). Ground liquid prospecting method and apparatus. US Patent 3019383.Google Scholar
Viezzoli, A., Christiansen, A. V., Auken, E., and Sorensen, K. (2008). Quasi-3D modeling of airborne TEM data by spatially constrained inversion. Geophysics, 73, F105–F113.CrossRefGoogle Scholar
Vinegar, H. J. and Waxman, M. H. (1984). Induced polarization of shaly sands. Geophysics, 49, 1267–1287.CrossRefGoogle Scholar
von Hippel, A. R. (1954). Dielectrics and Waves. New York, NY: John Wiley & Sons.Google Scholar
von Toussaint, U. (2011). Bayesian inference in physics. Reviews of Modern Physics, 83, 943–999.CrossRefGoogle Scholar
Wadsworth, G. P., Robinson, E. A., Bryan, J. G., and Hurley, P. M. (1953). Detection of reflections on seismic records by linear operators. Geophysics, 18, 539–586.CrossRefGoogle Scholar
Wait, J. R. (1954). Mutual coupling of loops lying on the ground. Geophysics, 19, 290–296.CrossRefGoogle Scholar
Wang, B. (2006). 2D and 3D potential-field upward continuation using splines. Geophysical Prospecting, 54, 199–209.CrossRefGoogle Scholar
Wang, P. and Horwitz, M. H. (2007). Erosional and depositional characteristics of regional overwash deposits caused by multiple hurricanes. Sedimentology, 54, 545–564.CrossRefGoogle Scholar
Wangsness, R. K. (1986). Electromagnetic Fields, 2nd edn. New York, NY: John Wiley & Sons.Google Scholar
Wannamaker, P. E. (1997). Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, USA. Part II. Implications for CSAMT methodology. Geophysics, 62, 466–476.CrossRefGoogle Scholar
Ward, S. H. and Hohmann, G. W. (1988). Electromagnetic theory for geophysical applications. In Electromagnetic Methods in Applied Geophysics, Volume 1, ed. Nabighian, M. N.. Tulsa, OK: Society of Exploration Geophysicists, pp. 130–311.CrossRefGoogle Scholar
Wasscher, J. D. (1961) Note on four-point resistivity measurements on anisotropic conductors. Philips Research Reports, 16, 301–306.Google Scholar
Watson, K. A. and Barker, R. D. (1999). Differentiating anisotropy and lateral effects using azimuthal resistivity offset Wenner soundings. Geophysics, 64, 739–745.CrossRefGoogle Scholar
Waxman, M. H. and Smits, L. J. M. (1968). Electrical conductivities in oil-bearing shaly sands. Society of Petroleum Engineers Journal, 8, 107–122.CrossRefGoogle Scholar
Weichman, P. B., Lavely, E. M., and Ritzwoller, M. H. (2000). Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems. Physical Review E, 62, 1290–1312.CrossRefGoogle ScholarPubMed
West, G. F. and Macnae, J. C. (1991). Physics of the electromagnetic induction exploration method. In Electromagnetic Methods in Applied Geophysics, Volume 2, ed. Nabighian, M. N.. Tulsa, OK: Society of Exploration Geophysicists, pp. 5–46.CrossRefGoogle Scholar
West, L. J., Handley, K., Huang, Y., and Pokar, M. (2003). Radar frequency dielectric dispersion in sandstone: implications for determination of moisture and clay content. Water Resources Research, 39, 2001WR000923.CrossRefGoogle Scholar
Widess, M. B. (1973). How thin is a thin bed?Geophysics, 38, 1176–1180.CrossRefGoogle Scholar
Williams, K. H., Kemna, A., Wilkins, M. J., et al. (2009). Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation. Environmental Science & Technology, 43, 6717–6723.CrossRefGoogle ScholarPubMed
Worthington, P. F. (1993). The uses and abuses of the Archie equations, I: the formation factor–porosity relationship. Journal of Applied Geophysics, 30, 215–228.CrossRefGoogle Scholar
Wyllie, M. R. J., Gregory, A. R., and Gardner, G. H. F. (1958). An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, 23, 459–493.CrossRefGoogle Scholar
Xu, P. (1998). Truncated SVD methods for discrete linear ill-posed problems. Geophysical Journal International, 135, 505–514.CrossRefGoogle Scholar
Yao, H., Beghein, C., and van der Hilst, R. D. (2008). Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis – II. Crustal and upper mantle structure. Geophysical Journal International, 173, 205–219.CrossRefGoogle Scholar
Yilmaz, O. (2001). Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data. SEG Investigations in Geophysics Series, vol. 10. Tulsa, OK: Society of Exploration Geophysicists Press.CrossRefGoogle Scholar
Yu, L. and Edwards, R. N. (1992). The detection of lateral anisotropy of the ocean floor by electromagnetic methods. Geophysical Journal International, 108, 433–441.CrossRefGoogle Scholar
Zelt, C. A. and Barton, P. J. (1998). Three-dimensional seismic refraction tomography: a comparison of two methods applied to data from the Faroe basin. Journal of Geophysical Research, 103, 7187–7210.CrossRefGoogle Scholar
Zelt, C. A., Azaria, A., and Levander, A. (2006). 3D seismic refraction traveltime tomography at a groundwater contamination site. Geophysics, 71, H67–H78.CrossRefGoogle Scholar
Zeng, H. (2009). How thin is a thin bed? An alternative perspective. The Leading Edge, 28, 1192–1197.CrossRefGoogle Scholar
Zhou, W., Beck, B. F., and Stephenson, J. B. (1999). Investigation of groundwater flow in karst areas using component separation of natural potential measurements. Environmental Geology, 37, 19–25.Google Scholar
Zonge, K., Wynn, J., and Urquhart, S. (2005). Resistivity, induced polarization and complex resistivity. In Near-Surface Geophysics, ed. Butler, D. K.. Tulsa, OK: Society of Exploration Geophysicists Press, pp. 265–300.CrossRefGoogle Scholar
Zonge, K. L. and Hughes, L. J. (1991). Controlled source audio-frequency magnetotellurics. In Electromagnetic Methods in Applied Geophysics, Volume 2, ed. Nabighian, M. N.. Tulsa, OK: Society of Exploration Geophysicists, pp. 713–810.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mark E. Everett, Texas A & M University
  • Book: Near-Surface Applied Geophysics
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139088435.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mark E. Everett, Texas A & M University
  • Book: Near-Surface Applied Geophysics
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139088435.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mark E. Everett, Texas A & M University
  • Book: Near-Surface Applied Geophysics
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139088435.020
Available formats
×