Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-02T22:16:34.339Z Has data issue: false hasContentIssue false

Further reading and references

Published online by Cambridge University Press:  05 November 2011

Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Applebaum, S. W. and Heifetz, Y.Density-dependent physiological phase in insects. Ann. Rev. Entomol. 44 (1999), 317–41CrossRefGoogle ScholarPubMed
Blanckenhorn, W. U.Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly. Evolution 52 (1998), 1394–407CrossRefGoogle ScholarPubMed
Boonstra, R., Hik, D., Singleton, G. R. and Tinnikov, A.The impact of predator-induced stress on the snowshoe hare cycle. Ecological Monographs 68 (1998), 371–94CrossRefGoogle Scholar
Bromham, L. and Harvey, P. H.Behavioural ecology: naked mole-rats on the move. Curr. Biol. 6 (1996), 1082–3CrossRefGoogle ScholarPubMed
Cant, M. A.Social control of reproduction in banded mongooses. Anim. Behav. 59 (2000), 147–58CrossRefGoogle ScholarPubMed
Cichón, M.Evolution of longevity through optimal resource allocation. Proc. Royal Soc. Lond. B 264 (1997), 1383–8CrossRefGoogle Scholar
Cresswell, W. and McCleery, R.How great tits maintain synchronization of their hatch date with food supply in response to long-term variability in temperature. J. Anim. Ecol. 72 (2003), 356–66CrossRefGoogle Scholar
Denver, R. J.Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm. Behav. 31 (1997), 169–79CrossRefGoogle ScholarPubMed
Ferguson, M. W. J.Temperature of egg incubation determines sex in Alligator mississippiensis. Nature 296 (1982), 850–3CrossRefGoogle ScholarPubMed
Forchhammer, M. C., Clutton-Brock, T. H., Lindström, J. and Albon, S. D.Climate and population density induce long-term cohort variation in a northern ungulate. J. Anim. Ecol. 70 (2001), 721–9CrossRefGoogle Scholar
Goldman, B. D., Goldman, S. L., Lanz, T., Magaurin, A. and Maurice, A.Factors influencing metabolic rate in naked mole rats (Heterocephalus glaber).Physiol. Behav. 66 (1999), 447–59CrossRefGoogle ScholarPubMed
Janzen, F. J. and Morjan, C. L.Repeatability of microenvironment-specific nesting behaviour in a turtle with environmental sex determination. Anim. Behav. 62 (2001), 73–82CrossRefGoogle Scholar
Krebs, C. J., Boonstra, R., Boutin, S. and Sinclair, A. R. E.What drives the 10-year cycle of Snowshoe Hares? BioScience 51 (2001), 25–35CrossRefGoogle Scholar
*Lavers, C. Why Elephants have Big Ears: Understanding Patterns of Life on Earth. (Victor Gollanz, London, 2000)
Lee, T. M., Spears, N., Tuthill, C. R. and Zucker, I.Maternal melatonin treatment influences rates of neonatal development of meadow vole pups. Biol. Reprod. 40 (1989), 495–502CrossRefGoogle ScholarPubMed
Lee, T. M. and Zucker, I.Vole infant development is influenced perinatally by maternal photoperiodic history. Am. J. Physiol. 255 (1988), R831–8Google ScholarPubMed
Metcalfe, N. B. and Monaghan, P.Growth versus lifespan: perspectives from evolutionary ecology. Exp. Gerontol. 38 (2003), 935–40CrossRefGoogle ScholarPubMed
Miller, R. A., Harper, J. M., Dysko, R. C., Durkee, S. J. and Austad, S. N.Longer life spans and delayed maturation in wild-derived mice. Exp. Biol. Med. 227 (2002), 500–8CrossRefGoogle ScholarPubMed
Newman, R. A.Adaptive plasticity in amphibian metamorphosis. BioScience 42 (1992), 671–8CrossRefGoogle Scholar
Packer, C., Tatar, M., and Collins, A.Reproduction cessation in female mammals. Nature 392 (1998), 807–10CrossRefGoogle ScholarPubMed
Shine, R.Why is sex determined by nest temperature in many reptiles? Trends in Ecology and Evolution 14 (1999), 186–9CrossRefGoogle ScholarPubMed
Stefan, C. I. and Krebs, C. J.Reproductive changes in a cyclic population of snowshoe hares. Can. J. Zoology 79 (2001), 2101–8CrossRefGoogle Scholar
Stenseth, N. C., Falck, W., Bj⊘rnstad, O. N. and Krebs, C. J.Population regulation in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and lynx. Proc. Nat. Acad. Sci. (USA) 94 (1997), 5147–52CrossRefGoogle ScholarPubMed
*Weiner, J., The Beak of the Finch. A Story of Evolution in Our Time. (New York, NY: Alfred A. Knopf, Inc., 1994)
West, P. M. and Packer, C.Sexual selection, temperature, and the lion's mane. Science 297 (2002), 1339–43CrossRefGoogle ScholarPubMed
Williams, C. K. and Moore, R. J.Phenotypic adaptation and natural selection in the wild rabbit. Oryctolagus cuniculus, in Australia. J. Anim. Ecol. 58 (1989), 495–507CrossRefGoogle Scholar
Winterhalder, B. P.Canadian fur bearer cycles and Cree-Ojibway hunting and trapping practices. Am. Naturalist. 116 (1980), 870–9CrossRefGoogle Scholar
*Darwin, C. The Origin of Species by Means of Natural Selection. (London: John Murray, 1869)
*Darwin, C. The Descent of Man (with introduction by R. Dawkins), (London: Gibson Square Books 1871, 2003 edn.)
Dawkins, R. The Extended Phenotype, ed. R. Dawkins (Oxford: Oxford University Press, 1982)
*Dawkins, R. The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. (New York, NY: W. W. Norton & Company, 1986)
Futuyma, D. J. Evolutionary Biology, 3rd edn. (Boston, MA: Sinauer Associates, 1998)
Grant, B. R. and Grant, P. R.Evolution of Darwin's finches caused by a rare climatic event. Proc. R. Soc. Lond. B 251 (1993), 111–17CrossRefGoogle Scholar
Halder, G., Callaerts, P. and Gehring, W. J.New perspectives on eye evolution. Curr. Opin. Genet. Dev. 5 (1995), 602–9CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L.Evolution of ageing. Nature 270 (1977), 301–4CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. and Austad, S. N.Why do we age? Nature 408 (2000), 233–8CrossRefGoogle ScholarPubMed
Land, M. F.The evolution of eyes. Annu. Rev. Neurosci. 15 (1992), 1–29CrossRefGoogle ScholarPubMed
* Mayr, E. (2001). What Evolution Is, ed. E. Mayr (New York, NY: Basic Books)
McComb, K., Moss, C., Durant, S. M., Baker, L. and Sayialel, S.Matriarchs as repositories of social knowledge in African elephants. Science 292 (2001), 491–4CrossRefGoogle ScholarPubMed
Price, T. D., Qvarnström, A. and Irwin, D. E.The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. Lond. B. 270 (2003), 1433–40CrossRefGoogle ScholarPubMed
Schlichting, C. D. and Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective. (Boston, MA: Sinauer Associates, 1998)
Williams, G. C.Pleiotropy, natural selection, and the evolution of senescence. Evolution 11 (1957), 398–411CrossRefGoogle Scholar
Yokoyama, S.Molecular evolution of color vision in vertebrates. Gene 300 (2002), 69–78CrossRefGoogle ScholarPubMed
Cordain, L., Eaton, S. B., Miller, J. B., Mann, N. and Hill, K.The paradoxical nature of hunter–gatherer diets: meat-based, yet non-atherogenic. Eur. J. Clin. Nutr. 56 (2002), S42–52CrossRefGoogle ScholarPubMed
Cordain, L., Miller, J. B., Eaton, S. B. et al.Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter–gatherer diets. Am. J. Clin. Nutr. 71 (2000), 682–92CrossRefGoogle ScholarPubMed
*Diamond, J. Guns, Germs and Steel: A Short History of Everybody for the Last 13,000 Years. (London: Vintage, 1998)
Eaton, S. B.Paleolithic vs. modern diets: selected pathophysiological implications. Eur. J. Nutr. 39 (2000), 67–70CrossRefGoogle ScholarPubMed
Eaton, S. B. and Konner, M.Paleolithic nutrition. A consideration of its nature and current implications. N. Engl. J. Med. 312 (1985), 283–9CrossRefGoogle ScholarPubMed
Gagneux, P., Wills, C., Gerloff, U., et al.Mitochondrial sequences show diverse evolutionary histories of African hominoids. Pediatr. Res. 96 (1999), 5077–82Google ScholarPubMed
Hawkes, K., O'Connell, J. F., Jones, N. G. B., Alvarez, H. and Charnov, E. L.Grandmothering, menopause, and the evolution of human life histories. Proc. Nat. Acad. Sci. (USA) 95 (1998), 1336–9CrossRefGoogle ScholarPubMed
Kuzawa, C. W.Adipose tissue in human infancy and childhood: an evolutionary perspective. Yearbook of Physical Anthropology 41 (1998), 177–2093.0.CO;2-B>CrossRefGoogle Scholar
Mann, N.Dietary lean red meat and human evolution. Eur. J. Nutr. 39 (2000), 71–9CrossRefGoogle ScholarPubMed
Miller, J. C. B. and Colagiuri, S.The carnivore connection: dietary carbohydrate in the evolution of NIDDM. Diabetologia 37 (1994), 1280–6CrossRefGoogle ScholarPubMed
Promislow, D. E. L.Longevity and the barren aristocrat. Nature 396 (1998), 719–20CrossRefGoogle ScholarPubMed
* Ridley, M. Nature Via Nurture: Genes, Experience, and What Makes Us Human. (London: HarperCollins, 2003)
Shanley, D. P. and Kirkwood, T. B. L.Evolution of the human menopause. Bioessays 23 (2001), 282–73.0.CO;2-9>CrossRefGoogle ScholarPubMed
Sherman, P. W.The evolution of menopause. Nature 392 (1998), 759–61CrossRefGoogle ScholarPubMed
Speth, J. D. and Spielmann, K. A.Energy source, protein metabolism, and hunter–gatherer subsistence strategies. J. Anthropol. Archaeol. 2 (1983), 1–31CrossRefGoogle Scholar
Truswell, A. S. and Hansen, J. D. Medical research among the!Kung. In Kalahari Hunter–Gatherers. Studies of the!Kung San and Their Neighbors, ed. R. B. Lee and I. DeVore (Cambridge MA: Harvard University Press, 1976), pp. 168–95
Walker, A. R. P., Walker, B. F., and Adam, F.Nutrition, diet, physical activity, smoking, and longevity: from primitive hunter–gatherer to present passive consumer – how far can we go? Nutrition 19 (2003), 169–73CrossRefGoogle Scholar
Wells, J. C. K.Natural selection and sex differences in morbidity and mortality in early life. J. Theor. Biol. 202 (2000), 65–76CrossRefGoogle ScholarPubMed
*Wells, S. The Journey of Man: A Genetic Odyssey, ed. S. Wells (Princeton, NJ: Princeton University Press, 2003)
Westendorp, R. G. J. and Kirkwood, T. B. L.Human longevity at the cost of reproductive success. Nature 396 (1998), 743–6CrossRefGoogle ScholarPubMed
Bauman, D. E. and Currie, W. B.Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 63 (1980), 1514–29CrossRefGoogle ScholarPubMed
Beaconsfield, P., Birdwood, G. and Beaconsfield, R.The placenta. Sci. Am. 243 (1980), 80–9CrossRefGoogle ScholarPubMed
Bell, R. and O'Neill, M.Exercise and pregnancy: a review. Birth 21 (1994), 85–95CrossRefGoogle ScholarPubMed
Burton, G. J., Hempstock, J. and Jauniaux, E.Nutrition of the human fetus during the first trimester– a review. Placenta 22 (2001), S70–6CrossRefGoogle ScholarPubMed
Duggleby, S. L. and Jackson, A. A.Relationship of maternal protein turnover and lean body mass during pregnancy and birth length. Clin. Sci. 101 (2001), 65–72CrossRefGoogle ScholarPubMed
Georgiades, P., Ferguson-Smith, A. C. and Burton, G. J.Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23 (2002), 3–19CrossRefGoogle ScholarPubMed
Grieve, J. F.Prevention of gestational failure by high protein diet. J. Reprod. Med. 13 (1974), 170–4Google ScholarPubMed
Haig, D.Genetic conflicts in human pregnancy. Q. Rev. Biol. 68 (1993), 495–532CrossRefGoogle ScholarPubMed
Harman, C. R. and Menticoglou, S. M.Fetal surveillance in diabetic pregnancy. Curr. Opin. Obstet. Gynecol. 9 (1997), 83–90Google ScholarPubMed
Lacroix, M. C., Guibourdenche, J., Frendo, J. L., Muller, F. and Evain-Brion, D.Human placental growth hormone: a review. Placenta 23 (2002), S87–94CrossRefGoogle ScholarPubMed
Lotgering, F. K., Gilbert, R. D. and Longo, L. D.Exercise responses in pregnant sheep: oxygen consumption, uterine blood flow, and blood volume. J. Appl. Physiol. 55 (1983), 834–41CrossRefGoogle ScholarPubMed
Rondo, P. H., Ferreira, R. F., Nogueira, F.et al.Maternal psychological stress and distress as predictors of low birth weight, prematurity and intrauterine growth retardation. Eur. J. Clin. Nutr. 57 (2003), 266–72CrossRefGoogle ScholarPubMed
Sagawa, N., Yura, S., Itoh, H.et al.Role of leptin in pregnancy: a review. Placenta 23, Suppl. A. Trophoblast Res. 16 (2002), S80CrossRefGoogle ScholarPubMed
Brace, R. A, Hanson, M. A., and Rodeck, C. H., eds. Fetus and Neonate: Physiology and Clinical Applications. Vol. 4, Kidney and Body Fluids. (Cambridge: Cambridge University Press, 1988)
Gluckman, P. D. and Heymann, M. A. eds. Pediatrics and Perinatology: The Scientific Basis, 2nd edn. (London: Arnold, 1996)
Gunn, A. J. and Gluckman, D. The response of the fetal brain to asphyxia/ischaemia. In Fetal Medicine: Basic Science and Clinical Practice, ed. C. H. Rodeck and M. J. Whittle. (London: Churchill Livingstone, 1999), pp. 241–62
Hanson, M. A., Spencer, J. A. D. and Rodeck, C. H., eds. Fetus and Neonate: Physiology and Clinical Applications. Vol. 1, The Circulation. (Cambridge: Cambridge University Press, 1993)
Hanson, M. A., Spencer, J. A. D. and Rodeck, C. H., eds. Fetus and Neonate: Physiology and Clinical Applications. Vol. 2, Breathing. (Cambridge: Cambridge University Press, 1994)
Hanson, M. A., Spencer, J. A. D. and Rodeck, C. H., eds. Fetus and Neonate: Physiology and Clinical Applications. Vol. 3, Growth. (Cambridge: Cambridge University Press, 1995)
Liggins, G. C. (1994). The role of cortisol in preparing the fetus for birth. Reprod. Fertil. Dev. 6, 141–50CrossRefGoogle ScholarPubMed
*Nathanielsz, P. W., ed. Life in the Womb. (New York, NY: Promethean Press, 1999.)
Schwarz, R. H. and Jaffe, S., eds. Drug and Chemical Risks to the Fetus and Newborn (New York, NY: Alan R. Liss, Inc., 1980)
Walker, D. W., Hale, J. R. S., Fawcett, A. A. and Pratt, N. M.Cardiovascular responses to heat stress in late-gestation fetal sheep. Exp. Physiol. 80 (1995), 755–66CrossRefGoogle ScholarPubMed
Allen, W. R., Wilsher, S., Turnbull, C. et al. Influence of maternal size on placental, fetal and postnatal growth in the horse. I. Development in utero. Reproduction 123 (2002), 445–53
Bauer, M. K., Breier, B. H., Harding, J. E., Veldhuis, J. D. and Gluckman, P. D.The fetal somatotropic axis during long term maternal undernutrition in sheep: evidence for nutritional regulation in utero. Endocrinology 136 (1995), 1250–7CrossRefGoogle ScholarPubMed
Brooks, A. A., Johnson, M. R., Steer, P. J., Pawson, M. E. and Abdalla, H. I.Birth weight: nature or nuture? Early. Hum. Dev. 42 (1995), 29–35CrossRefGoogle ScholarPubMed
Jonge, L. V. H., Waller, G. and Stettler, N.Ethnicity modifies seasonal variations in birth weight and weight gain of infants. J. Nutr. 133 (2003), 1415–18CrossRefGoogle Scholar
Fowden, A. L.The role of insulin in prenatal growth. J. Dev. Physiol. 12 (1989), 173–82Google ScholarPubMed
Gluckman, P. D.The endocrine regulation of fetal growth in late gestation: the role of insulin-like growth factors. J. Clin. Endocrinol. Metab. 80 (1995), 1047–50Google ScholarPubMed
Gluckman, P. D.Endocrine and nutritional regulation of prenatal growth. Acta Paediatr. Suppl. 423 (1997a), 153–7CrossRefGoogle Scholar
Gluckman, P. D.Endocrine mechanisms and consequences of intrauterine growth retardation. Clin. Pediatr. Endocrinol. 6 (1997b), 135–40CrossRefGoogle Scholar
Gluckman, P. D., Breier, B. H., Oliver, M., Harding, J. and Bassett, N.Fetal growth in late gestation: a constrained pattern of growth. Acta Paediatr. Scand. Suppl. 367 (1990), 105–10CrossRefGoogle Scholar
Gluckman, P. D. and Harding, J. E. The regulation of fetal growth. In Human Growth: Basic and Clinical Aspects, ed. M. Hernandez and J. Argente (Amsterdam: Excepta Medica, 1992), pp. 253–60
Gluckman, P. D. and Harding, J. E.Nutritional and hormonal regulation of fetal growth-evolving concepts. Acta Paediatr. Suppl. 399 (1994), 60–3CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Harding, J. E.The physiology and pathophysiology of intrauterine growth retardation. Horm. Res. 48 (1997), Suppl. 1, 11–16CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Liggins, G. C. The regulation of fetal growth. In Fetal Physiology and Medicine, ed. R. W. Beard and P. W. Nathanielsz (New York and Basel: Marcel Dekker, 1984), pp. 511–58
Gluckman, P. D., Morel, P. C. H., Ambler, G. R.et al. Elevating maternal insulin-like growth factor-I in mice and rats alters the pattern of fetal growth by removing maternal constraint. J. Endocrinol. 134 (1992), R1–3CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Pinal, C.Maternal–placental–fetal interactions in the endocrine regulation of fetal growth: role of somatotrophic axes. Endocrine 19 (2002), 81–9CrossRefGoogle ScholarPubMed
Ha, J. C., Ha, R. R., Almasy, L., and Dyke, B. (2002). Genetics and caging type affect birth weight in captive pigtailed macaques (Macaca nemestrina). Am. J. Primatol. 56, 207–13CrossRefGoogle Scholar
Hales, C. N. and Ozanne, S. E.The dangerous road of catch-up growth. J. Physiol. 547 (2003), 1, 5–10CrossRefGoogle ScholarPubMed
Han, V. K. M. and Carter, A. M.Control of growth and development of the feto–placental unit. Curr. Opin. Pharmacol. 1 (2001), 632–40CrossRefGoogle ScholarPubMed
Harding, J. E. and Johnston, B. M.Nutrition and fetal growth. Reprod. Fertil. Dev. 7 (1995), 539–47CrossRefGoogle ScholarPubMed
Johnston, L. B., Clark, A. J. and Savage, M. O.Genetic factors contributing to birth weight. Arch. Dis. Child. Fetal Neonatal Edn. 86 (2002), F2–3Google ScholarPubMed
Milner, R. D. G. and Gluckman, P. D. The regulation of intrauterine growth. In Pediatrics and Perinatology: The Scientific Basis, ed. P. D. Gluckman and M. A. Heymann (London: Edward Arnold, 1996), pp. 284–9
Oliver, M. H., Harding, J. E., Breier, B. H., Evans, P. C., and Gluckman, D.Glucose but not a mixed amino acid infusion regulates plasma insulin-like growth factor-I concentrations in fetal sheep. Pediatr. Res. 34 (1993), 62–5CrossRefGoogle Scholar
Oliver, M. H., Harding, J. E., and Gluckman, P. D.Duration of maternal undernutrition in late gestation determines the reversibility of intrauterine growth restriction in sheep. Prenat. Neonat. Med. 6 (2001), 271–9Google Scholar
Ostlund, E., Bang, P., Hagenas, L., and Fried, G.Insulin-like growth factor I in fetal serum obtained by cordocentesis is correlated with intrauterine growth retardation. Hum. Reprod. 12 (1997), 840–4CrossRefGoogle ScholarPubMed
Owens, J. A.Endocrine and substrate control of fetal growth: placental and maternal influences and insulin-like growth factors. Reprod. Fertil. Dev. 3 (1991), 501–17CrossRefGoogle ScholarPubMed
Pardi, G., Marconi, A. M. and Cetin, I.Placental–fetal interrelationships in IUGR fetuses – a review. Placenta 23 (2002), Suppl. A, S136–S41CrossRefGoogle Scholar
Parks, J. S.The ontogeny of growth hormone sensitivity. Horm. Res. 55 (2001), 27–31Google ScholarPubMed
Rees, S., Bocking, A. D. and Harding, R.Structure of the fetal sheep brain in experimental growth retardation. J. Dev. Physiol. 10 (1998), 211–24Google Scholar
Robson, E. B. The genetics of birth weight. In Human Growth: Principles and Prenatal Growth, ed. F. Faulkner and J. M. Tanner (New York: Plenum, 1978), pp. 285–97
Smith, G. C. S., Stenhouse, E. J., Crossley, J. A.et al.Early-pregnancy origins of low birth weight. Nature 417 (2002), 916CrossRefGoogle ScholarPubMed
Spencer, N. and Logan, S.Social infuences on birth weight. Arch. Dis. Child. Neonatal Ed. 86 (2002), F6–7CrossRefGoogle Scholar
Stephenson, T. and Symonds, M. E.Maternal nutrition as a determinant of birth weight. Arch. Dis. Child. Neonatal Edn. 86 (2002), F4–6CrossRefGoogle ScholarPubMed
Tchirikov, M., Kertschanska, S., Sturenberg, H. J., and Schroder, H. J.Liver blood perfusion as a possible instrument for fetal growth regulation. Placenta 23 (2002), Suppl. A, S153–8CrossRefGoogle ScholarPubMed
Tchirikov, M., Rybakowski, C., Huneke, B. and Schroder, H. J.Blood flow through the ductus venosus in singleton and multifetal pregnancies and in fetuses with intrauterine growth retardation. Am. J. Obstet. Gynecol. 178 (1998), 943–9CrossRefGoogle ScholarPubMed
Themmen, A. P. N. and Verhoef-Post, M.LH receptor defects. Semin. Reprod. Med. 20 (2002), 199–204CrossRefGoogle ScholarPubMed
Wallace, J., Bourke, D., Da Silva, P. and Aitken, R.Nutrient partitioning during adolescent pregnancy. Reproduction 122 (2001), 347–57CrossRefGoogle ScholarPubMed
Wallace, J. M., Aitken, R. P. and Cheyne, M. A.Nutrient partitioning and fetal growth in rapidly growing adolescent ewes. J. Reprod. Fert. 107 (1996), 183–90CrossRefGoogle ScholarPubMed
Walton, A. and Hammond, J.The maternal effects on growth and conformation in Shire horse–Shetland pony crosses. Proc. Royal Soc. Lond. – Series B: Biol. Sci. 125 (1938), 311–35CrossRefGoogle Scholar
Wi, J. M. and Boersma, B.Catch-up growth: definition, mechanisms, and models. J. Pediatr. Endocrinol. Metab. 15 (2002), 1229–41Google Scholar
Black, R. E.Micronutrients in pregnancy. Br. J. Nutr. 85 (2001), Suppl.2, S193–7CrossRefGoogle ScholarPubMed
Bhutta, Z. A., Jackson, A. and Lumbiganon, P., eds. Nutrition as a preventive strategy against adverse pregnancy outcomes. The Journal of Nutrition (2003), 1589S–767
Centers for Disease Control. Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. MMWR 41 (1992) (RR14), 001
Erickson, J. D.Folic acid and prevention of spina bifida and anencephaly: 10 years after the U.S. Public Health Service recommendation. MMWR 51 (2002) (RR13), 1–3Google ScholarPubMed
Popkin, B. M.Nutrition in transition: the changing global nutrition challenge. Asia Pac. J. Clin. Nutr. 10 (2001), S13–18CrossRefGoogle ScholarPubMed
Smithells, R. W., Sheppard, S., Schorah, C. J.et al.Possible prevention of neural-tube defects by periconceptional vitamin supplementation. Lancet 1 (1980), 339–40CrossRefGoogle ScholarPubMed
Stewart, R. J. C., Preece, R. F. and Sheppard, H. G.Twelve generations of marginal protein deficiency. Br. J. Nutr. 33 (1975), 233–53CrossRefGoogle ScholarPubMed
Winick, M. and Noble, A.Cellular response in rats during malnutrition at various ages. J. Nutr. 89 (1966), 300–6CrossRefGoogle ScholarPubMed
Baehrecke, E. H.How death shapes life during development. Nature Rev. Mol. Cell Biol. 3 (2002), 79–87CrossRefGoogle ScholarPubMed
Campbell, K. H., McWhir, J., Ritchie, W. A. and Wilmut, I.Sheep cloned by nuclear transfer from a cultured cell line. Nature 380 (1996), 64–6CrossRefGoogle ScholarPubMed
Duke, R. C., Ojcius, D. M. and Young, J. D.Cell suicide in health and disease. Sci. Am. 275 (1996), 80–7CrossRefGoogle ScholarPubMed
Finch, C. E. and Kirkwood, T. B. L. Chance, Development, and Aging, ed. C. E. Finch and T. B. L. Kirkwood. (New York, NY: Oxford University Press, 2000), pp. 1–278
Greider, C. W. and Blackburn, E. H.Telomeres, telomerase and cancer. Sci. Am. 274 (1996), 92–7CrossRefGoogle ScholarPubMed
Kalter, H.Teratology in the 20th century. Environmental causes of congenital malformations in humans and how they were established. Neurotoxicol. Teratol. 25 (2003), 131–282CrossRefGoogle ScholarPubMed
Klip, H., Werloop, J., Gool, J. D.et al.Hypospadias in sons of women exposed to diethylstilbestrol in utero: a cohort study. Lancet 359 (2002), 1102–07CrossRefGoogle ScholarPubMed
Schwartz, R. H. and Jaffe, S. J. Drug and Chemical Risks to the Fetus and Newborn (New York, NY: Alan Liss, 1980)
West-Eberhard, M. J. Developmental Plasticity and Evolution. (New York, NY: Oxford University Press, 2003)
Avner, P. and Head, E.X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet. 2 (2001), 59–67CrossRefGoogle ScholarPubMed
Beutler, E.Glucose-6-phosphate dehydrogenase deficiency. New Engl. J. Med. 324 (1991), 169–74Google ScholarPubMed
Blott, S., Kim, J.-J., Moisio, S.et al.Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163 (2003), 253–66Google ScholarPubMed
Daniels, R., Zuccotti, M., Kinis, T., Serhal, P. and Monk, M.Xist expression in human oocytes and preimplantation embryos. Am. J. Hum. Genet. 61 (1997), 33–9CrossRefGoogle ScholarPubMed
Goto, T. and Monk, M.Regulation of X-chromosome inactivation in development in mice and humans. Microbiol. Mol. Biol. Rev. 62 (1998), 362–78Google ScholarPubMed
Haig, D. and Graham, C.Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64 (1991), 1045–6Google ScholarPubMed
Hedborg, F., Holmgren, L., Sandstedt, B. and Ohlsson, R.The cell type-specific IGF2 expression during early human development correlates to the pattern of overgrowth and neoplasia in the Beckwith–Wiedemann syndrome. Am. J. Pathol. 145 (1994), 802–17Google ScholarPubMed
*Henig, R. M. A Monk and Two Peas: The Story of Gregor Mendel and the Discovery of Genetics. (Weidenfeld & Nicolson/Houghton Mifflin, 2000)
Hollon, T.Human genes: how many? The Scientist 15 (2001), 1Google Scholar
Jaenisch, R. and Bird, A.Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33 (2003), 245–54CrossRefGoogle ScholarPubMed
Miozzo, M. and Simoni, G.The role of imprinted genes in fetal growth. Biol. Neonate 81 (2002), 217–28CrossRefGoogle ScholarPubMed
Reik, W. and Maher, E. R.Imprinting in clusters: lessons from Beckwith–Wiedemann syndrome. Trends in Genetics 13 (1997), 330–4CrossRefGoogle ScholarPubMed
Sapienza, C.Parental imprinting of genes. Sci. Am. 263 (1990), 26–32CrossRefGoogle ScholarPubMed
The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72 (1993), 817–18
*Tudge, C. In Mendel's Footnotes, ed. C. Tudge (London: Vintage, 2002)
Waterland, R. A. and Garza, C.Potential mechanisms of metabolic imprinting that lead to chronic disease. Am. J. Clin. Nutr. 69 (1999), 179–97CrossRefGoogle ScholarPubMed
Waterland, R. A. and Jirtle, R. L.Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell Biol. 23 (2003), 5293–300CrossRefGoogle ScholarPubMed
Wolff, G. L., Kodell, R. L., Moore, S. R. and Cooney, C. A.Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 12 (1998), 949–57CrossRefGoogle ScholarPubMed
Agrawal, A. A., Laforsch, C. and Tollrian, R.Transgenerational induction of defences in animals and plants. Nature 401 (1999), 60–3CrossRefGoogle Scholar
Alekseev, V. and Lampert, W.Maternal control of resting-egg production inDaphnia. Nature 414 (2001), 899–901CrossRefGoogle ScholarPubMed
Bernardo, J.Maternal effects in animal ecology. Am. Zoology 36 (1996), 83–105CrossRefGoogle Scholar
Engh, A. L., Esch, K., Smale, L. and Holekamp, K. E.Mechanisms of maternal rank ‘inheritance’ in the spotted hyaena, Crocuta crocuta.Anim. Behav. 60 (2000), 323–32CrossRefGoogle ScholarPubMed
Herbst, A. L., Ulfelder, H. and Poskanzer, D. C.Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N. Engl. J. Med. 284 (1971), 878–81CrossRefGoogle ScholarPubMed
Kruuk, L. E. B., Clutton-Brock, T. H., Slate, J., et al. Heritability of fitness in a wild mammal population. Proc. Nat. Acad. Sci. 97 (2000), 698–703CrossRefGoogle Scholar
Lacey, E. P. What is an adaptive environmentally induced parental effect? In Maternal Effects as Adaptations, ed. T. A. Mousseau and C. W. Fox. (Oxford: Oxford University Press, 1998), pp. 54–66
Mousseau, T. A. and Fox, C. W., eds. Maternal Effects as Adaptations. (New York, NY: Oxford University Press, 1998.)
Pembrey, M. E.Time to take epigenetic inheritance seriously. Eur. J. Human Genetics 10 (2002), 669–71CrossRefGoogle ScholarPubMed
Rossiter, M. C.Incidence and consequences of inherited environmental effects. Annu. Rev. Ecol. System 27 (1996), 451–76CrossRefGoogle Scholar
Keller, G., Zimmer, G., Mall, G., Ritz, E. and Amann, K.Nephron number in patients with primary hypertension. New Engl. J. Med. 348 (2003), 101–8CrossRefGoogle ScholarPubMed
McNamara, J. J., Molot, M. A., Stremple, J. F. and Cutting, R. T.Coronary artery disease in combat casualties in Vietnam. JAMA 216 (1971), 1185–7CrossRefGoogle ScholarPubMed
Renaud, S. and Lorgeril, M.Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339 (1992), 1523–6CrossRefGoogle ScholarPubMed
Diamond, J.The double puzzle of diabetes. Nature 423 (2003), 599–602CrossRefGoogle ScholarPubMed
Groop, L. Genetics of the metabolic syndrome. Br. J. Nutr. 83 (2000), s39–48CrossRef
Hill, D. J. and Duvillie, B.Pancreatic development and adult diabetes. Pediatr. Res. 48 (2000), 269–74CrossRefGoogle ScholarPubMed
McIntyre, E. A. and Walker, M.Genetics of type 2 diabetes and insulin resistance: knowledge from human studies. Clin. Endocrinol. 57 (2002), 303–11CrossRefGoogle ScholarPubMed
Neel, J. V.The “thrifty genotype” in 1998. Nutr. Rev. 57 (1999), s2–9CrossRefGoogle Scholar
Pizzuti, A., Frittitta, L., Argiolas, A.et al. A polymorphism (K121Q) of the human glycoprotein PC-1 gene coding region is strongly associated with insulin resistance. Diabetes 48 (1999), 1881–4CrossRefGoogle ScholarPubMed
Plagemann, A., Harder, T., Kohlhoff, R., Rohde, W. and Dörner, G.Glucose tolerance and insulin secretion in children of mothers with pregestational IDDM or gestational diabetes. Diabetologia 40 (1997a), 1094–100CrossRefGoogle Scholar
Plagemann, A., Harder, T., Kohlhoff, R., Rohde, W. and Dörner, G.Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int. J. Obes. Relat. Metab. Disord. 21 (1997b), 451–6CrossRefGoogle Scholar
Pugliese, A. and Miceli, D.The insulin gene in diabetes. Diabetes. Metab. Res. Rev. 18 (2002), 13–25CrossRefGoogle ScholarPubMed
Reaven, G. M. and Laws, A. Insulin Resistance: The Metabolic Syndrome X, ed. G. M. Reaven and A. Laws. (Humana Press, 1999)
Reece, E. A. and Coustan, D. R., eds. Diabetes Mellitus in Pregnancy. (Churchill Livingstone Inc., 1995.)
Sobngwi, E., Boudou, P., Mauvais-Jarvis, F., et al. Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet 361 (2003), 1861–5CrossRefGoogle ScholarPubMed
Stanhope, J. M. and Prior, I. A.The Tokelau island migrant study: prevalence and incidence of diabetes mellitus. NZ Med. J. 92 (1980), 417–21Google ScholarPubMed
Björntorp, P.Thrifty genes and human obesity. Are we chasing ghosts? Lancet 358 (2001), 1006–8CrossRefGoogle ScholarPubMed
Bougnères, P.Genetics of obesity and type 2 diabetes. Diabetes 41 (2002), S295–303CrossRefGoogle Scholar
Bujalska, I. J., Kumar, S. and Stewart, P. M.Does central obesity reflect “Cushing's disease of the omentum”? Lancet 349 (1997), 1210–13CrossRefGoogle Scholar
Crescenzo, R., Samec, S., Antic, V.et al. A role for suppressed thermogenesis favoring catch-up fat in the pathophysiology of catch-up growth. Diabetes 52 (2003), 1090–7CrossRefGoogle ScholarPubMed
Cuthill, I. C., Maddocks, S. A., Weall, C. V. and Jones, E. K. M.Body mass regulation in response to changes in feeding predictability and overnight energy expenditure. Behav. Ecol. 11 (2000), 189–95CrossRefGoogle Scholar
Dulloo, A. G., Jacquet, J. and Montani, J. P.Pathways from weight fluctuations to metabolic diseases: focus on maladaptive thermogenesis during catch-up fat. Int. J. Obesity and Related Metab. Disorders 26 (2000), S46–57CrossRefGoogle Scholar
Friedman, J. M.The function of leptin in nutrition, weight, and physiology. Nutr. Rev. 60 (2002), S1–14CrossRefGoogle ScholarPubMed
Grinspoon, S., Gulick, T., Askari, H.et al. Serum leptin levels in women with anorexia nervosa. J. Clin. Endocrinol. Metab. 81 (1996), 3861–3Google ScholarPubMed
Jones, C. O. and White, N. G.Adiposity in aboriginal people from Arnhem Land, Australia: variation in degree and distribution associated with age, sex and lifestyle. Annals. Human. Biol. 21 (1994), 207–27CrossRefGoogle Scholar
Lee, R. B. The allocation of nutritional stress. In The!Kung San. Men, Women, and Work in a Foraging Society, ed. R. B. Lee. (Cambridge: Cambridge University Press, 1979), pp. 281–305
Lev-Ran, A.Human obesity: an evolutionary approach to understanding our bulging waistline. Diabetes Metab. Res. Rev. 17 (2001), 347–62CrossRefGoogle ScholarPubMed
Montague, C. T., Farooqi, I. S., Whitehead, J. P.et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387 (1997), 903–8CrossRefGoogle ScholarPubMed
Montague, C. T. and O'Rahilly, S.Perspectives in diabetes. The perils of portliness. Causes and consequences of visceral adiposity. Diabetes 49 (2000), 883–8CrossRefGoogle Scholar
Pond, C. M.Paracrine interactions of mammalian adipose tissue. J. Experimental Zoology 295A (2003), 99–110CrossRefGoogle Scholar
Schroeder, D. G., Martorell, R. and Flores, R.Infant and child growth and fatness and fat distribution in Guatemalan adults. Am. J. Epidemiol. 149 (1999), 177–85CrossRefGoogle ScholarPubMed
Wilmsen, E. N.Seasonal effects of dietary intake on Kalahari San. Federation Proc. 37 (1978), 65–72Google ScholarPubMed
Zhang, Y., Proenca, R., Maffei, M.et al.Positional cloning of the mouse obese gene and its human homologue. Nature 372 (1994), 425–32CrossRefGoogle ScholarPubMed
Zierath, J. R., Livingston, J. N., Thorne, A.et al. Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia 41 (1998), 1343–54CrossRefGoogle ScholarPubMed
Cooper, C., Cawley, M., Bhalla, A.et al. Childhood growth, physical activity, and peak bone mass in women. J. Bone Mineral Res. 10 (1995), 940–7CrossRefGoogle ScholarPubMed
Cooper, C., Eriksson, J. G., Forsen, T.et al. Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos. Int. 12 (2001), 623–9CrossRefGoogle ScholarPubMed
Cooper, C., Fall, C., Egger, P.et al. Growth in infancy and bone mass in later life. Ann. Rheum. Dis. 56 (1997), 17–21CrossRefGoogle ScholarPubMed
Cooper, C., Javaid, M. K., Taylor, P.et al. The fetal origins of osteoporotic fracture. Calcif. Tiss. Int. 70 (2002), 391–4CrossRefGoogle ScholarPubMed
Cooper, C., Walker-Bone, K., Arden, N. and Dennison, E.Novel insights into the pathogenesis of osteoporosis: the role of intrauterine programming. Rheumatology 39 (2000), 1312–15CrossRefGoogle ScholarPubMed
Geusens, P. P. M. M. and Boonen, S.Osteoporosis and the growth hormone-insulin-like growth factor axis. Horm. Res. 58 Suppl. 3 (2002), 49–55Google ScholarPubMed
Javaid, M. K. and Cooper, C.Prenatal and childhood influences on osteoporosis. Best Practice and Res. Clin. Endocrinol. Metab. 16 (2002), 349–67CrossRefGoogle ScholarPubMed
Wajchenberg, B. L.Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev. 21 (2000), 697–738CrossRefGoogle ScholarPubMed
Courchesne, E., Carper, R. and Akshoomoff, N.Evidence of brain overgrowth in the first year of life in autism. JAMA 290 (2003), 337–44CrossRefGoogle ScholarPubMed
Creswell, J., Fraser, R. P., Bruce, C., et al.Relationship between polycystic ovaries, body mass index and insulin resistance. Acta Obstet. Gynecol. Scand. 82 (2003), 61–4CrossRefGoogle Scholar
Gale, C. R., O'Callaghan, F. J., Godfrey, K. M., Law, C. M., Martyn, C. N.Critical periods of brain growth and cognitive function in children. Brain 127 (2004), 321–9CrossRefGoogle ScholarPubMed
Gale, C. R., Walton, S., Martyn, C. N.Fetal and postnatal head growth and risk of cognitive decline in old age. Brain 126 (2003), 2273–8CrossRefGoogle ScholarPubMed
Hill, E. L. and Frith, U.Understanding autism: insights from mind and brain. Phil. Trans. R. Soc. Lond. B 358 (2003), 281–9CrossRefGoogle ScholarPubMed
Shibata, Y., Yamashita, S., Masyakin, V. B., Panasyuk, G. D. and Nagataki, S.15 years after Chernobyl: new evidence of thyroid cancer. Lancet 358 (2001), 1965–6CrossRefGoogle ScholarPubMed
Vila, M. and Przedborski, S.Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci. 4 (2003), 365–75CrossRefGoogle ScholarPubMed
Aplin, J.Maternal influences on placental development. Seminars in Cell & Dev. Biol. 11 (2000), 115–25CrossRefGoogle ScholarPubMed
*Barker, D. The Best Start in Life. (London: Arrow 2003.)
Barker, D. J., Gluckman, P. D., Godfrey, K. M.et al.Fetal nutrition and cardiovascular disease in adult life. Lancet 341 (1993), 938–41CrossRefGoogle ScholarPubMed
Barker, D. J. P., ed. Fetal Origins of Cardiovascular and Lung Disease. (New York, NY: Marcel Dekker, Inc., 2001.)
Bertram, C., Hanson, M. A. Animal models and the programming of the metabolic syndrome. In Type 2 Diabetes: The Thrifty Phenotype, ed. D. J. P. Barker. Br. Med. Bull.60 (2001): 103–21
Bertram, C. E. and Hanson, M. A.Prenatal programming of postnatal endocrine responses by glucocorticoids. Repro. 124 (2002): 459–67CrossRefGoogle ScholarPubMed
Bloomfield, F. H. and Harding, J. E.Experimental aspects of nutrition and fetal growth. Fetal and Maternal Med. Rev. 10 (1998), 91–107CrossRefGoogle Scholar
Cianfarani, S., Geremia, C., Scott, C. D., and Germani, D. Growth, IGF system and cortisol in children with intrauterine growth retardation: is catch-up growth affected by reprogramming of the hypothalamic–pituitary–adrenal axis? Pediatr. Res. 51 (2002), 94–9CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Hanson, M. A.The developmental origins of the metabolic syndrome. Trends in Endocrinology and Metabolism (Hormones and the Heart Symposium) 15 (2004), 183–7CrossRefGoogle ScholarPubMed
Hales, C. N. and Barker, D. J.Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35 (1992), 595–601CrossRefGoogle ScholarPubMed
Hales, C. N. and Barker, D. J.The thrifty phenotype hypothesis. Br. Med. Bull. 60, 5 (2001), 20CrossRefGoogle ScholarPubMed
Hanson, M. A. and Gluckman, P. D.The effects of pre-natal nutrition on cardiovascular function in offspring: some insights from comparative biology. Havemeyer Foundation Monograph Series, No. 10 (2003a): 51–4Google Scholar
Hanson, M. A. and Gluckman, P. D.The human camel: the concept of predictive adaptive responses and the obesity epidemic. Pract. Diabetes Int. 20, 8 (2003b): 267CrossRefGoogle Scholar
Harding, J. E. and Gluckman, P. D. Growth, metabolic and endocrine adaptations to fetal undernutrition. In Fetal Origins of Cardiovascular Disease and Lung Disease. Lung Biology in Health and Disease, ed. D. J. P. Barker (New York, NY: Marcel Dekkar, 2001), pp. 181–97
Hoet, J. J. and Hanson, M. A.Intrauterine nutrition: its importance during critical periods for cardiovascular and endocrine development. J. Physiol. 514 (1999), 617–27CrossRefGoogle ScholarPubMed
Ingelfinger, J. R.Is microanatomy destiny? New Engl. J. Med. 348 (2003), 99–100CrossRefGoogle ScholarPubMed
Law, C. M.Significance of birth weight for the future. Arch. Dis. Child. Neonatal Edn. 86 (2002), F7–8CrossRefGoogle ScholarPubMed
Moritz, K. M., Dodic, M. and Wintour, E. M.Kidney development and the fetal programming of adult disease. Bioessays 25, 3(2003), 212–20CrossRefGoogle ScholarPubMed
Robinson, R. The fetal origins of adult disease. BMJ 322 (2001), 375–6CrossRef
Silverman, B. L., Cho, N. H., Rizzo, T. A. and Metzger, B. E.Long-term effects of the intrauterine environment. Diabetes Care 21 (1998), B142–9Google ScholarPubMed
Wells, J. C. K.The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? J. Theor. Biol. 221 (2003), 143–61CrossRefGoogle ScholarPubMed
Wintour, E. M., Johnson, K., Koukoulas, I.et al. Programming the cardiovascular system, kidney and the brain: a review. Placenta 24 (2003), Suppl. A Trophoblast Res., S65–71CrossRefGoogle ScholarPubMed
Adair, L. S., Kuzawa, C. W., and Borja, J.Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation 104 (2001), 1034–9CrossRefGoogle ScholarPubMed
Anderson, P. and Doyle, L. W.Neurobehavioral outcomes in school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 289 (2003), 3264–72CrossRefGoogle ScholarPubMed
Barker, D. J. P.The foetal and infant origins of inequalities in health in Britain. J. Public Health Med. 13 (1991), 64–8Google ScholarPubMed
* Barker, D. J. P. Mothers, Babies and Health in Later Life. (Edinburgh: Churchill Livingstone, 1998.)
Barker, D. J. P.Intrauterine nutrition may be important. BMJ 318 (1999), 1477–8Google ScholarPubMed
Barker, D. J. P., Bull, A. R., Osmond, C. and Simmonds, S. J.Fetal and placental size and risk of hypertension in adult life. BMJ 301(1990), 259–62CrossRefGoogle ScholarPubMed
Barker, D. J. P., Eriksson, J. G., Forsén, T., and Osmond, C.Fetal origins of adult disease: strength of effects and biological basis. Int. J. Epidemiol. 31(2002), 1235–9CrossRefGoogle ScholarPubMed
Barker, D. J. P., Forsen, T., Eriksson, J. G., and Osmond, C.Growth and living conditions in childhood and hypertension in adult life: a longitudinal study. J. Hypertens. 20 (2002), 1951–6CrossRefGoogle ScholarPubMed
Barker, D. J. P., Forsen, T., Uutela, A., Osmond, C., and Eriksson, J. G.Size at birth and resilience to effects of poor living conditions in adult life: longitudinal study. BMJ 323 (2001), 1273–6CrossRefGoogle ScholarPubMed
Barker, D. J. P., Godfrey, K. M., Osmond, C., and Bull, A.The relation of fetal length, ponderal index and head circumference to blood pressure and the risk of hypertension in adult life. Paediatr. Perinatal Epidemiol. 6 (1992), 35–44CrossRefGoogle ScholarPubMed
Barker, D. J. P. and Lackland, D. T.Prenatal influences on stroke mortality in England and Wales. Stroke 34 (2003), 1598–602CrossRefGoogle ScholarPubMed
Barker, D. J. P., Osmond, C., Simmonds, S. J., and Weild, G. A.The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ 306 (1993), 422–6CrossRefGoogle ScholarPubMed
Barker, D. J. P., Winter, P. D., Osmond, C., Margetts, B. and Simmonds, S. J.Weight in infancy and death from ischaemic heart disease. Lancet 2 (8663) (1989), 577–80CrossRefGoogle ScholarPubMed
Barker, M., Robinson, S., Osmond, C. and Barker, D. J. P.Birth weight and body fat distribution in adolescent girls. Arch. Dis. Child. 77 (1997), 381–3CrossRefGoogle ScholarPubMed
Bavdekar, A., Yajnik, C. S., Fall, C. H.et al.Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes 48 (1999), 2422–9CrossRefGoogle Scholar
Bolt, R. J., Weissenbruch, M. M., Popp-Snijdeers, C. et al.Fetal growth and the function of the adrenal cortex in preterm infants. J. Clin. Endocrinol. Metab. 87 (2002), 1194–9CrossRefGoogle ScholarPubMed
Brenner, B. M. and Chertow, G. M.Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am. J. Kidney Dis. 23 (1994), 171–5CrossRefGoogle ScholarPubMed
Brenner, B. M., Garcia, D. L., and Anderson, S.Glomeruli and blood pressure: less of one, more of the other? Am. J. Hypertens. 1 (1988), 335–47CrossRefGoogle ScholarPubMed
Campbell, D. M., Hall, M. H., Barker, D. J.et al. Diet in pregnancy and the offspring's blood pressure 40 years later. Br. J. Obstet. Gynaecol. 103 (1996), 273–80CrossRefGoogle ScholarPubMed
Cho, N., Silverman, B. L., Rizzo, T. A. and Metzger, B. E.Correlations between the intrauterine metabolic environment and blood pressure in adolescent offspring of diabetic mothers. J. Pediatr. 136 (2000), 587–92CrossRefGoogle ScholarPubMed
Chotai, J., Forsgren, T., Nilsson, L.-G. and Adolfsson, R.Season of birth variations in the temperament and character inventory of personality in a general population. Neuropsychobiol. 44 (2001), 19–26CrossRefGoogle Scholar
Chotai, J. and Salander-Renberg, E.Season of birth variations in suicide methods in relation to any history of psychiatric contacts support an independent suicidality trait. J. Affect. Disorder. 69 (2002), 69–81CrossRefGoogle ScholarPubMed
Clark, P. M., Atton, C., Law, C. M.et al.Weight gain in pregnancy, triceps skinfold thickness, and blood pressure in offspring. Obstet. Gynecol. 91 (1998), 103–7CrossRefGoogle ScholarPubMed
Cresswell, J. L., Egger, P., Fall, C. H. D.et al. Is the age of menopause determined in-utero? Early Hum. Dev. 49 (1997), 143–8CrossRefGoogle ScholarPubMed
Doblhammer, G. and Vaupel, J. W.Lifespan depends on month of birth. Proc. Natl. Acad. Sci. 98 (2001a), 2934–9CrossRefGoogle Scholar
dos Santos Silva, I., Stavola, B. L., Mann, V.et al. Prenatal factors, childhood growth trajectories and age at menarche. Int. J. Epidemiol. 31 (2002), 405–12CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C. and Barker, D. J. P.Early growth, adult income, and risk of stroke. Stroke 31 (2000), 869–74CrossRefGoogle ScholarPubMed
Eriksson, J., Forsén, T., Tuomilehto, J., Osmond, C., and Barker, D.Size at birth, childhood growth and obesity in adult life. Int. J. Obesity 25 (2001a), 735–40CrossRefGoogle Scholar
Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C. and Barker, D. J.Early growth and coronary heart disease in later life: longitudinal study. BMJ 322 (2001b), 949–53CrossRefGoogle Scholar
Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C. and Barker, D. J.Early adiposity rebound in childhood and risk of Type 2 diabetes in adult life. Diabetologia 46 (2003), 190–4CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsén, T., Tuomilehto, J.et al.Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 318 (1999), 427–31CrossRefGoogle ScholarPubMed
Eriksson, J. G., Lindi, V., Uusitupa, M. et al.The effects of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 gene on insulin sensitivity and insulin metabolism interact with size at birth. Diabetes 51 (2002), 2321–4CrossRefGoogle ScholarPubMed
Eriksson, J. G., Osmond, C., Lindi, V. et al.Interactions between peroxisome proliferator-activated receptor gene polymorphism and birth length influence risk for type 2 diabetes. Diabetes Care 26 (2003), 2476–7CrossRefGoogle ScholarPubMed
Fall, C. H., Barker, D. J., Osmond, C. et al.Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease. BMJ 304 (1992), 801–5CrossRefGoogle ScholarPubMed
Fall, C., Hindmarsh, P., Dennison, E. et al.Programming of growth hormone secretion and bone mineral density in elderly men – a hypothesis. J. Clin. Endocrinol. Metab. 83 (1998a), 135–9Google Scholar
Fall, C. H., Pandit, A. N., Law, C. M.et al.Size at birth and plasma insulin-like growth factor-1 concentrations in childhood. Arch. Dis. Childhood 73 (1995), 287–93CrossRefGoogle Scholar
Fall, C. H., Stein, C. E., Kumaran, K.et al.Size at birth, maternal weight, and Type 2 diabetes in South India. Diabetic Med. 15 (1998), 220–73.0.CO;2-O>CrossRefGoogle ScholarPubMed
Fewtrell, M. S., Doherty, C., Cole, T. J.et al.Effects of size at birth, gestational age and early growth in preterm infants on glucose and insulin concentrations at 9–12 years. Diabetologia 43 (2000), 714–17CrossRefGoogle ScholarPubMed
Flanagan, D. E., Vaile, J. C., Petley, G. W.et al.The autonomic control of heart rate and insulin resistance in young adults. J. Clin. Endocrinol. Metab. 84 (1999), 1263–7Google ScholarPubMed
Forrester, T. E., Wilks, R. J., Bennett, F. I. et al.Fetal growth and cardiovascular risk factors in Jamaican schoolchildren. BMJ 312 (1996), 156–60CrossRefGoogle ScholarPubMed
Forsdahl, A.Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br. J. Preventive Social. Med. 31 (1977), 91–5Google ScholarPubMed
Forsdahl, A.Living conditions in childhood and subsequent development of risk factors for arteriosclerotic heart disease. The cardiovascular survey in Finnmark 1974–75. J. Epidemiol. Community Health 32 (1978), 34–7CrossRefGoogle ScholarPubMed
Forsén, T., Eriksson, J. G., Tuomilehto, J., Osmond, C. and Barker, D. J. P.Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ 319 (1999), 1403–7CrossRefGoogle ScholarPubMed
Forsén, T., Eriksson, J., Tuomilehto, J. et al.The fetal and childhood growth of persons who develop type 2 diabetes. Ann. Intern. Med. 133 (2000), 176–82CrossRefGoogle ScholarPubMed
Forsén, T., Eriksson, J. G., Tuomilehto, J. et al.Mother's weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ 315 (1997), 837–40CrossRefGoogle Scholar
Gale, C. R., Martyn, C. N., Kellingray, S., Eastell, R. and Cooper, C.Intrauterine programming of adult body composition. J. Clin. Endocrinol. Metab. 86 (2001), 267–72Google ScholarPubMed
Gale, C. R., Walton, S. and Martyn, C. N.Foetal and postnatal head growth and risk of cognitive decline in old age. Brain 126 (2003), 2273–8CrossRefGoogle ScholarPubMed
Godfrey, K. M., Barker, D. J., Robinson, S. and Osmond, C.Maternal birthweight and diet in pregnancy in relation to the infant's thinness at birth. Br. J. Obstet. Gynaecol. 104 (1997), 663–7CrossRefGoogle ScholarPubMed
Godfrey, K., Robinson, S., Barker, D. J., Osmond, C. and Cox, V.Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 312 (1996), 410–14CrossRefGoogle ScholarPubMed
Hales, C. H., Barker, D. J., Clark, P. M. et al.Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303 (1991), 1019–22CrossRefGoogle ScholarPubMed
Hardy, R. and Kuh, D.Does early growth influence timing of the menopause? Evidence from a British birth cohort. Hum. Reprod. 17 (2002), 2474–9CrossRefGoogle ScholarPubMed
Hattersley, A. T., Beards, F., Ballantyne, E. et al.Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat. Genet. 19 (1998), 209–10CrossRefGoogle ScholarPubMed
Hilakivi-Clarke, L., Forsén, T., Eriksson, J. G. et al.Tallness and overweight during childhood have opposing effects on breast cancer risk. Br. J. Cancer 85 (2001), 1680–4CrossRefGoogle ScholarPubMed
Hofman, P. L., Cutfield, W. S., Robinson, E. M. et al.Insulin resistance in short children with intrauterine growth retardation. J. Clin. Endocrinol. Metab. 82 (1997), 402–6Google ScholarPubMed
Hokken-Koèlege, A. C. S.Timing of puberty and fetal growth. Best Practice and Res. Clin. Endocrinol. Metab. 16 (2002), 65–71CrossRefGoogle Scholar
Hultman, C. M., Sparén, P. and Cnattingius, S.Perinatal risk factors for infantile autism. Epidemiology 13 (2002), 417–23CrossRefGoogle ScholarPubMed
Huxley, R., Neil, A. and Collins, R.Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet 360 (2002), 659–65CrossRefGoogle ScholarPubMed
Ibáñez, L., Ferrer, A., Marcos, M. V., Hierro, F. R. and Zegher, F.Early puberty: rapid progression and reduced final height in girls with low birth weight. Pediatrics 106 (2000), 72–4CrossRefGoogle ScholarPubMed
Ibanez, L., Potau, N., Enriquez, G. and Zegher, F.Reduced uterine and ovarian size in adolescent girls born small for gestational age. Pediatr Res. 47 (2000), 575–7CrossRefGoogle ScholarPubMed
Ibáñez, L., Potau, N., Enriquez, G., Marcos, M. V. and DeZegher, F.Hypergonadotrophinaemia with reduced uterine and ovarian size in women born small-for-gestational-age. Hum. Reprod. 18 (2003), 1565–9CrossRefGoogle ScholarPubMed
Ibanez, L., Ong, K. K., Mongan, N. et al.Androgen receptor gene CAG repeat polymorphism in the development of ovarian hyperandrogenism. J. Clin. Endocrinol. Metab. 88 (2003), 3333–8CrossRefGoogle ScholarPubMed
Ibanez, L., Valls, C., Potau, N., Marcos, M. V. and Zegher, F.Polycystic ovary syndrome after precocious pubarche: ontogeny of the low-birthweight effect. Clin. Endocinol. 55 (2001), 667–72CrossRefGoogle ScholarPubMed
Ijzerman, R. G., Stehouwer, C. D., Geus, E. J. et al.Low birth weight is associated with increased sympathetic activity: dependence on genetic factors. Circulation 108 (2003), 566–71CrossRefGoogle ScholarPubMed
Jaquet, D., Tregouet, D. A., Godefroy, T. et al.Combined effects of genetic and environmental factors on insulin resistance associated with reduced fetal growth. Diabetes 51 (2002), 3473–8CrossRefGoogle ScholarPubMed
Jefferis, B. J. M. H., Power, C. and Hertzman, C.Birth weight, childhood socioeconomic environment, and cognitive development in the 1958 British birth cohort study. BMJ 325 (2002), 305–11CrossRefGoogle ScholarPubMed
Kaati, G., Bygren, L. O. and Edvinsson, S.Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur. J. Hum. Genet. 10 (2002), 682–8CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Perel, J.et al.The corticotropin-releasing hormone challenge in depressed abused, depressed nonabused, and normal control children. Biol. Psychiatry 42 (1997), 669–79CrossRefGoogle ScholarPubMed
Keen, R. W., Egger, P., Fall, C.et al.Polymorphisms of the vitamin D receptor, infant growth, and adult bone mass. Calcif. Tissue Int. 60 (1997), 233–5CrossRefGoogle ScholarPubMed
Kiserud, T.Liver length in the small-for-gestational-age fetus and ductus venosus flow. Am. J. Obstet. Gynecol. 182 (2000), 252–3CrossRefGoogle ScholarPubMed
Koziel, S. and Jankowska, E. A.Effect of low versus normal birthweight on menarche in 14-year-old Polish girls. J. Paediatr. Child Health 38 (2002), 268–71CrossRefGoogle ScholarPubMed
Kuh, D., Bassey, J., Hardy, R.et al.Birth weight, childhood size, and muscle strength in adult life: evidence from a birth cohort study. Am. J. Epidemiol. 156 (2002), 627–33CrossRefGoogle ScholarPubMed
Law, C. M., Swiet, M., Osmond, C.et al.Initiation of hypertension in utero and its amplification throughout life. BMJ 306 (1993), 24–7CrossRefGoogle ScholarPubMed
Law, C. M., Egger, P., Dada, O.et al.Body size at birth and blood pressure among children in developing countries. Int. J. Epidemiol. 30 (2001), 52–7CrossRefGoogle ScholarPubMed
Law, C. M., Shiell, A. W., Newsome, C. A.et al.Fetal, infant, and childhood growth and adult blood pressure: a longitudinal study from birth to 22 years of age. Circulation 105 (2002), 1088–92CrossRefGoogle ScholarPubMed
Limosin, F., Rouillon, F., Payan, C., Cohen, J. M. and Strub, N.Prenatal exposure to influenza as a risk factor for adult schizophrenia. Acta Psychiatr. Scand. 107 (2003), 331–5CrossRefGoogle ScholarPubMed
Lindsay, R. S., Bennett, P. H., Hanson, R. L. and Knowler, W. C.Secular trends in birth weight, BMI, and diabetes in the offspring of diabetic mothers. Diabetes Care 23 (2000), 1249–54CrossRefGoogle ScholarPubMed
Lucas, A. (1991). Programming by early nutrition in man. In The Childhood Environment, and Adult Disease, ed. G. R. Bock and J. Whelan (Chichester: John Wiley), pp. 38–55
Lucas, A., Morley, R. and Cole, T. J.Randomised trial of early diet in preterm babies and later intelligence quotient. BMJ 317 (1998), 1481–7CrossRefGoogle ScholarPubMed
Lumey, L. H. (1992). Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944–1945. Paediatr. Perinatal Epidemiol. 6, 240–53CrossRefGoogle ScholarPubMed
Lurbe, E., Torro, I., Rodriguez, C., Alvarez, V. and Redon, J.Birth weight influences blood pressure values and variability in children and adolescents. Hypertension 38 (2001), 389–93CrossRefGoogle ScholarPubMed
Mackenzie, H. S. and Brenner, B. M.Fewer nephrons at birth: a missing link in the etiology of essential hypertension? Am. J. Kidney Dis. 26 (1995), 91–8CrossRefGoogle ScholarPubMed
Martyn, C. N., Gale, C. R., Sayer, A. A. and Fall, C.Growth in utero and cognitive function in adult life: follow up study of people born between 1920 and 1943. BMJ 312 (1996), 1393–6CrossRefGoogle ScholarPubMed
Martyn, C. N. and Greenwald, S. E.A hypothesis about a mechanism for the programming of blood pressure and vascular disease in early life. Clin. Exp. Pharm. Physiol. 28 (2001), 948–51CrossRefGoogle ScholarPubMed
McAllister, A. S., Atkinson, A. B., Johnston, G. D. and McCance, D. R.Relationship of endothelial function to birth weight in humans. Diabetes Care 22 (1999), 2061–6CrossRefGoogle ScholarPubMed
McNeil, T. F., Cantor-Graae, E., Nordstrom, L. G. and Rosenlund, T.Head circumference in ‘preschizophrenic’ and control neonates. Br. J. Psychiatry 162 (1993), 517–23CrossRefGoogle ScholarPubMed
Mednick, S. A., Machon, R. A., Huttunen, M. O. and Bonett, D.Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiatry 45 (1988), 189–92CrossRefGoogle Scholar
Mi, J., Law, C., Zhang, K.-L. and Osmond, C.Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann. Intern. Med. 132 (2000), 253–60CrossRefGoogle Scholar
Moore, S. E., Cole, T. J., Collinson, A. C.et al.Prenatal or early postnatal events predict infectious deaths in young adulthood in rural Africa. Int. J. Epidemiol. 28 (1999), 1088–95CrossRefGoogle ScholarPubMed
Moore, V. M., Miller, A. G., Boulton, T. J. et al.Placental weight, birth measurements, and blood pressure at age 8 years. Arch. Dis. Childhood 74 (1996), 538–41CrossRefGoogle ScholarPubMed
Nilsson, P. M., Ostergen, P. O., Nyberg, P., Soderstrom, M. and Allebeck, P.Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149 378 Swedish boys. J. Hypertens. 15 (1997), 1627–31CrossRefGoogle Scholar
O'Keefe, M. J., O'Callaghan, M., Williams, G. M., Najman, J. M. and Bor, W.Learning, cognitive, and attentional problems in adolescents born small for gestational age. Pediatrics 112 (2003), 301–7CrossRefGoogle Scholar
Ong, K. K., Preece, M., Emmett, P. M., Ahmed, M. L. and Dunger, D. B.Size at birth and early chidhood growth in relation to maternal smoking, parity and infant breast-feeding: longitudinal birth cohort study and analysis. Pediatr. Res. 52 (2002), 863–7CrossRefGoogle Scholar
Osmond, C. and Barker, D. J. P.Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ. Health Perspect. 108 (2000), 545–53CrossRefGoogle ScholarPubMed
Osmond, C., Barker, D. J. P. and Slattery, J. M.Risk of death from cardiovascular disease and chronic bronchitis determined by place of birth in England and Wales. J. Epidemiol. Community Health 44 (1990), 139–41CrossRefGoogle ScholarPubMed
Palinski, W. and Napoli, C.Pathophysiological events during pregnancy influence the development of atherosclerosis in humans. Trends Cardiovasc. Med. 9 (1999), 205–14CrossRefGoogle ScholarPubMed
Pastrakuljic, A., Derewlany, L. O. and Koren, G.Maternal cocaine use and cigarette smoking in pregnancy in relation to amino acid transport and fetal growth. Placenta 20 (1999), 499–512CrossRefGoogle ScholarPubMed
Pettitt, D. J. and Knowler, W. C.Long-term effects of the intrauterine environment, birth weight, and breast-feeding in Pima Indians. Diabetes Care 21 (1998), B138–41Google ScholarPubMed
Phillips, D. I., Barker, D. J., Hales, C. N., Hirst, S. and Osmond, C.Thinness at birth and insulin resistance in adult life. Diabetologia 37 (1994), 150–4CrossRefGoogle ScholarPubMed
Phillips, D. I. W., Fall, C. H. D., Cooper, C. et al.Size at birth and plasma leptin concentrations in adult life. Int. J. Obesity 23 (1999), 1025–9CrossRefGoogle ScholarPubMed
Phillips, D. I. W., Handelsman, D. J., Eriksson, J. G.et al.Prenatal growth and subsequent marital status: longitudinal study. BMJ 322 (2001), 771CrossRefGoogle ScholarPubMed
Piven, J., Berthier, M. L., Starkstein, S. E.et al.Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. Am. J. Psychiatry 147 (1990), 734–9Google ScholarPubMed
Poulsen, P., Andersen, G., Fenger, M.et al.Impact on two common polymorphisms in the PPARgamma gene on glucose tolerance and plasma insulin profiles in monozygotic and dizygotic twins: thrifty genotype, thrifty phenotype, or both? Diabetes 52 (2003), 194–8CrossRefGoogle ScholarPubMed
Rao, S., Yajnik, C. S., Kanade, A.et al.Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune maternal nutrition study. J. Nutr. 131 (2001), 1217–24CrossRefGoogle ScholarPubMed
Ravelli, A. C. J.Meulen, J. H. P., Michels, R. P. J.et al.Glucose tolerance in adults after prenatal exposure to famine. Lancet 351 (1998), 173–7CrossRefGoogle Scholar
Ravelli, A. C., Meulen, J. H., Osmond, C., Barker, D. J. and Bleker, O. P.Obesity at the age of 50 y in men and women exposed to famine prenatally. Am. J. Clin. Nutr. 70 (1999), 811–16CrossRefGoogle Scholar
Rich-Edwards, J. W., Stampfer, M. J., Manson, J. E.et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 315 (1997), 396–400CrossRefGoogle Scholar
Roberts, A. B., Mitchell, J. M., McCowan, L. M. and Barker, S.Ultrasonographic measurement of liver length in the small-for-gestational-age fetus. Am. J. Obstet. Gynecol. 180 (1999), 634–8CrossRefGoogle ScholarPubMed
Rogers, I.The influence of birthweight and intrauterine environment on adiposity and fat distribution in later life. Int. J. Obesity 27 (2003), 755–77CrossRefGoogle ScholarPubMed
Sayer, A. A., Cooper, C. and Barker, D. J. P.Is lifespan determined in utero? Fetal and Neonatol. 77 (1997), F162–4CrossRefGoogle ScholarPubMed
Sayer, A. A. and Cooper, C.Early life effects on ageing. Nutrition and Ageing 6 (2002), 33–48CrossRefGoogle Scholar
Singhal, A., Fewtrel, M., Cole, T. J. and Lucas, A.Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 361 (2003), 1089–97CrossRefGoogle ScholarPubMed
Sorenson, H. T., Sabroe, S., Olsen, J.et al.Birth weight and cognitive function in young adult life: historical cohort study. BMJ 315 (1997), 401–3CrossRefGoogle Scholar
Sorenson, H. T., Thulstrum, A. M., Norgdard, B.et al.Fetal growth and blood pressure in a Danish population aged 31–51 years. Scand. Cardiovasc. J. 34 (2000), 390–5Google Scholar
Stanner, S. A., Bulmer, K., Andres, C.et al.Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. BMJ 315 (1997), 1342–8CrossRefGoogle ScholarPubMed
Stein, C. E., Fall, C. H., Kumaran, K.et al.Fetal growth and coronary heart disease in South India. Lancet 348 (1996), 1269–73CrossRefGoogle ScholarPubMed
Stevens, L. M. and Landis, S. C.Developmental interactions between sweat glands and the sympathetic neurons which innervate them: effects of delayed innervation on neurotransmitter plasticity and gland maturation. Dev. Biol. 130 (1988), 703–20CrossRefGoogle ScholarPubMed
Weindrich, D., Jennen-Steinmetz, C., Laucht, M. and Schmidt, M. H.Late sequelae of low birthweight: mediators of poor school performance at 11 years. Dev. Med. Child Neurol. 45 (2003), 463–9CrossRefGoogle ScholarPubMed
Weitz, G., Deckert, P., Heindl, S.et al.Evidence for lower sympathetic nerve activity in young adults with low birth weight. J. Hypertens. 21 (2003), 943–50CrossRefGoogle ScholarPubMed
Williams, J. H. G., Greenhalgh, K. D. and Manning, J. T.Second to fourth finger ratio and possible precursors of developmental psychopathology in preschool children. Early Hum. Dev. 72 (2003), 57–65CrossRefGoogle ScholarPubMed
Wohlfahrt, J., Melbye, M., Christens, P., Andersen, A.-M. N. and Hjalgrim, H.Secular and seasonal variation of length and weight at birth. Lancet. 352 (1998), 1990CrossRefGoogle ScholarPubMed
Yajnik, C. S., Coyaji, K. J., Joglekar, C. V., Kellingray, S. and Fall, C.Paternal insulin resistance and fetal growth: problem for the ‘fetal insulin’ and the ‘fetal origins’ hypotheses. Diabetologia 44 (2003a), 1197–201Google Scholar
Yajnik, C. S., Fall, C. H. D., Coyaji, K. J.et al.Neonatal anthropometry: the thin–fat Indian baby. The Pune maternal nutrition study. Int. J. Obesity 27 (2003b), 173–80CrossRefGoogle Scholar
Yajnik, C. S., Fall, C. H. D., Pandit, A. N.et al.Fetal growth and glucose and insulin metabolism in four-year-old Indian children. Diabetic Med. 12 (1995), 330–6CrossRefGoogle ScholarPubMed
Yajnik, C. S., Lubree, H. G., Rege, S. S.et al.Adiposity and hyperinsulinemia in Indians are present at birth. J. Clin. Endocrinol. Metab. 87 (2002), 5575–80CrossRefGoogle ScholarPubMed
Benediktsson, R., Lindsay, R. S., Noble, J., Seckl, J. R., Edwards, C. R.Glucocorticoid exposure in utero: new model for adult hypertension. Lancet 341 (1993), 339–41CrossRefGoogle ScholarPubMed
Bennis-Taleb, N., Remacle, C., Hoet, J. J. and Reusens, B.A low-protein isocaloric diet during gestation affects brain development and alters permanently cerebral cortex blood vessels in rat offspring. J. Nutr. 129 (1993), 1613–19CrossRefGoogle Scholar
Bertram, C. E. and Hanson, M. A.Animal models and programming of the metabolic syndrome. Br. Med. Bull. 60, 103–21CrossRef
Bloomfield, F. H., Oliver, M. H., Giannoulias, D.et al.Brief undernutrition in late-gestation sheep programmes the hypothalamic–pituitary adrenal axis in adult offspring. Endocrinology 144 (2003b), 2933–40CrossRefGoogle Scholar
Bloomfield, F. H., Oliver, M. H., Hawkins, P.et al.A periconceptual nutritional origin for non-infectious preterm birth. Science 300 (2003c), 606CrossRefGoogle Scholar
Brawley, L., Itoh, S., Torrens, C.et al.Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr. Res. 54(1) (2003): 83–90CrossRefGoogle ScholarPubMed
Brawley, L., Poston, L. and Hanson, M.Mechanisms underlying the programming of small artery dysfunction: review of the model using low protein diet in pregnancy in the rat. Arch. Physiol. Biochem. 111 (2003), 25–35CrossRefGoogle ScholarPubMed
Breier, B. H., Vickers, M. H., Ikenasio, B. A., Chan, K. Y. and Wong, W. P.Fetal programming of appetite and obesity. Mol. Cell. Endocrinol. 185 (2001), 73–9CrossRefGoogle ScholarPubMed
Burns, S. P., Desai, M., Cohen, R. D.et al.Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J. Clin. Invest. 100 (1997), 1768–74CrossRefGoogle ScholarPubMed
Challis, J. R., Sloboda, D., Matthews, S. G.et al.The fetal placental hypothalamic–pituitary–adrenal (HPA) axis, parturition and post natal health. Mol. Cell Endocrinol. 185 (2001), 135–44CrossRefGoogle ScholarPubMed
Chowen, J. A., Goya, L., Ramos, S.et al.Effects of early undernutrition on the brain insulin-like growth factor-1 system. J. Neuroendocrinol. 14 (2002), 163–9CrossRefGoogle Scholar
Christensen, L. W. and Gorski, R. A.Independent masculinization of neuroendocrine systems by intracerebral implants of testosterone or estradiol in the neonatal rat. Brain Res. 146 (1978), 325–40CrossRefGoogle ScholarPubMed
Cooney, C. A., Dave, A. A. and Wolff, G. L.Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr. 132 (2002), 2393S–400CrossRefGoogle ScholarPubMed
Davis, L., Roullet, J. B., Thornburg, K. L.et al.Augmentation of coronary conductance in adult sheep made anaemic during fetal life. J. Physiol. 547 (2003), 53–9CrossRefGoogle ScholarPubMed
Desai, M., Byrne, C. D., Zhang, J.et al.Programming of hepatic insulin-sensitive enzymes in offspring of rat dams fed a protein-restricted diet. Am. J. Physiol. 272 (1997), G1083–90Google ScholarPubMed
Dodic, M., May, C. N., Wintour, E. M. and Coghlan, J. P.An early prenatal exposure to excess glucocorticoid leads to hypertensive offspring in sheep. Clin. Sci. 94 (1998), 149–55CrossRefGoogle Scholar
Dodic, M., Peers, A., Coghlan, J. P.et al.Altered cardiovascular haemodynamics and baroreceptor-heart rate reflex in adult sheep after prenatal exposure to dexamethasone. Clin. Sci. 97 (1999), 103–9Google ScholarPubMed
Gardner, D. K., Pool, T. B. and Lane, M.Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation, and viability. Sem. Reprod. Med. 18 (2000), 205–18CrossRefGoogle ScholarPubMed
Gatford, K. L., Wintour, E. M., Blasio, M. J.et al.Differential timing for programming of glucose homoeostasis, sensitivity to insulin and blood pressure by in utero exposure to dexamethasone in sheep. Clin. Sci. 98 (2000), 553–60Google Scholar
Gotz, F., Stahl, F., Rohde, W. and Dorner, G.The influence of adrenaline on plasma testosterone in adult and newborn male rats. Exp. Clin. Endocrinol. 81 (1983), 239–44CrossRefGoogle ScholarPubMed
Hawkins, P., Hanson, M. A. and Matthews, S. G.Maternal undernutrition in early gestation alters molecular regulation of the hypothalamic–pituitary–adrenal axis in the ovine fetus. J. Neuroendocrinol. 13 (2001), 855–61CrossRefGoogle ScholarPubMed
Hawkins, P., Steyn, C., McGarrigle, H. H. G.et al.Cardiovascular and hypothalamic–pituitary–adrenal axis development in late gestation fetal sheep and young lambs following modest maternal nutrient restriction in early gestation. Reprod. Fertil. Dev. 12 (2001), 443–56CrossRefGoogle Scholar
Hoet, J. J., Ozanne, S. and Reusens, B.Influences of pre- and postnatal nutritional exposures on vascular/endocrine systems in animals. Environmental Health Perspectives 108 (2000), 563–8CrossRefGoogle ScholarPubMed
Jackson, A. A., Dunn, R. L., Marchand, M. C. and Langley-Evans, S. C.Increased systolic blood pressure in rats induced by maternal low-protein diet is reversed by dietary supplementation with glycine. Clin. Sci. 103 (2002), 633–9CrossRefGoogle ScholarPubMed
Khan, I. Y., Taylor, P. D., Dekou, V.et al.Gender-linked hypertension in offspring of lard fed pregnant rats. Hypertension 41 (2003), 168–75CrossRefGoogle ScholarPubMed
Khan I. Y., Hanson, M., Poston, L. and Tylor, P. Predictive adaptation to maternal high fat diet prevents endothelial dysfunction but not hypertension in adult rat offspring. Circulation (in press)
Kind, K. L., Clifton, P. M., Katsman, A. I., Tsiounis, M. and Owens, J. A.Restricted fetal growth and the response to dietary cholesterol in the guinea pig. Am. J. Physiol. 277 (1999), R1675–82Google ScholarPubMed
Kwong, W. Y., Wild, A. E., Roberts, P., Willis, A. C. and Fleming, T. P.Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127 (2000), 4195–202Google ScholarPubMed
Langley-Evans, S. C.Hypertension induced by foetal exposure to a maternal low-protein diet, in the rat, is prevented by pharmacological blockade of maternal glucocorticoid synthesis. J. Hypertens 15 (1997), 537–44CrossRefGoogle ScholarPubMed
Langley-Evans, S. C.Critical differences between two low protein diet protocols in the programming of hypertension in the rat. International Journal of Food Sciences and Nutrition 51 (2000), 11–17CrossRefGoogle ScholarPubMed
Lingas, R., Dean, F. and Matthews, S. G.Maternal nutrient restriction (48 h) modifies brain corticosteroid receptor expression and endocrine function in the fetal guinea pig. Brain Res. 846 (1999), 236–42CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Day, J. C., Francis, D. D. and Meaney, M. J.Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat. Neurosci. 3 (2000), 799–806CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Tannebaum, B.et al.Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science 277 (1997), 1659–62CrossRefGoogle ScholarPubMed
Lonergan, P., Rizos, D., Kanka, J.et al.Temporal sensitivity of bovine embryos to culture environment after fertilization and the implications for blastocyst quality. Reproduction 126, 337–46CrossRef
Mallard, C., Loeliger, M., Copolov, D. and Rees, S.Reduced number of neurons in the hippocampus and the cerebellum in the postnatal guinea-pig following intrauterine growth-restriction. Neuroscience 100 (2000), 327–33CrossRefGoogle ScholarPubMed
Mallard, E. C., Rehn, A., Rees, S., Tolcos, M. and Copolov, D.Ventriculomegaly and reduced hippocampal volume following intrauterine growth-restriction: implications for the aetiology of schizophrenia. Schizophr. Res. 40 (1999), 11–21CrossRefGoogle ScholarPubMed
Marchand, M. C. and Langley-Evans, S. C.Intrauterine programming of nephron number: the fetal flaw revisited. J. Nephrol. 14 (2001), 327–31Google ScholarPubMed
Mehta, G., Roach, H. I., Langley-Evans, S.et al.Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcified Tissue Int. 71 (2002), 493–8CrossRefGoogle ScholarPubMed
Merlet-Benichou, C., Gilbert, T., Muffat-Joly, M., Lelievre-Pegorier, M. and Leroy, B.Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr. Nephrol. 8 (1994), 175–80CrossRefGoogle ScholarPubMed
Miller, S. L., Green, L. R., Peebles, D. M., Hanson, M. A. and Blanco, C. E.Effects of chronic hypoxia and protein malnutrition on growth in the developing chick. Am. J. Obstet. Gynecol. 186, 2 (2002), 261–67CrossRefGoogle ScholarPubMed
Murotsuki, J., Challis, J. R., Han, V. K., Fraher, L. J. and Gagnon, R.Chronic fetal placental embolization and hypoxemia cause hypertension and myocardial hypertrophy in fetal sheep. Am. J. Physiol. 272 (1997), R201–7Google ScholarPubMed
Nishina, H., Green, L. R., McGarrigle, H. H.et al.Effect of nutritional restriction in early pregnancy on isolated femoral artery function in mid gestation fetal sheep. J. Physiol. 553 (2003), 637–47CrossRefGoogle ScholarPubMed
Ozaki, T., Nishina, H., Hanson, M. A. and Poston, L.Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J. Physiol. 530 (2001), 141–52CrossRefGoogle ScholarPubMed
Petrik, J., Reusens, B., Arany, E.et al.A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology 140 (1999), 4861–73CrossRefGoogle ScholarPubMed
Plagemann, A., Harder, T., Rake, A.et al.Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res. 836 (1999), 146–55CrossRefGoogle ScholarPubMed
Plagemann, A., Heidrich, I., Gotz, F., Rohde, W. and Dorner, G.Obesity and enhanced diabetes and cardiovascular risk in adult rats due to early postnatal overfeeding. Exp. Clin. Endocrinol. 99 (1992), 154–8CrossRefGoogle ScholarPubMed
Sayer, A. A., Dunn, R. and Langley-Evans, S.Prenatal exposure to a maternal low protein diet shortens life span in rats. Gerontology 47 (2001), 9–14CrossRefGoogle Scholar
Seckl, J. R.Glucocorticoids, feto-placenta 11 beta-hydroxysteroid dehydrogenase type 2, and the early life origins of adult disease. Steroids 62 (1997), 89–94CrossRefGoogle Scholar
Shiels, P. G., Kind, A. J., Campbell, K. H.et al.Analysis of telomere lengths in cloned sheep. Nature 399 (1999), 316–7CrossRefGoogle ScholarPubMed
Simmons, R. A., Templeton, L. G. and Gertz, S. J.Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 50 (2001), 2279–86CrossRefGoogle ScholarPubMed
Snoeck, A., Remacle, C., Reusens, B. and Hoet, J. J.Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol. Neonate. 57 (1990), 107–18CrossRefGoogle ScholarPubMed
Taylor, P. D., Khan, I. Y., Lakasing, L.et al.Uterine artery function in pregnant rats fed a diet supplemented with animal lard. Exp. Physiol. 88 (2003), 389–98CrossRefGoogle ScholarPubMed
Torrens, C., Brawley, L., Barker, A. C.et al.Maternal protein restriction in the rat impairs resistance but not conduit artery function in pregnant offspring. J. Physiol. 547 (2002), 77–84CrossRefGoogle Scholar
Vickers, M. H., Breier, B. H., Cutfield, W. S., Hofman, P. L. and Gluckman, P. D.Fetal origins of hyperphagia, obesity and hypertension and its postnatal amplification by hypercaloric nutrition. Am. J. Physiol. 279 (2000), E83–7Google ScholarPubMed
Vickers, M., Breier, B., McCarthy, D. and Gluckman, P.Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285 (2003), R271–3CrossRefGoogle ScholarPubMed
Vickers, M. H., Reddy, S., Ikenasio, B. A. and Breier, B. H.Dysregulation of the adipoinsular axis – a mechanism for the pathogenesis of hyperleptinemia and adipogenic diabetes induced by fetal programming. J. Endocrinol. 170 (2001), 323–32CrossRefGoogle Scholar
Weaver, I. C., Cervoni, N., D'Alessio, A. C. et al. Maternal behavior in infancy regulates methylation of the hippocampal glucocorticoid receptor promoter. 10th Annual Pharmacology Research Day, McGill University, Montreal, Quebec (2003a)
Weaver, I. C G., Cervoni, N., D'Alessio, A. C. et al. Transgenerational epigenomic imprinting by maternal behavior through DNA methylation. In press (2003b)
Welberg, L. A. M., Seckl, J. R. and Holmes, M. C.Inhibition of 11ß-hydroxysteroid dehydrogenase, the foeto–placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur. J. Neurosci. 12 (2000), 1047–54CrossRefGoogle Scholar
Welberg, L. A. M., Seckl, J. R. and Holmes, M. C.Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104 (2001), 71–9CrossRefGoogle ScholarPubMed
Woodall, S. M., Johnston, B. M., Breier, B. H. and Gluckman, P. D.Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatr. Res. 40 (1996), 438–43CrossRefGoogle ScholarPubMed
Zhang, J. and Byrne, C. D.Differential hepatic lobar gene expression in offspring exposed to altered maternal dietary protein intake. Am. J. Physiol. Gastrointest. Liver Physiol. 278 (2000), G128–36CrossRefGoogle ScholarPubMed
Applebaum, S. W. and Heifetz, Y.Density-dependent physiological phase in insects. Ann. Rev. Entomol. 44 (1999), 317–41CrossRefGoogle ScholarPubMed
Blanckenhorn, W. U.Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly. Evolution 52 (1998), 1394–407CrossRefGoogle ScholarPubMed
Boonstra, R., Hik, D., Singleton, G. R. and Tinnikov, A.The impact of predator-induced stress on the snowshoe hare cycle. Ecological Monographs 68 (1998), 371–94CrossRefGoogle Scholar
Bromham, L. and Harvey, P. H.Behavioural ecology: naked mole-rats on the move. Curr. Biol. 6 (1996), 1082–3CrossRefGoogle ScholarPubMed
Cant, M. A.Social control of reproduction in banded mongooses. Anim. Behav. 59 (2000), 147–58CrossRefGoogle ScholarPubMed
Cichón, M.Evolution of longevity through optimal resource allocation. Proc. Royal Soc. Lond. B 264 (1997), 1383–8CrossRefGoogle Scholar
Cresswell, W. and McCleery, R.How great tits maintain synchronization of their hatch date with food supply in response to long-term variability in temperature. J. Anim. Ecol. 72 (2003), 356–66CrossRefGoogle Scholar
Denver, R. J.Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm. Behav. 31 (1997), 169–79CrossRefGoogle ScholarPubMed
Ferguson, M. W. J.Temperature of egg incubation determines sex in Alligator mississippiensis. Nature 296 (1982), 850–3CrossRefGoogle ScholarPubMed
Forchhammer, M. C., Clutton-Brock, T. H., Lindström, J. and Albon, S. D.Climate and population density induce long-term cohort variation in a northern ungulate. J. Anim. Ecol. 70 (2001), 721–9CrossRefGoogle Scholar
Goldman, B. D., Goldman, S. L., Lanz, T., Magaurin, A. and Maurice, A.Factors influencing metabolic rate in naked mole rats (Heterocephalus glaber).Physiol. Behav. 66 (1999), 447–59CrossRefGoogle ScholarPubMed
Janzen, F. J. and Morjan, C. L.Repeatability of microenvironment-specific nesting behaviour in a turtle with environmental sex determination. Anim. Behav. 62 (2001), 73–82CrossRefGoogle Scholar
Krebs, C. J., Boonstra, R., Boutin, S. and Sinclair, A. R. E.What drives the 10-year cycle of Snowshoe Hares? BioScience 51 (2001), 25–35CrossRefGoogle Scholar
*Lavers, C. Why Elephants have Big Ears: Understanding Patterns of Life on Earth. (Victor Gollanz, London, 2000)
Lee, T. M., Spears, N., Tuthill, C. R. and Zucker, I.Maternal melatonin treatment influences rates of neonatal development of meadow vole pups. Biol. Reprod. 40 (1989), 495–502CrossRefGoogle ScholarPubMed
Lee, T. M. and Zucker, I.Vole infant development is influenced perinatally by maternal photoperiodic history. Am. J. Physiol. 255 (1988), R831–8Google ScholarPubMed
Metcalfe, N. B. and Monaghan, P.Growth versus lifespan: perspectives from evolutionary ecology. Exp. Gerontol. 38 (2003), 935–40CrossRefGoogle ScholarPubMed
Miller, R. A., Harper, J. M., Dysko, R. C., Durkee, S. J. and Austad, S. N.Longer life spans and delayed maturation in wild-derived mice. Exp. Biol. Med. 227 (2002), 500–8CrossRefGoogle ScholarPubMed
Newman, R. A.Adaptive plasticity in amphibian metamorphosis. BioScience 42 (1992), 671–8CrossRefGoogle Scholar
Packer, C., Tatar, M., and Collins, A.Reproduction cessation in female mammals. Nature 392 (1998), 807–10CrossRefGoogle ScholarPubMed
Shine, R.Why is sex determined by nest temperature in many reptiles? Trends in Ecology and Evolution 14 (1999), 186–9CrossRefGoogle ScholarPubMed
Stefan, C. I. and Krebs, C. J.Reproductive changes in a cyclic population of snowshoe hares. Can. J. Zoology 79 (2001), 2101–8CrossRefGoogle Scholar
Stenseth, N. C., Falck, W., Bj⊘rnstad, O. N. and Krebs, C. J.Population regulation in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and lynx. Proc. Nat. Acad. Sci. (USA) 94 (1997), 5147–52CrossRefGoogle ScholarPubMed
*Weiner, J., The Beak of the Finch. A Story of Evolution in Our Time. (New York, NY: Alfred A. Knopf, Inc., 1994)
West, P. M. and Packer, C.Sexual selection, temperature, and the lion's mane. Science 297 (2002), 1339–43CrossRefGoogle ScholarPubMed
Williams, C. K. and Moore, R. J.Phenotypic adaptation and natural selection in the wild rabbit. Oryctolagus cuniculus, in Australia. J. Anim. Ecol. 58 (1989), 495–507CrossRefGoogle Scholar
Winterhalder, B. P.Canadian fur bearer cycles and Cree-Ojibway hunting and trapping practices. Am. Naturalist. 116 (1980), 870–9CrossRefGoogle Scholar
*Darwin, C. The Origin of Species by Means of Natural Selection. (London: John Murray, 1869)
*Darwin, C. The Descent of Man (with introduction by R. Dawkins), (London: Gibson Square Books 1871, 2003 edn.)
Dawkins, R. The Extended Phenotype, ed. R. Dawkins (Oxford: Oxford University Press, 1982)
*Dawkins, R. The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. (New York, NY: W. W. Norton & Company, 1986)
Futuyma, D. J. Evolutionary Biology, 3rd edn. (Boston, MA: Sinauer Associates, 1998)
Grant, B. R. and Grant, P. R.Evolution of Darwin's finches caused by a rare climatic event. Proc. R. Soc. Lond. B 251 (1993), 111–17CrossRefGoogle Scholar
Halder, G., Callaerts, P. and Gehring, W. J.New perspectives on eye evolution. Curr. Opin. Genet. Dev. 5 (1995), 602–9CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L.Evolution of ageing. Nature 270 (1977), 301–4CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. and Austad, S. N.Why do we age? Nature 408 (2000), 233–8CrossRefGoogle ScholarPubMed
Land, M. F.The evolution of eyes. Annu. Rev. Neurosci. 15 (1992), 1–29CrossRefGoogle ScholarPubMed
* Mayr, E. (2001). What Evolution Is, ed. E. Mayr (New York, NY: Basic Books)
McComb, K., Moss, C., Durant, S. M., Baker, L. and Sayialel, S.Matriarchs as repositories of social knowledge in African elephants. Science 292 (2001), 491–4CrossRefGoogle ScholarPubMed
Price, T. D., Qvarnström, A. and Irwin, D. E.The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. Lond. B. 270 (2003), 1433–40CrossRefGoogle ScholarPubMed
Schlichting, C. D. and Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective. (Boston, MA: Sinauer Associates, 1998)
Williams, G. C.Pleiotropy, natural selection, and the evolution of senescence. Evolution 11 (1957), 398–411CrossRefGoogle Scholar
Yokoyama, S.Molecular evolution of color vision in vertebrates. Gene 300 (2002), 69–78CrossRefGoogle ScholarPubMed
Cordain, L., Eaton, S. B., Miller, J. B., Mann, N. and Hill, K.The paradoxical nature of hunter–gatherer diets: meat-based, yet non-atherogenic. Eur. J. Clin. Nutr. 56 (2002), S42–52CrossRefGoogle ScholarPubMed
Cordain, L., Miller, J. B., Eaton, S. B. et al.Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter–gatherer diets. Am. J. Clin. Nutr. 71 (2000), 682–92CrossRefGoogle ScholarPubMed
*Diamond, J. Guns, Germs and Steel: A Short History of Everybody for the Last 13,000 Years. (London: Vintage, 1998)
Eaton, S. B.Paleolithic vs. modern diets: selected pathophysiological implications. Eur. J. Nutr. 39 (2000), 67–70CrossRefGoogle ScholarPubMed
Eaton, S. B. and Konner, M.Paleolithic nutrition. A consideration of its nature and current implications. N. Engl. J. Med. 312 (1985), 283–9CrossRefGoogle ScholarPubMed
Gagneux, P., Wills, C., Gerloff, U., et al.Mitochondrial sequences show diverse evolutionary histories of African hominoids. Pediatr. Res. 96 (1999), 5077–82Google ScholarPubMed
Hawkes, K., O'Connell, J. F., Jones, N. G. B., Alvarez, H. and Charnov, E. L.Grandmothering, menopause, and the evolution of human life histories. Proc. Nat. Acad. Sci. (USA) 95 (1998), 1336–9CrossRefGoogle ScholarPubMed
Kuzawa, C. W.Adipose tissue in human infancy and childhood: an evolutionary perspective. Yearbook of Physical Anthropology 41 (1998), 177–2093.0.CO;2-B>CrossRefGoogle Scholar
Mann, N.Dietary lean red meat and human evolution. Eur. J. Nutr. 39 (2000), 71–9CrossRefGoogle ScholarPubMed
Miller, J. C. B. and Colagiuri, S.The carnivore connection: dietary carbohydrate in the evolution of NIDDM. Diabetologia 37 (1994), 1280–6CrossRefGoogle ScholarPubMed
Promislow, D. E. L.Longevity and the barren aristocrat. Nature 396 (1998), 719–20CrossRefGoogle ScholarPubMed
* Ridley, M. Nature Via Nurture: Genes, Experience, and What Makes Us Human. (London: HarperCollins, 2003)
Shanley, D. P. and Kirkwood, T. B. L.Evolution of the human menopause. Bioessays 23 (2001), 282–73.0.CO;2-9>CrossRefGoogle ScholarPubMed
Sherman, P. W.The evolution of menopause. Nature 392 (1998), 759–61CrossRefGoogle ScholarPubMed
Speth, J. D. and Spielmann, K. A.Energy source, protein metabolism, and hunter–gatherer subsistence strategies. J. Anthropol. Archaeol. 2 (1983), 1–31CrossRefGoogle Scholar
Truswell, A. S. and Hansen, J. D. Medical research among the!Kung. In Kalahari Hunter–Gatherers. Studies of the!Kung San and Their Neighbors, ed. R. B. Lee and I. DeVore (Cambridge MA: Harvard University Press, 1976), pp. 168–95
Walker, A. R. P., Walker, B. F., and Adam, F.Nutrition, diet, physical activity, smoking, and longevity: from primitive hunter–gatherer to present passive consumer – how far can we go? Nutrition 19 (2003), 169–73CrossRefGoogle Scholar
Wells, J. C. K.Natural selection and sex differences in morbidity and mortality in early life. J. Theor. Biol. 202 (2000), 65–76CrossRefGoogle ScholarPubMed
*Wells, S. The Journey of Man: A Genetic Odyssey, ed. S. Wells (Princeton, NJ: Princeton University Press, 2003)
Westendorp, R. G. J. and Kirkwood, T. B. L.Human longevity at the cost of reproductive success. Nature 396 (1998), 743–6CrossRefGoogle ScholarPubMed
Applebaum, S. W. and Heifetz, Y.Density-dependent physiological phase in insects. Ann. Rev. Entomol. 44 (1999), 317–41CrossRefGoogle ScholarPubMed
Blanckenhorn, W. U.Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly. Evolution 52 (1998), 1394–407CrossRefGoogle ScholarPubMed
Boonstra, R., Hik, D., Singleton, G. R. and Tinnikov, A.The impact of predator-induced stress on the snowshoe hare cycle. Ecological Monographs 68 (1998), 371–94CrossRefGoogle Scholar
Bromham, L. and Harvey, P. H.Behavioural ecology: naked mole-rats on the move. Curr. Biol. 6 (1996), 1082–3CrossRefGoogle ScholarPubMed
Cant, M. A.Social control of reproduction in banded mongooses. Anim. Behav. 59 (2000), 147–58CrossRefGoogle ScholarPubMed
Cichón, M.Evolution of longevity through optimal resource allocation. Proc. Royal Soc. Lond. B 264 (1997), 1383–8CrossRefGoogle Scholar
Cresswell, W. and McCleery, R.How great tits maintain synchronization of their hatch date with food supply in response to long-term variability in temperature. J. Anim. Ecol. 72 (2003), 356–66CrossRefGoogle Scholar
Denver, R. J.Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm. Behav. 31 (1997), 169–79CrossRefGoogle ScholarPubMed
Ferguson, M. W. J.Temperature of egg incubation determines sex in Alligator mississippiensis. Nature 296 (1982), 850–3CrossRefGoogle ScholarPubMed
Forchhammer, M. C., Clutton-Brock, T. H., Lindström, J. and Albon, S. D.Climate and population density induce long-term cohort variation in a northern ungulate. J. Anim. Ecol. 70 (2001), 721–9CrossRefGoogle Scholar
Goldman, B. D., Goldman, S. L., Lanz, T., Magaurin, A. and Maurice, A.Factors influencing metabolic rate in naked mole rats (Heterocephalus glaber).Physiol. Behav. 66 (1999), 447–59CrossRefGoogle ScholarPubMed
Janzen, F. J. and Morjan, C. L.Repeatability of microenvironment-specific nesting behaviour in a turtle with environmental sex determination. Anim. Behav. 62 (2001), 73–82CrossRefGoogle Scholar
Krebs, C. J., Boonstra, R., Boutin, S. and Sinclair, A. R. E.What drives the 10-year cycle of Snowshoe Hares? BioScience 51 (2001), 25–35CrossRefGoogle Scholar
*Lavers, C. Why Elephants have Big Ears: Understanding Patterns of Life on Earth. (Victor Gollanz, London, 2000)
Lee, T. M., Spears, N., Tuthill, C. R. and Zucker, I.Maternal melatonin treatment influences rates of neonatal development of meadow vole pups. Biol. Reprod. 40 (1989), 495–502CrossRefGoogle ScholarPubMed
Lee, T. M. and Zucker, I.Vole infant development is influenced perinatally by maternal photoperiodic history. Am. J. Physiol. 255 (1988), R831–8Google ScholarPubMed
Metcalfe, N. B. and Monaghan, P.Growth versus lifespan: perspectives from evolutionary ecology. Exp. Gerontol. 38 (2003), 935–40CrossRefGoogle ScholarPubMed
Miller, R. A., Harper, J. M., Dysko, R. C., Durkee, S. J. and Austad, S. N.Longer life spans and delayed maturation in wild-derived mice. Exp. Biol. Med. 227 (2002), 500–8CrossRefGoogle ScholarPubMed
Newman, R. A.Adaptive plasticity in amphibian metamorphosis. BioScience 42 (1992), 671–8CrossRefGoogle Scholar
Packer, C., Tatar, M., and Collins, A.Reproduction cessation in female mammals. Nature 392 (1998), 807–10CrossRefGoogle ScholarPubMed
Shine, R.Why is sex determined by nest temperature in many reptiles? Trends in Ecology and Evolution 14 (1999), 186–9CrossRefGoogle ScholarPubMed
Stefan, C. I. and Krebs, C. J.Reproductive changes in a cyclic population of snowshoe hares. Can. J. Zoology 79 (2001), 2101–8CrossRefGoogle Scholar
Stenseth, N. C., Falck, W., Bj⊘rnstad, O. N. and Krebs, C. J.Population regulation in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and lynx. Proc. Nat. Acad. Sci. (USA) 94 (1997), 5147–52CrossRefGoogle ScholarPubMed
*Weiner, J., The Beak of the Finch. A Story of Evolution in Our Time. (New York, NY: Alfred A. Knopf, Inc., 1994)
West, P. M. and Packer, C.Sexual selection, temperature, and the lion's mane. Science 297 (2002), 1339–43CrossRefGoogle ScholarPubMed
Williams, C. K. and Moore, R. J.Phenotypic adaptation and natural selection in the wild rabbit. Oryctolagus cuniculus, in Australia. J. Anim. Ecol. 58 (1989), 495–507CrossRefGoogle Scholar
Winterhalder, B. P.Canadian fur bearer cycles and Cree-Ojibway hunting and trapping practices. Am. Naturalist. 116 (1980), 870–9CrossRefGoogle Scholar
*Darwin, C. The Origin of Species by Means of Natural Selection. (London: John Murray, 1869)
*Darwin, C. The Descent of Man (with introduction by R. Dawkins), (London: Gibson Square Books 1871, 2003 edn.)
Dawkins, R. The Extended Phenotype, ed. R. Dawkins (Oxford: Oxford University Press, 1982)
*Dawkins, R. The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. (New York, NY: W. W. Norton & Company, 1986)
Futuyma, D. J. Evolutionary Biology, 3rd edn. (Boston, MA: Sinauer Associates, 1998)
Grant, B. R. and Grant, P. R.Evolution of Darwin's finches caused by a rare climatic event. Proc. R. Soc. Lond. B 251 (1993), 111–17CrossRefGoogle Scholar
Halder, G., Callaerts, P. and Gehring, W. J.New perspectives on eye evolution. Curr. Opin. Genet. Dev. 5 (1995), 602–9CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L.Evolution of ageing. Nature 270 (1977), 301–4CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. and Austad, S. N.Why do we age? Nature 408 (2000), 233–8CrossRefGoogle ScholarPubMed
Land, M. F.The evolution of eyes. Annu. Rev. Neurosci. 15 (1992), 1–29CrossRefGoogle ScholarPubMed
* Mayr, E. (2001). What Evolution Is, ed. E. Mayr (New York, NY: Basic Books)
McComb, K., Moss, C., Durant, S. M., Baker, L. and Sayialel, S.Matriarchs as repositories of social knowledge in African elephants. Science 292 (2001), 491–4CrossRefGoogle ScholarPubMed
Price, T. D., Qvarnström, A. and Irwin, D. E.The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. Lond. B. 270 (2003), 1433–40CrossRefGoogle ScholarPubMed
Schlichting, C. D. and Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective. (Boston, MA: Sinauer Associates, 1998)
Williams, G. C.Pleiotropy, natural selection, and the evolution of senescence. Evolution 11 (1957), 398–411CrossRefGoogle Scholar
Yokoyama, S.Molecular evolution of color vision in vertebrates. Gene 300 (2002), 69–78CrossRefGoogle ScholarPubMed
Cordain, L., Eaton, S. B., Miller, J. B., Mann, N. and Hill, K.The paradoxical nature of hunter–gatherer diets: meat-based, yet non-atherogenic. Eur. J. Clin. Nutr. 56 (2002), S42–52CrossRefGoogle ScholarPubMed
Cordain, L., Miller, J. B., Eaton, S. B. et al.Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter–gatherer diets. Am. J. Clin. Nutr. 71 (2000), 682–92CrossRefGoogle ScholarPubMed
*Diamond, J. Guns, Germs and Steel: A Short History of Everybody for the Last 13,000 Years. (London: Vintage, 1998)
Eaton, S. B.Paleolithic vs. modern diets: selected pathophysiological implications. Eur. J. Nutr. 39 (2000), 67–70CrossRefGoogle ScholarPubMed
Eaton, S. B. and Konner, M.Paleolithic nutrition. A consideration of its nature and current implications. N. Engl. J. Med. 312 (1985), 283–9CrossRefGoogle ScholarPubMed
Gagneux, P., Wills, C., Gerloff, U., et al.Mitochondrial sequences show diverse evolutionary histories of African hominoids. Pediatr. Res. 96 (1999), 5077–82Google ScholarPubMed
Hawkes, K., O'Connell, J. F., Jones, N. G. B., Alvarez, H. and Charnov, E. L.Grandmothering, menopause, and the evolution of human life histories. Proc. Nat. Acad. Sci. (USA) 95 (1998), 1336–9CrossRefGoogle ScholarPubMed
Kuzawa, C. W.Adipose tissue in human infancy and childhood: an evolutionary perspective. Yearbook of Physical Anthropology 41 (1998), 177–2093.0.CO;2-B>CrossRefGoogle Scholar
Mann, N.Dietary lean red meat and human evolution. Eur. J. Nutr. 39 (2000), 71–9CrossRefGoogle ScholarPubMed
Miller, J. C. B. and Colagiuri, S.The carnivore connection: dietary carbohydrate in the evolution of NIDDM. Diabetologia 37 (1994), 1280–6CrossRefGoogle ScholarPubMed
Promislow, D. E. L.Longevity and the barren aristocrat. Nature 396 (1998), 719–20CrossRefGoogle ScholarPubMed
* Ridley, M. Nature Via Nurture: Genes, Experience, and What Makes Us Human. (London: HarperCollins, 2003)
Shanley, D. P. and Kirkwood, T. B. L.Evolution of the human menopause. Bioessays 23 (2001), 282–73.0.CO;2-9>CrossRefGoogle ScholarPubMed
Sherman, P. W.The evolution of menopause. Nature 392 (1998), 759–61CrossRefGoogle ScholarPubMed
Speth, J. D. and Spielmann, K. A.Energy source, protein metabolism, and hunter–gatherer subsistence strategies. J. Anthropol. Archaeol. 2 (1983), 1–31CrossRefGoogle Scholar
Truswell, A. S. and Hansen, J. D. Medical research among the!Kung. In Kalahari Hunter–Gatherers. Studies of the!Kung San and Their Neighbors, ed. R. B. Lee and I. DeVore (Cambridge MA: Harvard University Press, 1976), pp. 168–95
Walker, A. R. P., Walker, B. F., and Adam, F.Nutrition, diet, physical activity, smoking, and longevity: from primitive hunter–gatherer to present passive consumer – how far can we go? Nutrition 19 (2003), 169–73CrossRefGoogle Scholar
Wells, J. C. K.Natural selection and sex differences in morbidity and mortality in early life. J. Theor. Biol. 202 (2000), 65–76CrossRefGoogle ScholarPubMed
*Wells, S. The Journey of Man: A Genetic Odyssey, ed. S. Wells (Princeton, NJ: Princeton University Press, 2003)
Westendorp, R. G. J. and Kirkwood, T. B. L.Human longevity at the cost of reproductive success. Nature 396 (1998), 743–6CrossRefGoogle ScholarPubMed
Bauman, D. E. and Currie, W. B.Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 63 (1980), 1514–29CrossRefGoogle ScholarPubMed
Beaconsfield, P., Birdwood, G. and Beaconsfield, R.The placenta. Sci. Am. 243 (1980), 80–9CrossRefGoogle ScholarPubMed
Bell, R. and O'Neill, M.Exercise and pregnancy: a review. Birth 21 (1994), 85–95CrossRefGoogle ScholarPubMed
Burton, G. J., Hempstock, J. and Jauniaux, E.Nutrition of the human fetus during the first trimester– a review. Placenta 22 (2001), S70–6CrossRefGoogle ScholarPubMed
Duggleby, S. L. and Jackson, A. A.Relationship of maternal protein turnover and lean body mass during pregnancy and birth length. Clin. Sci. 101 (2001), 65–72CrossRefGoogle ScholarPubMed
Georgiades, P., Ferguson-Smith, A. C. and Burton, G. J.Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23 (2002), 3–19CrossRefGoogle ScholarPubMed
Grieve, J. F.Prevention of gestational failure by high protein diet. J. Reprod. Med. 13 (1974), 170–4Google ScholarPubMed
Haig, D.Genetic conflicts in human pregnancy. Q. Rev. Biol. 68 (1993), 495–532CrossRefGoogle ScholarPubMed
Harman, C. R. and Menticoglou, S. M.Fetal surveillance in diabetic pregnancy. Curr. Opin. Obstet. Gynecol. 9 (1997), 83–90Google ScholarPubMed
Lacroix, M. C., Guibourdenche, J., Frendo, J. L., Muller, F. and Evain-Brion, D.Human placental growth hormone: a review. Placenta 23 (2002), S87–94CrossRefGoogle ScholarPubMed
Lotgering, F. K., Gilbert, R. D. and Longo, L. D.Exercise responses in pregnant sheep: oxygen consumption, uterine blood flow, and blood volume. J. Appl. Physiol. 55 (1983), 834–41CrossRefGoogle ScholarPubMed
Rondo, P. H., Ferreira, R. F., Nogueira, F.et al.Maternal psychological stress and distress as predictors of low birth weight, prematurity and intrauterine growth retardation. Eur. J. Clin. Nutr. 57 (2003), 266–72CrossRefGoogle ScholarPubMed
Sagawa, N., Yura, S., Itoh, H.et al.Role of leptin in pregnancy: a review. Placenta 23, Suppl. A. Trophoblast Res. 16 (2002), S80CrossRefGoogle ScholarPubMed
Brace, R. A, Hanson, M. A., and Rodeck, C. H., eds. Fetus and Neonate: Physiology and Clinical Applications. Vol. 4, Kidney and Body Fluids. (Cambridge: Cambridge University Press, 1988)
Gluckman, P. D. and Heymann, M. A. eds. Pediatrics and Perinatology: The Scientific Basis, 2nd edn. (London: Arnold, 1996)
Gunn, A. J. and Gluckman, D. The response of the fetal brain to asphyxia/ischaemia. In Fetal Medicine: Basic Science and Clinical Practice, ed. C. H. Rodeck and M. J. Whittle. (London: Churchill Livingstone, 1999), pp. 241–62
Hanson, M. A., Spencer, J. A. D. and Rodeck, C. H., eds. Fetus and Neonate: Physiology and Clinical Applications. Vol. 1, The Circulation. (Cambridge: Cambridge University Press, 1993)
Hanson, M. A., Spencer, J. A. D. and Rodeck, C. H., eds. Fetus and Neonate: Physiology and Clinical Applications. Vol. 2, Breathing. (Cambridge: Cambridge University Press, 1994)
Hanson, M. A., Spencer, J. A. D. and Rodeck, C. H., eds. Fetus and Neonate: Physiology and Clinical Applications. Vol. 3, Growth. (Cambridge: Cambridge University Press, 1995)
Liggins, G. C. (1994). The role of cortisol in preparing the fetus for birth. Reprod. Fertil. Dev. 6, 141–50CrossRefGoogle ScholarPubMed
*Nathanielsz, P. W., ed. Life in the Womb. (New York, NY: Promethean Press, 1999.)
Schwarz, R. H. and Jaffe, S., eds. Drug and Chemical Risks to the Fetus and Newborn (New York, NY: Alan R. Liss, Inc., 1980)
Walker, D. W., Hale, J. R. S., Fawcett, A. A. and Pratt, N. M.Cardiovascular responses to heat stress in late-gestation fetal sheep. Exp. Physiol. 80 (1995), 755–66CrossRefGoogle ScholarPubMed
Allen, W. R., Wilsher, S., Turnbull, C. et al. Influence of maternal size on placental, fetal and postnatal growth in the horse. I. Development in utero. Reproduction 123 (2002), 445–53
Bauer, M. K., Breier, B. H., Harding, J. E., Veldhuis, J. D. and Gluckman, P. D.The fetal somatotropic axis during long term maternal undernutrition in sheep: evidence for nutritional regulation in utero. Endocrinology 136 (1995), 1250–7CrossRefGoogle ScholarPubMed
Brooks, A. A., Johnson, M. R., Steer, P. J., Pawson, M. E. and Abdalla, H. I.Birth weight: nature or nuture? Early. Hum. Dev. 42 (1995), 29–35CrossRefGoogle ScholarPubMed
Jonge, L. V. H., Waller, G. and Stettler, N.Ethnicity modifies seasonal variations in birth weight and weight gain of infants. J. Nutr. 133 (2003), 1415–18CrossRefGoogle Scholar
Fowden, A. L.The role of insulin in prenatal growth. J. Dev. Physiol. 12 (1989), 173–82Google ScholarPubMed
Gluckman, P. D.The endocrine regulation of fetal growth in late gestation: the role of insulin-like growth factors. J. Clin. Endocrinol. Metab. 80 (1995), 1047–50Google ScholarPubMed
Gluckman, P. D.Endocrine and nutritional regulation of prenatal growth. Acta Paediatr. Suppl. 423 (1997a), 153–7CrossRefGoogle Scholar
Gluckman, P. D.Endocrine mechanisms and consequences of intrauterine growth retardation. Clin. Pediatr. Endocrinol. 6 (1997b), 135–40CrossRefGoogle Scholar
Gluckman, P. D., Breier, B. H., Oliver, M., Harding, J. and Bassett, N.Fetal growth in late gestation: a constrained pattern of growth. Acta Paediatr. Scand. Suppl. 367 (1990), 105–10CrossRefGoogle Scholar
Gluckman, P. D. and Harding, J. E. The regulation of fetal growth. In Human Growth: Basic and Clinical Aspects, ed. M. Hernandez and J. Argente (Amsterdam: Excepta Medica, 1992), pp. 253–60
Gluckman, P. D. and Harding, J. E.Nutritional and hormonal regulation of fetal growth-evolving concepts. Acta Paediatr. Suppl. 399 (1994), 60–3CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Harding, J. E.The physiology and pathophysiology of intrauterine growth retardation. Horm. Res. 48 (1997), Suppl. 1, 11–16CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Liggins, G. C. The regulation of fetal growth. In Fetal Physiology and Medicine, ed. R. W. Beard and P. W. Nathanielsz (New York and Basel: Marcel Dekker, 1984), pp. 511–58
Gluckman, P. D., Morel, P. C. H., Ambler, G. R.et al. Elevating maternal insulin-like growth factor-I in mice and rats alters the pattern of fetal growth by removing maternal constraint. J. Endocrinol. 134 (1992), R1–3CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Pinal, C.Maternal–placental–fetal interactions in the endocrine regulation of fetal growth: role of somatotrophic axes. Endocrine 19 (2002), 81–9CrossRefGoogle ScholarPubMed
Ha, J. C., Ha, R. R., Almasy, L., and Dyke, B. (2002). Genetics and caging type affect birth weight in captive pigtailed macaques (Macaca nemestrina). Am. J. Primatol. 56, 207–13CrossRefGoogle Scholar
Hales, C. N. and Ozanne, S. E.The dangerous road of catch-up growth. J. Physiol. 547 (2003), 1, 5–10CrossRefGoogle ScholarPubMed
Han, V. K. M. and Carter, A. M.Control of growth and development of the feto–placental unit. Curr. Opin. Pharmacol. 1 (2001), 632–40CrossRefGoogle ScholarPubMed
Harding, J. E. and Johnston, B. M.Nutrition and fetal growth. Reprod. Fertil. Dev. 7 (1995), 539–47CrossRefGoogle ScholarPubMed
Johnston, L. B., Clark, A. J. and Savage, M. O.Genetic factors contributing to birth weight. Arch. Dis. Child. Fetal Neonatal Edn. 86 (2002), F2–3Google ScholarPubMed
Milner, R. D. G. and Gluckman, P. D. The regulation of intrauterine growth. In Pediatrics and Perinatology: The Scientific Basis, ed. P. D. Gluckman and M. A. Heymann (London: Edward Arnold, 1996), pp. 284–9
Oliver, M. H., Harding, J. E., Breier, B. H., Evans, P. C., and Gluckman, D.Glucose but not a mixed amino acid infusion regulates plasma insulin-like growth factor-I concentrations in fetal sheep. Pediatr. Res. 34 (1993), 62–5CrossRefGoogle Scholar
Oliver, M. H., Harding, J. E., and Gluckman, P. D.Duration of maternal undernutrition in late gestation determines the reversibility of intrauterine growth restriction in sheep. Prenat. Neonat. Med. 6 (2001), 271–9Google Scholar
Ostlund, E., Bang, P., Hagenas, L., and Fried, G.Insulin-like growth factor I in fetal serum obtained by cordocentesis is correlated with intrauterine growth retardation. Hum. Reprod. 12 (1997), 840–4CrossRefGoogle ScholarPubMed
Owens, J. A.Endocrine and substrate control of fetal growth: placental and maternal influences and insulin-like growth factors. Reprod. Fertil. Dev. 3 (1991), 501–17CrossRefGoogle ScholarPubMed
Pardi, G., Marconi, A. M. and Cetin, I.Placental–fetal interrelationships in IUGR fetuses – a review. Placenta 23 (2002), Suppl. A, S136–S41CrossRefGoogle Scholar
Parks, J. S.The ontogeny of growth hormone sensitivity. Horm. Res. 55 (2001), 27–31Google ScholarPubMed
Rees, S., Bocking, A. D. and Harding, R.Structure of the fetal sheep brain in experimental growth retardation. J. Dev. Physiol. 10 (1998), 211–24Google Scholar
Robson, E. B. The genetics of birth weight. In Human Growth: Principles and Prenatal Growth, ed. F. Faulkner and J. M. Tanner (New York: Plenum, 1978), pp. 285–97
Smith, G. C. S., Stenhouse, E. J., Crossley, J. A.et al.Early-pregnancy origins of low birth weight. Nature 417 (2002), 916CrossRefGoogle ScholarPubMed
Spencer, N. and Logan, S.Social infuences on birth weight. Arch. Dis. Child. Neonatal Ed. 86 (2002), F6–7CrossRefGoogle Scholar
Stephenson, T. and Symonds, M. E.Maternal nutrition as a determinant of birth weight. Arch. Dis. Child. Neonatal Edn. 86 (2002), F4–6CrossRefGoogle ScholarPubMed
Tchirikov, M., Kertschanska, S., Sturenberg, H. J., and Schroder, H. J.Liver blood perfusion as a possible instrument for fetal growth regulation. Placenta 23 (2002), Suppl. A, S153–8CrossRefGoogle ScholarPubMed
Tchirikov, M., Rybakowski, C., Huneke, B. and Schroder, H. J.Blood flow through the ductus venosus in singleton and multifetal pregnancies and in fetuses with intrauterine growth retardation. Am. J. Obstet. Gynecol. 178 (1998), 943–9CrossRefGoogle ScholarPubMed
Themmen, A. P. N. and Verhoef-Post, M.LH receptor defects. Semin. Reprod. Med. 20 (2002), 199–204CrossRefGoogle ScholarPubMed
Wallace, J., Bourke, D., Da Silva, P. and Aitken, R.Nutrient partitioning during adolescent pregnancy. Reproduction 122 (2001), 347–57CrossRefGoogle ScholarPubMed
Wallace, J. M., Aitken, R. P. and Cheyne, M. A.Nutrient partitioning and fetal growth in rapidly growing adolescent ewes. J. Reprod. Fert. 107 (1996), 183–90CrossRefGoogle ScholarPubMed
Walton, A. and Hammond, J.The maternal effects on growth and conformation in Shire horse–Shetland pony crosses. Proc. Royal Soc. Lond. – Series B: Biol. Sci. 125 (1938), 311–35CrossRefGoogle Scholar
Wi, J. M. and Boersma, B.Catch-up growth: definition, mechanisms, and models. J. Pediatr. Endocrinol. Metab. 15 (2002), 1229–41Google Scholar
Black, R. E.Micronutrients in pregnancy. Br. J. Nutr. 85 (2001), Suppl.2, S193–7CrossRefGoogle ScholarPubMed
Bhutta, Z. A., Jackson, A. and Lumbiganon, P., eds. Nutrition as a preventive strategy against adverse pregnancy outcomes. The Journal of Nutrition (2003), 1589S–767
Centers for Disease Control. Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. MMWR 41 (1992) (RR14), 001
Erickson, J. D.Folic acid and prevention of spina bifida and anencephaly: 10 years after the U.S. Public Health Service recommendation. MMWR 51 (2002) (RR13), 1–3Google ScholarPubMed
Popkin, B. M.Nutrition in transition: the changing global nutrition challenge. Asia Pac. J. Clin. Nutr. 10 (2001), S13–18CrossRefGoogle ScholarPubMed
Smithells, R. W., Sheppard, S., Schorah, C. J.et al.Possible prevention of neural-tube defects by periconceptional vitamin supplementation. Lancet 1 (1980), 339–40CrossRefGoogle ScholarPubMed
Stewart, R. J. C., Preece, R. F. and Sheppard, H. G.Twelve generations of marginal protein deficiency. Br. J. Nutr. 33 (1975), 233–53CrossRefGoogle ScholarPubMed
Winick, M. and Noble, A.Cellular response in rats during malnutrition at various ages. J. Nutr. 89 (1966), 300–6CrossRefGoogle ScholarPubMed
Bauman, D. E. and Currie, W. B.Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 63 (1980), 1514–29CrossRefGoogle ScholarPubMed
Beaconsfield, P., Birdwood, G. and Beaconsfield, R.The placenta. Sci. Am. 243 (1980), 80–9CrossRefGoogle ScholarPubMed
Bell, R. and O'Neill, M.Exercise and pregnancy: a review. Birth 21 (1994), 85–95CrossRefGoogle ScholarPubMed
Burton, G. J., Hempstock, J. and Jauniaux, E.Nutrition of the human fetus during the first trimester– a review. Placenta 22 (2001), S70–6CrossRefGoogle ScholarPubMed
Duggleby, S. L. and Jackson, A. A.Relationship of maternal protein turnover and lean body mass during pregnancy and birth length. Clin. Sci. 101 (2001), 65–72CrossRefGoogle ScholarPubMed
Georgiades, P., Ferguson-Smith, A. C. and Burton, G. J.Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23 (2002), 3–19CrossRefGoogle ScholarPubMed
Grieve, J. F.Prevention of gestational failure by high protein diet. J. Reprod. Med. 13 (1974), 170–4Google ScholarPubMed
Haig, D.Genetic conflicts in human pregnancy. Q. Rev. Biol. 68 (1993), 495–532CrossRefGoogle ScholarPubMed
Harman, C. R. and Menticoglou, S. M.Fetal surveillance in diabetic pregnancy. Curr. Opin. Obstet. Gynecol. 9 (1997), 83–90Google ScholarPubMed
Lacroix, M. C., Guibourdenche, J., Frendo, J. L., Muller, F. and Evain-Brion, D.Human placental growth hormone: a review. Placenta 23 (2002), S87–94CrossRefGoogle ScholarPubMed
Lotgering, F. K., Gilbert, R. D. and Longo, L. D.Exercise responses in pregnant sheep: oxygen consumption, uterine blood flow, and blood volume. J. Appl. Physiol. 55 (1983), 834–41CrossRefGoogle ScholarPubMed
Rondo, P. H., Ferreira, R. F., Nogueira, F.et al.Maternal psychological stress and distress as predictors of low birth weight, prematurity and intrauterine growth retardation. Eur. J. Clin. Nutr. 57 (2003), 266–72CrossRefGoogle ScholarPubMed
Sagawa, N., Yura, S., Itoh, H.et al.Role of leptin in pregnancy: a review. Placenta 23, Suppl. A. Trophoblast Res. 16 (2002), S80CrossRefGoogle ScholarPubMed
Brace, R. A, Hanson, M. A., and Rodeck, C. H., eds. Fetus and Neonate: Physiology and Clinical Applications. Vol. 4, Kidney and Body Fluids. (Cambridge: Cambridge University Press, 1988)
Gluckman, P. D. and Heymann, M. A. eds. Pediatrics and Perinatology: The Scientific Basis, 2nd edn. (London: Arnold, 1996)
Gunn, A. J. and Gluckman, D. The response of the fetal brain to asphyxia/ischaemia. In Fetal Medicine: Basic Science and Clinical Practice, ed. C. H. Rodeck and M. J. Whittle. (London: Churchill Livingstone, 1999), pp. 241–62
Hanson, M. A., Spencer, J. A. D. and Rodeck, C. H., eds. Fetus and Neonate: Physiology and Clinical Applications. Vol. 1, The Circulation. (Cambridge: Cambridge University Press, 1993)
Hanson, M. A., Spencer, J. A. D. and Rodeck, C. H., eds. Fetus and Neonate: Physiology and Clinical Applications. Vol. 2, Breathing. (Cambridge: Cambridge University Press, 1994)
Hanson, M. A., Spencer, J. A. D. and Rodeck, C. H., eds. Fetus and Neonate: Physiology and Clinical Applications. Vol. 3, Growth. (Cambridge: Cambridge University Press, 1995)
Liggins, G. C. (1994). The role of cortisol in preparing the fetus for birth. Reprod. Fertil. Dev. 6, 141–50CrossRefGoogle ScholarPubMed
*Nathanielsz, P. W., ed. Life in the Womb. (New York, NY: Promethean Press, 1999.)
Schwarz, R. H. and Jaffe, S., eds. Drug and Chemical Risks to the Fetus and Newborn (New York, NY: Alan R. Liss, Inc., 1980)
Walker, D. W., Hale, J. R. S., Fawcett, A. A. and Pratt, N. M.Cardiovascular responses to heat stress in late-gestation fetal sheep. Exp. Physiol. 80 (1995), 755–66CrossRefGoogle ScholarPubMed
Allen, W. R., Wilsher, S., Turnbull, C. et al. Influence of maternal size on placental, fetal and postnatal growth in the horse. I. Development in utero. Reproduction 123 (2002), 445–53
Bauer, M. K., Breier, B. H., Harding, J. E., Veldhuis, J. D. and Gluckman, P. D.The fetal somatotropic axis during long term maternal undernutrition in sheep: evidence for nutritional regulation in utero. Endocrinology 136 (1995), 1250–7CrossRefGoogle ScholarPubMed
Brooks, A. A., Johnson, M. R., Steer, P. J., Pawson, M. E. and Abdalla, H. I.Birth weight: nature or nuture? Early. Hum. Dev. 42 (1995), 29–35CrossRefGoogle ScholarPubMed
Jonge, L. V. H., Waller, G. and Stettler, N.Ethnicity modifies seasonal variations in birth weight and weight gain of infants. J. Nutr. 133 (2003), 1415–18CrossRefGoogle Scholar
Fowden, A. L.The role of insulin in prenatal growth. J. Dev. Physiol. 12 (1989), 173–82Google ScholarPubMed
Gluckman, P. D.The endocrine regulation of fetal growth in late gestation: the role of insulin-like growth factors. J. Clin. Endocrinol. Metab. 80 (1995), 1047–50Google ScholarPubMed
Gluckman, P. D.Endocrine and nutritional regulation of prenatal growth. Acta Paediatr. Suppl. 423 (1997a), 153–7CrossRefGoogle Scholar
Gluckman, P. D.Endocrine mechanisms and consequences of intrauterine growth retardation. Clin. Pediatr. Endocrinol. 6 (1997b), 135–40CrossRefGoogle Scholar
Gluckman, P. D., Breier, B. H., Oliver, M., Harding, J. and Bassett, N.Fetal growth in late gestation: a constrained pattern of growth. Acta Paediatr. Scand. Suppl. 367 (1990), 105–10CrossRefGoogle Scholar
Gluckman, P. D. and Harding, J. E. The regulation of fetal growth. In Human Growth: Basic and Clinical Aspects, ed. M. Hernandez and J. Argente (Amsterdam: Excepta Medica, 1992), pp. 253–60
Gluckman, P. D. and Harding, J. E.Nutritional and hormonal regulation of fetal growth-evolving concepts. Acta Paediatr. Suppl. 399 (1994), 60–3CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Harding, J. E.The physiology and pathophysiology of intrauterine growth retardation. Horm. Res. 48 (1997), Suppl. 1, 11–16CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Liggins, G. C. The regulation of fetal growth. In Fetal Physiology and Medicine, ed. R. W. Beard and P. W. Nathanielsz (New York and Basel: Marcel Dekker, 1984), pp. 511–58
Gluckman, P. D., Morel, P. C. H., Ambler, G. R.et al. Elevating maternal insulin-like growth factor-I in mice and rats alters the pattern of fetal growth by removing maternal constraint. J. Endocrinol. 134 (1992), R1–3CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Pinal, C.Maternal–placental–fetal interactions in the endocrine regulation of fetal growth: role of somatotrophic axes. Endocrine 19 (2002), 81–9CrossRefGoogle ScholarPubMed
Ha, J. C., Ha, R. R., Almasy, L., and Dyke, B. (2002). Genetics and caging type affect birth weight in captive pigtailed macaques (Macaca nemestrina). Am. J. Primatol. 56, 207–13CrossRefGoogle Scholar
Hales, C. N. and Ozanne, S. E.The dangerous road of catch-up growth. J. Physiol. 547 (2003), 1, 5–10CrossRefGoogle ScholarPubMed
Han, V. K. M. and Carter, A. M.Control of growth and development of the feto–placental unit. Curr. Opin. Pharmacol. 1 (2001), 632–40CrossRefGoogle ScholarPubMed
Harding, J. E. and Johnston, B. M.Nutrition and fetal growth. Reprod. Fertil. Dev. 7 (1995), 539–47CrossRefGoogle ScholarPubMed
Johnston, L. B., Clark, A. J. and Savage, M. O.Genetic factors contributing to birth weight. Arch. Dis. Child. Fetal Neonatal Edn. 86 (2002), F2–3Google ScholarPubMed
Milner, R. D. G. and Gluckman, P. D. The regulation of intrauterine growth. In Pediatrics and Perinatology: The Scientific Basis, ed. P. D. Gluckman and M. A. Heymann (London: Edward Arnold, 1996), pp. 284–9
Oliver, M. H., Harding, J. E., Breier, B. H., Evans, P. C., and Gluckman, D.Glucose but not a mixed amino acid infusion regulates plasma insulin-like growth factor-I concentrations in fetal sheep. Pediatr. Res. 34 (1993), 62–5CrossRefGoogle Scholar
Oliver, M. H., Harding, J. E., and Gluckman, P. D.Duration of maternal undernutrition in late gestation determines the reversibility of intrauterine growth restriction in sheep. Prenat. Neonat. Med. 6 (2001), 271–9Google Scholar
Ostlund, E., Bang, P., Hagenas, L., and Fried, G.Insulin-like growth factor I in fetal serum obtained by cordocentesis is correlated with intrauterine growth retardation. Hum. Reprod. 12 (1997), 840–4CrossRefGoogle ScholarPubMed
Owens, J. A.Endocrine and substrate control of fetal growth: placental and maternal influences and insulin-like growth factors. Reprod. Fertil. Dev. 3 (1991), 501–17CrossRefGoogle ScholarPubMed
Pardi, G., Marconi, A. M. and Cetin, I.Placental–fetal interrelationships in IUGR fetuses – a review. Placenta 23 (2002), Suppl. A, S136–S41CrossRefGoogle Scholar
Parks, J. S.The ontogeny of growth hormone sensitivity. Horm. Res. 55 (2001), 27–31Google ScholarPubMed
Rees, S., Bocking, A. D. and Harding, R.Structure of the fetal sheep brain in experimental growth retardation. J. Dev. Physiol. 10 (1998), 211–24Google Scholar
Robson, E. B. The genetics of birth weight. In Human Growth: Principles and Prenatal Growth, ed. F. Faulkner and J. M. Tanner (New York: Plenum, 1978), pp. 285–97
Smith, G. C. S., Stenhouse, E. J., Crossley, J. A.et al.Early-pregnancy origins of low birth weight. Nature 417 (2002), 916CrossRefGoogle ScholarPubMed
Spencer, N. and Logan, S.Social infuences on birth weight. Arch. Dis. Child. Neonatal Ed. 86 (2002), F6–7CrossRefGoogle Scholar
Stephenson, T. and Symonds, M. E.Maternal nutrition as a determinant of birth weight. Arch. Dis. Child. Neonatal Edn. 86 (2002), F4–6CrossRefGoogle ScholarPubMed
Tchirikov, M., Kertschanska, S., Sturenberg, H. J., and Schroder, H. J.Liver blood perfusion as a possible instrument for fetal growth regulation. Placenta 23 (2002), Suppl. A, S153–8CrossRefGoogle ScholarPubMed
Tchirikov, M., Rybakowski, C., Huneke, B. and Schroder, H. J.Blood flow through the ductus venosus in singleton and multifetal pregnancies and in fetuses with intrauterine growth retardation. Am. J. Obstet. Gynecol. 178 (1998), 943–9CrossRefGoogle ScholarPubMed
Themmen, A. P. N. and Verhoef-Post, M.LH receptor defects. Semin. Reprod. Med. 20 (2002), 199–204CrossRefGoogle ScholarPubMed
Wallace, J., Bourke, D., Da Silva, P. and Aitken, R.Nutrient partitioning during adolescent pregnancy. Reproduction 122 (2001), 347–57CrossRefGoogle ScholarPubMed
Wallace, J. M., Aitken, R. P. and Cheyne, M. A.Nutrient partitioning and fetal growth in rapidly growing adolescent ewes. J. Reprod. Fert. 107 (1996), 183–90CrossRefGoogle ScholarPubMed
Walton, A. and Hammond, J.The maternal effects on growth and conformation in Shire horse–Shetland pony crosses. Proc. Royal Soc. Lond. – Series B: Biol. Sci. 125 (1938), 311–35CrossRefGoogle Scholar
Wi, J. M. and Boersma, B.Catch-up growth: definition, mechanisms, and models. J. Pediatr. Endocrinol. Metab. 15 (2002), 1229–41Google Scholar
Black, R. E.Micronutrients in pregnancy. Br. J. Nutr. 85 (2001), Suppl.2, S193–7CrossRefGoogle ScholarPubMed
Bhutta, Z. A., Jackson, A. and Lumbiganon, P., eds. Nutrition as a preventive strategy against adverse pregnancy outcomes. The Journal of Nutrition (2003), 1589S–767
Centers for Disease Control. Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. MMWR 41 (1992) (RR14), 001
Erickson, J. D.Folic acid and prevention of spina bifida and anencephaly: 10 years after the U.S. Public Health Service recommendation. MMWR 51 (2002) (RR13), 1–3Google ScholarPubMed
Popkin, B. M.Nutrition in transition: the changing global nutrition challenge. Asia Pac. J. Clin. Nutr. 10 (2001), S13–18CrossRefGoogle ScholarPubMed
Smithells, R. W., Sheppard, S., Schorah, C. J.et al.Possible prevention of neural-tube defects by periconceptional vitamin supplementation. Lancet 1 (1980), 339–40CrossRefGoogle ScholarPubMed
Stewart, R. J. C., Preece, R. F. and Sheppard, H. G.Twelve generations of marginal protein deficiency. Br. J. Nutr. 33 (1975), 233–53CrossRefGoogle ScholarPubMed
Winick, M. and Noble, A.Cellular response in rats during malnutrition at various ages. J. Nutr. 89 (1966), 300–6CrossRefGoogle ScholarPubMed
Baehrecke, E. H.How death shapes life during development. Nature Rev. Mol. Cell Biol. 3 (2002), 79–87CrossRefGoogle ScholarPubMed
Campbell, K. H., McWhir, J., Ritchie, W. A. and Wilmut, I.Sheep cloned by nuclear transfer from a cultured cell line. Nature 380 (1996), 64–6CrossRefGoogle ScholarPubMed
Duke, R. C., Ojcius, D. M. and Young, J. D.Cell suicide in health and disease. Sci. Am. 275 (1996), 80–7CrossRefGoogle ScholarPubMed
Finch, C. E. and Kirkwood, T. B. L. Chance, Development, and Aging, ed. C. E. Finch and T. B. L. Kirkwood. (New York, NY: Oxford University Press, 2000), pp. 1–278
Greider, C. W. and Blackburn, E. H.Telomeres, telomerase and cancer. Sci. Am. 274 (1996), 92–7CrossRefGoogle ScholarPubMed
Kalter, H.Teratology in the 20th century. Environmental causes of congenital malformations in humans and how they were established. Neurotoxicol. Teratol. 25 (2003), 131–282CrossRefGoogle ScholarPubMed
Klip, H., Werloop, J., Gool, J. D.et al.Hypospadias in sons of women exposed to diethylstilbestrol in utero: a cohort study. Lancet 359 (2002), 1102–07CrossRefGoogle ScholarPubMed
Schwartz, R. H. and Jaffe, S. J. Drug and Chemical Risks to the Fetus and Newborn (New York, NY: Alan Liss, 1980)
West-Eberhard, M. J. Developmental Plasticity and Evolution. (New York, NY: Oxford University Press, 2003)
Avner, P. and Head, E.X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet. 2 (2001), 59–67CrossRefGoogle ScholarPubMed
Beutler, E.Glucose-6-phosphate dehydrogenase deficiency. New Engl. J. Med. 324 (1991), 169–74Google ScholarPubMed
Blott, S., Kim, J.-J., Moisio, S.et al.Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163 (2003), 253–66Google ScholarPubMed
Daniels, R., Zuccotti, M., Kinis, T., Serhal, P. and Monk, M.Xist expression in human oocytes and preimplantation embryos. Am. J. Hum. Genet. 61 (1997), 33–9CrossRefGoogle ScholarPubMed
Goto, T. and Monk, M.Regulation of X-chromosome inactivation in development in mice and humans. Microbiol. Mol. Biol. Rev. 62 (1998), 362–78Google ScholarPubMed
Haig, D. and Graham, C.Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64 (1991), 1045–6Google ScholarPubMed
Hedborg, F., Holmgren, L., Sandstedt, B. and Ohlsson, R.The cell type-specific IGF2 expression during early human development correlates to the pattern of overgrowth and neoplasia in the Beckwith–Wiedemann syndrome. Am. J. Pathol. 145 (1994), 802–17Google ScholarPubMed
*Henig, R. M. A Monk and Two Peas: The Story of Gregor Mendel and the Discovery of Genetics. (Weidenfeld & Nicolson/Houghton Mifflin, 2000)
Hollon, T.Human genes: how many? The Scientist 15 (2001), 1Google Scholar
Jaenisch, R. and Bird, A.Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33 (2003), 245–54CrossRefGoogle ScholarPubMed
Miozzo, M. and Simoni, G.The role of imprinted genes in fetal growth. Biol. Neonate 81 (2002), 217–28CrossRefGoogle ScholarPubMed
Reik, W. and Maher, E. R.Imprinting in clusters: lessons from Beckwith–Wiedemann syndrome. Trends in Genetics 13 (1997), 330–4CrossRefGoogle ScholarPubMed
Sapienza, C.Parental imprinting of genes. Sci. Am. 263 (1990), 26–32CrossRefGoogle ScholarPubMed
The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72 (1993), 817–18
*Tudge, C. In Mendel's Footnotes, ed. C. Tudge (London: Vintage, 2002)
Waterland, R. A. and Garza, C.Potential mechanisms of metabolic imprinting that lead to chronic disease. Am. J. Clin. Nutr. 69 (1999), 179–97CrossRefGoogle ScholarPubMed
Waterland, R. A. and Jirtle, R. L.Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell Biol. 23 (2003), 5293–300CrossRefGoogle ScholarPubMed
Wolff, G. L., Kodell, R. L., Moore, S. R. and Cooney, C. A.Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 12 (1998), 949–57CrossRefGoogle ScholarPubMed
Agrawal, A. A., Laforsch, C. and Tollrian, R.Transgenerational induction of defences in animals and plants. Nature 401 (1999), 60–3CrossRefGoogle Scholar
Alekseev, V. and Lampert, W.Maternal control of resting-egg production inDaphnia. Nature 414 (2001), 899–901CrossRefGoogle ScholarPubMed
Bernardo, J.Maternal effects in animal ecology. Am. Zoology 36 (1996), 83–105CrossRefGoogle Scholar
Engh, A. L., Esch, K., Smale, L. and Holekamp, K. E.Mechanisms of maternal rank ‘inheritance’ in the spotted hyaena, Crocuta crocuta.Anim. Behav. 60 (2000), 323–32CrossRefGoogle ScholarPubMed
Herbst, A. L., Ulfelder, H. and Poskanzer, D. C.Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N. Engl. J. Med. 284 (1971), 878–81CrossRefGoogle ScholarPubMed
Kruuk, L. E. B., Clutton-Brock, T. H., Slate, J., et al. Heritability of fitness in a wild mammal population. Proc. Nat. Acad. Sci. 97 (2000), 698–703CrossRefGoogle Scholar
Lacey, E. P. What is an adaptive environmentally induced parental effect? In Maternal Effects as Adaptations, ed. T. A. Mousseau and C. W. Fox. (Oxford: Oxford University Press, 1998), pp. 54–66
Mousseau, T. A. and Fox, C. W., eds. Maternal Effects as Adaptations. (New York, NY: Oxford University Press, 1998.)
Pembrey, M. E.Time to take epigenetic inheritance seriously. Eur. J. Human Genetics 10 (2002), 669–71CrossRefGoogle ScholarPubMed
Rossiter, M. C.Incidence and consequences of inherited environmental effects. Annu. Rev. Ecol. System 27 (1996), 451–76CrossRefGoogle Scholar
Baehrecke, E. H.How death shapes life during development. Nature Rev. Mol. Cell Biol. 3 (2002), 79–87CrossRefGoogle ScholarPubMed
Campbell, K. H., McWhir, J., Ritchie, W. A. and Wilmut, I.Sheep cloned by nuclear transfer from a cultured cell line. Nature 380 (1996), 64–6CrossRefGoogle ScholarPubMed
Duke, R. C., Ojcius, D. M. and Young, J. D.Cell suicide in health and disease. Sci. Am. 275 (1996), 80–7CrossRefGoogle ScholarPubMed
Finch, C. E. and Kirkwood, T. B. L. Chance, Development, and Aging, ed. C. E. Finch and T. B. L. Kirkwood. (New York, NY: Oxford University Press, 2000), pp. 1–278
Greider, C. W. and Blackburn, E. H.Telomeres, telomerase and cancer. Sci. Am. 274 (1996), 92–7CrossRefGoogle ScholarPubMed
Kalter, H.Teratology in the 20th century. Environmental causes of congenital malformations in humans and how they were established. Neurotoxicol. Teratol. 25 (2003), 131–282CrossRefGoogle ScholarPubMed
Klip, H., Werloop, J., Gool, J. D.et al.Hypospadias in sons of women exposed to diethylstilbestrol in utero: a cohort study. Lancet 359 (2002), 1102–07CrossRefGoogle ScholarPubMed
Schwartz, R. H. and Jaffe, S. J. Drug and Chemical Risks to the Fetus and Newborn (New York, NY: Alan Liss, 1980)
West-Eberhard, M. J. Developmental Plasticity and Evolution. (New York, NY: Oxford University Press, 2003)
Avner, P. and Head, E.X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet. 2 (2001), 59–67CrossRefGoogle ScholarPubMed
Beutler, E.Glucose-6-phosphate dehydrogenase deficiency. New Engl. J. Med. 324 (1991), 169–74Google ScholarPubMed
Blott, S., Kim, J.-J., Moisio, S.et al.Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163 (2003), 253–66Google ScholarPubMed
Daniels, R., Zuccotti, M., Kinis, T., Serhal, P. and Monk, M.Xist expression in human oocytes and preimplantation embryos. Am. J. Hum. Genet. 61 (1997), 33–9CrossRefGoogle ScholarPubMed
Goto, T. and Monk, M.Regulation of X-chromosome inactivation in development in mice and humans. Microbiol. Mol. Biol. Rev. 62 (1998), 362–78Google ScholarPubMed
Haig, D. and Graham, C.Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64 (1991), 1045–6Google ScholarPubMed
Hedborg, F., Holmgren, L., Sandstedt, B. and Ohlsson, R.The cell type-specific IGF2 expression during early human development correlates to the pattern of overgrowth and neoplasia in the Beckwith–Wiedemann syndrome. Am. J. Pathol. 145 (1994), 802–17Google ScholarPubMed
*Henig, R. M. A Monk and Two Peas: The Story of Gregor Mendel and the Discovery of Genetics. (Weidenfeld & Nicolson/Houghton Mifflin, 2000)
Hollon, T.Human genes: how many? The Scientist 15 (2001), 1Google Scholar
Jaenisch, R. and Bird, A.Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33 (2003), 245–54CrossRefGoogle ScholarPubMed
Miozzo, M. and Simoni, G.The role of imprinted genes in fetal growth. Biol. Neonate 81 (2002), 217–28CrossRefGoogle ScholarPubMed
Reik, W. and Maher, E. R.Imprinting in clusters: lessons from Beckwith–Wiedemann syndrome. Trends in Genetics 13 (1997), 330–4CrossRefGoogle ScholarPubMed
Sapienza, C.Parental imprinting of genes. Sci. Am. 263 (1990), 26–32CrossRefGoogle ScholarPubMed
The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72 (1993), 817–18
*Tudge, C. In Mendel's Footnotes, ed. C. Tudge (London: Vintage, 2002)
Waterland, R. A. and Garza, C.Potential mechanisms of metabolic imprinting that lead to chronic disease. Am. J. Clin. Nutr. 69 (1999), 179–97CrossRefGoogle ScholarPubMed
Waterland, R. A. and Jirtle, R. L.Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell Biol. 23 (2003), 5293–300CrossRefGoogle ScholarPubMed
Wolff, G. L., Kodell, R. L., Moore, S. R. and Cooney, C. A.Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 12 (1998), 949–57CrossRefGoogle ScholarPubMed
Agrawal, A. A., Laforsch, C. and Tollrian, R.Transgenerational induction of defences in animals and plants. Nature 401 (1999), 60–3CrossRefGoogle Scholar
Alekseev, V. and Lampert, W.Maternal control of resting-egg production inDaphnia. Nature 414 (2001), 899–901CrossRefGoogle ScholarPubMed
Bernardo, J.Maternal effects in animal ecology. Am. Zoology 36 (1996), 83–105CrossRefGoogle Scholar
Engh, A. L., Esch, K., Smale, L. and Holekamp, K. E.Mechanisms of maternal rank ‘inheritance’ in the spotted hyaena, Crocuta crocuta.Anim. Behav. 60 (2000), 323–32CrossRefGoogle ScholarPubMed
Herbst, A. L., Ulfelder, H. and Poskanzer, D. C.Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N. Engl. J. Med. 284 (1971), 878–81CrossRefGoogle ScholarPubMed
Kruuk, L. E. B., Clutton-Brock, T. H., Slate, J., et al. Heritability of fitness in a wild mammal population. Proc. Nat. Acad. Sci. 97 (2000), 698–703CrossRefGoogle Scholar
Lacey, E. P. What is an adaptive environmentally induced parental effect? In Maternal Effects as Adaptations, ed. T. A. Mousseau and C. W. Fox. (Oxford: Oxford University Press, 1998), pp. 54–66
Mousseau, T. A. and Fox, C. W., eds. Maternal Effects as Adaptations. (New York, NY: Oxford University Press, 1998.)
Pembrey, M. E.Time to take epigenetic inheritance seriously. Eur. J. Human Genetics 10 (2002), 669–71CrossRefGoogle ScholarPubMed
Rossiter, M. C.Incidence and consequences of inherited environmental effects. Annu. Rev. Ecol. System 27 (1996), 451–76CrossRefGoogle Scholar
Keller, G., Zimmer, G., Mall, G., Ritz, E. and Amann, K.Nephron number in patients with primary hypertension. New Engl. J. Med. 348 (2003), 101–8CrossRefGoogle ScholarPubMed
McNamara, J. J., Molot, M. A., Stremple, J. F. and Cutting, R. T.Coronary artery disease in combat casualties in Vietnam. JAMA 216 (1971), 1185–7CrossRefGoogle ScholarPubMed
Renaud, S. and Lorgeril, M.Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339 (1992), 1523–6CrossRefGoogle ScholarPubMed
Diamond, J.The double puzzle of diabetes. Nature 423 (2003), 599–602CrossRefGoogle ScholarPubMed
Groop, L. Genetics of the metabolic syndrome. Br. J. Nutr. 83 (2000), s39–48CrossRef
Hill, D. J. and Duvillie, B.Pancreatic development and adult diabetes. Pediatr. Res. 48 (2000), 269–74CrossRefGoogle ScholarPubMed
McIntyre, E. A. and Walker, M.Genetics of type 2 diabetes and insulin resistance: knowledge from human studies. Clin. Endocrinol. 57 (2002), 303–11CrossRefGoogle ScholarPubMed
Neel, J. V.The “thrifty genotype” in 1998. Nutr. Rev. 57 (1999), s2–9CrossRefGoogle Scholar
Pizzuti, A., Frittitta, L., Argiolas, A.et al. A polymorphism (K121Q) of the human glycoprotein PC-1 gene coding region is strongly associated with insulin resistance. Diabetes 48 (1999), 1881–4CrossRefGoogle ScholarPubMed
Plagemann, A., Harder, T., Kohlhoff, R., Rohde, W. and Dörner, G.Glucose tolerance and insulin secretion in children of mothers with pregestational IDDM or gestational diabetes. Diabetologia 40 (1997a), 1094–100CrossRefGoogle Scholar
Plagemann, A., Harder, T., Kohlhoff, R., Rohde, W. and Dörner, G.Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int. J. Obes. Relat. Metab. Disord. 21 (1997b), 451–6CrossRefGoogle Scholar
Pugliese, A. and Miceli, D.The insulin gene in diabetes. Diabetes. Metab. Res. Rev. 18 (2002), 13–25CrossRefGoogle ScholarPubMed
Reaven, G. M. and Laws, A. Insulin Resistance: The Metabolic Syndrome X, ed. G. M. Reaven and A. Laws. (Humana Press, 1999)
Reece, E. A. and Coustan, D. R., eds. Diabetes Mellitus in Pregnancy. (Churchill Livingstone Inc., 1995.)
Sobngwi, E., Boudou, P., Mauvais-Jarvis, F., et al. Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet 361 (2003), 1861–5CrossRefGoogle ScholarPubMed
Stanhope, J. M. and Prior, I. A.The Tokelau island migrant study: prevalence and incidence of diabetes mellitus. NZ Med. J. 92 (1980), 417–21Google ScholarPubMed
Björntorp, P.Thrifty genes and human obesity. Are we chasing ghosts? Lancet 358 (2001), 1006–8CrossRefGoogle ScholarPubMed
Bougnères, P.Genetics of obesity and type 2 diabetes. Diabetes 41 (2002), S295–303CrossRefGoogle Scholar
Bujalska, I. J., Kumar, S. and Stewart, P. M.Does central obesity reflect “Cushing's disease of the omentum”? Lancet 349 (1997), 1210–13CrossRefGoogle Scholar
Crescenzo, R., Samec, S., Antic, V.et al. A role for suppressed thermogenesis favoring catch-up fat in the pathophysiology of catch-up growth. Diabetes 52 (2003), 1090–7CrossRefGoogle ScholarPubMed
Cuthill, I. C., Maddocks, S. A., Weall, C. V. and Jones, E. K. M.Body mass regulation in response to changes in feeding predictability and overnight energy expenditure. Behav. Ecol. 11 (2000), 189–95CrossRefGoogle Scholar
Dulloo, A. G., Jacquet, J. and Montani, J. P.Pathways from weight fluctuations to metabolic diseases: focus on maladaptive thermogenesis during catch-up fat. Int. J. Obesity and Related Metab. Disorders 26 (2000), S46–57CrossRefGoogle Scholar
Friedman, J. M.The function of leptin in nutrition, weight, and physiology. Nutr. Rev. 60 (2002), S1–14CrossRefGoogle ScholarPubMed
Grinspoon, S., Gulick, T., Askari, H.et al. Serum leptin levels in women with anorexia nervosa. J. Clin. Endocrinol. Metab. 81 (1996), 3861–3Google ScholarPubMed
Jones, C. O. and White, N. G.Adiposity in aboriginal people from Arnhem Land, Australia: variation in degree and distribution associated with age, sex and lifestyle. Annals. Human. Biol. 21 (1994), 207–27CrossRefGoogle Scholar
Lee, R. B. The allocation of nutritional stress. In The!Kung San. Men, Women, and Work in a Foraging Society, ed. R. B. Lee. (Cambridge: Cambridge University Press, 1979), pp. 281–305
Lev-Ran, A.Human obesity: an evolutionary approach to understanding our bulging waistline. Diabetes Metab. Res. Rev. 17 (2001), 347–62CrossRefGoogle ScholarPubMed
Montague, C. T., Farooqi, I. S., Whitehead, J. P.et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387 (1997), 903–8CrossRefGoogle ScholarPubMed
Montague, C. T. and O'Rahilly, S.Perspectives in diabetes. The perils of portliness. Causes and consequences of visceral adiposity. Diabetes 49 (2000), 883–8CrossRefGoogle Scholar
Pond, C. M.Paracrine interactions of mammalian adipose tissue. J. Experimental Zoology 295A (2003), 99–110CrossRefGoogle Scholar
Schroeder, D. G., Martorell, R. and Flores, R.Infant and child growth and fatness and fat distribution in Guatemalan adults. Am. J. Epidemiol. 149 (1999), 177–85CrossRefGoogle ScholarPubMed
Wilmsen, E. N.Seasonal effects of dietary intake on Kalahari San. Federation Proc. 37 (1978), 65–72Google ScholarPubMed
Zhang, Y., Proenca, R., Maffei, M.et al.Positional cloning of the mouse obese gene and its human homologue. Nature 372 (1994), 425–32CrossRefGoogle ScholarPubMed
Zierath, J. R., Livingston, J. N., Thorne, A.et al. Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia 41 (1998), 1343–54CrossRefGoogle ScholarPubMed
Cooper, C., Cawley, M., Bhalla, A.et al. Childhood growth, physical activity, and peak bone mass in women. J. Bone Mineral Res. 10 (1995), 940–7CrossRefGoogle ScholarPubMed
Cooper, C., Eriksson, J. G., Forsen, T.et al. Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos. Int. 12 (2001), 623–9CrossRefGoogle ScholarPubMed
Cooper, C., Fall, C., Egger, P.et al. Growth in infancy and bone mass in later life. Ann. Rheum. Dis. 56 (1997), 17–21CrossRefGoogle ScholarPubMed
Cooper, C., Javaid, M. K., Taylor, P.et al. The fetal origins of osteoporotic fracture. Calcif. Tiss. Int. 70 (2002), 391–4CrossRefGoogle ScholarPubMed
Cooper, C., Walker-Bone, K., Arden, N. and Dennison, E.Novel insights into the pathogenesis of osteoporosis: the role of intrauterine programming. Rheumatology 39 (2000), 1312–15CrossRefGoogle ScholarPubMed
Geusens, P. P. M. M. and Boonen, S.Osteoporosis and the growth hormone-insulin-like growth factor axis. Horm. Res. 58 Suppl. 3 (2002), 49–55Google ScholarPubMed
Javaid, M. K. and Cooper, C.Prenatal and childhood influences on osteoporosis. Best Practice and Res. Clin. Endocrinol. Metab. 16 (2002), 349–67CrossRefGoogle ScholarPubMed
Wajchenberg, B. L.Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev. 21 (2000), 697–738CrossRefGoogle ScholarPubMed
Courchesne, E., Carper, R. and Akshoomoff, N.Evidence of brain overgrowth in the first year of life in autism. JAMA 290 (2003), 337–44CrossRefGoogle ScholarPubMed
Creswell, J., Fraser, R. P., Bruce, C., et al.Relationship between polycystic ovaries, body mass index and insulin resistance. Acta Obstet. Gynecol. Scand. 82 (2003), 61–4CrossRefGoogle Scholar
Gale, C. R., O'Callaghan, F. J., Godfrey, K. M., Law, C. M., Martyn, C. N.Critical periods of brain growth and cognitive function in children. Brain 127 (2004), 321–9CrossRefGoogle ScholarPubMed
Gale, C. R., Walton, S., Martyn, C. N.Fetal and postnatal head growth and risk of cognitive decline in old age. Brain 126 (2003), 2273–8CrossRefGoogle ScholarPubMed
Hill, E. L. and Frith, U.Understanding autism: insights from mind and brain. Phil. Trans. R. Soc. Lond. B 358 (2003), 281–9CrossRefGoogle ScholarPubMed
Shibata, Y., Yamashita, S., Masyakin, V. B., Panasyuk, G. D. and Nagataki, S.15 years after Chernobyl: new evidence of thyroid cancer. Lancet 358 (2001), 1965–6CrossRefGoogle ScholarPubMed
Vila, M. and Przedborski, S.Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci. 4 (2003), 365–75CrossRefGoogle ScholarPubMed
Keller, G., Zimmer, G., Mall, G., Ritz, E. and Amann, K.Nephron number in patients with primary hypertension. New Engl. J. Med. 348 (2003), 101–8CrossRefGoogle ScholarPubMed
McNamara, J. J., Molot, M. A., Stremple, J. F. and Cutting, R. T.Coronary artery disease in combat casualties in Vietnam. JAMA 216 (1971), 1185–7CrossRefGoogle ScholarPubMed
Renaud, S. and Lorgeril, M.Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339 (1992), 1523–6CrossRefGoogle ScholarPubMed
Diamond, J.The double puzzle of diabetes. Nature 423 (2003), 599–602CrossRefGoogle ScholarPubMed
Groop, L. Genetics of the metabolic syndrome. Br. J. Nutr. 83 (2000), s39–48CrossRef
Hill, D. J. and Duvillie, B.Pancreatic development and adult diabetes. Pediatr. Res. 48 (2000), 269–74CrossRefGoogle ScholarPubMed
McIntyre, E. A. and Walker, M.Genetics of type 2 diabetes and insulin resistance: knowledge from human studies. Clin. Endocrinol. 57 (2002), 303–11CrossRefGoogle ScholarPubMed
Neel, J. V.The “thrifty genotype” in 1998. Nutr. Rev. 57 (1999), s2–9CrossRefGoogle Scholar
Pizzuti, A., Frittitta, L., Argiolas, A.et al. A polymorphism (K121Q) of the human glycoprotein PC-1 gene coding region is strongly associated with insulin resistance. Diabetes 48 (1999), 1881–4CrossRefGoogle ScholarPubMed
Plagemann, A., Harder, T., Kohlhoff, R., Rohde, W. and Dörner, G.Glucose tolerance and insulin secretion in children of mothers with pregestational IDDM or gestational diabetes. Diabetologia 40 (1997a), 1094–100CrossRefGoogle Scholar
Plagemann, A., Harder, T., Kohlhoff, R., Rohde, W. and Dörner, G.Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int. J. Obes. Relat. Metab. Disord. 21 (1997b), 451–6CrossRefGoogle Scholar
Pugliese, A. and Miceli, D.The insulin gene in diabetes. Diabetes. Metab. Res. Rev. 18 (2002), 13–25CrossRefGoogle ScholarPubMed
Reaven, G. M. and Laws, A. Insulin Resistance: The Metabolic Syndrome X, ed. G. M. Reaven and A. Laws. (Humana Press, 1999)
Reece, E. A. and Coustan, D. R., eds. Diabetes Mellitus in Pregnancy. (Churchill Livingstone Inc., 1995.)
Sobngwi, E., Boudou, P., Mauvais-Jarvis, F., et al. Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet 361 (2003), 1861–5CrossRefGoogle ScholarPubMed
Stanhope, J. M. and Prior, I. A.The Tokelau island migrant study: prevalence and incidence of diabetes mellitus. NZ Med. J. 92 (1980), 417–21Google ScholarPubMed
Björntorp, P.Thrifty genes and human obesity. Are we chasing ghosts? Lancet 358 (2001), 1006–8CrossRefGoogle ScholarPubMed
Bougnères, P.Genetics of obesity and type 2 diabetes. Diabetes 41 (2002), S295–303CrossRefGoogle Scholar
Bujalska, I. J., Kumar, S. and Stewart, P. M.Does central obesity reflect “Cushing's disease of the omentum”? Lancet 349 (1997), 1210–13CrossRefGoogle Scholar
Crescenzo, R., Samec, S., Antic, V.et al. A role for suppressed thermogenesis favoring catch-up fat in the pathophysiology of catch-up growth. Diabetes 52 (2003), 1090–7CrossRefGoogle ScholarPubMed
Cuthill, I. C., Maddocks, S. A., Weall, C. V. and Jones, E. K. M.Body mass regulation in response to changes in feeding predictability and overnight energy expenditure. Behav. Ecol. 11 (2000), 189–95CrossRefGoogle Scholar
Dulloo, A. G., Jacquet, J. and Montani, J. P.Pathways from weight fluctuations to metabolic diseases: focus on maladaptive thermogenesis during catch-up fat. Int. J. Obesity and Related Metab. Disorders 26 (2000), S46–57CrossRefGoogle Scholar
Friedman, J. M.The function of leptin in nutrition, weight, and physiology. Nutr. Rev. 60 (2002), S1–14CrossRefGoogle ScholarPubMed
Grinspoon, S., Gulick, T., Askari, H.et al. Serum leptin levels in women with anorexia nervosa. J. Clin. Endocrinol. Metab. 81 (1996), 3861–3Google ScholarPubMed
Jones, C. O. and White, N. G.Adiposity in aboriginal people from Arnhem Land, Australia: variation in degree and distribution associated with age, sex and lifestyle. Annals. Human. Biol. 21 (1994), 207–27CrossRefGoogle Scholar
Lee, R. B. The allocation of nutritional stress. In The!Kung San. Men, Women, and Work in a Foraging Society, ed. R. B. Lee. (Cambridge: Cambridge University Press, 1979), pp. 281–305
Lev-Ran, A.Human obesity: an evolutionary approach to understanding our bulging waistline. Diabetes Metab. Res. Rev. 17 (2001), 347–62CrossRefGoogle ScholarPubMed
Montague, C. T., Farooqi, I. S., Whitehead, J. P.et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387 (1997), 903–8CrossRefGoogle ScholarPubMed
Montague, C. T. and O'Rahilly, S.Perspectives in diabetes. The perils of portliness. Causes and consequences of visceral adiposity. Diabetes 49 (2000), 883–8CrossRefGoogle Scholar
Pond, C. M.Paracrine interactions of mammalian adipose tissue. J. Experimental Zoology 295A (2003), 99–110CrossRefGoogle Scholar
Schroeder, D. G., Martorell, R. and Flores, R.Infant and child growth and fatness and fat distribution in Guatemalan adults. Am. J. Epidemiol. 149 (1999), 177–85CrossRefGoogle ScholarPubMed
Wilmsen, E. N.Seasonal effects of dietary intake on Kalahari San. Federation Proc. 37 (1978), 65–72Google ScholarPubMed
Zhang, Y., Proenca, R., Maffei, M.et al.Positional cloning of the mouse obese gene and its human homologue. Nature 372 (1994), 425–32CrossRefGoogle ScholarPubMed
Zierath, J. R., Livingston, J. N., Thorne, A.et al. Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia 41 (1998), 1343–54CrossRefGoogle ScholarPubMed
Cooper, C., Cawley, M., Bhalla, A.et al. Childhood growth, physical activity, and peak bone mass in women. J. Bone Mineral Res. 10 (1995), 940–7CrossRefGoogle ScholarPubMed
Cooper, C., Eriksson, J. G., Forsen, T.et al. Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos. Int. 12 (2001), 623–9CrossRefGoogle ScholarPubMed
Cooper, C., Fall, C., Egger, P.et al. Growth in infancy and bone mass in later life. Ann. Rheum. Dis. 56 (1997), 17–21CrossRefGoogle ScholarPubMed
Cooper, C., Javaid, M. K., Taylor, P.et al. The fetal origins of osteoporotic fracture. Calcif. Tiss. Int. 70 (2002), 391–4CrossRefGoogle ScholarPubMed
Cooper, C., Walker-Bone, K., Arden, N. and Dennison, E.Novel insights into the pathogenesis of osteoporosis: the role of intrauterine programming. Rheumatology 39 (2000), 1312–15CrossRefGoogle ScholarPubMed
Geusens, P. P. M. M. and Boonen, S.Osteoporosis and the growth hormone-insulin-like growth factor axis. Horm. Res. 58 Suppl. 3 (2002), 49–55Google ScholarPubMed
Javaid, M. K. and Cooper, C.Prenatal and childhood influences on osteoporosis. Best Practice and Res. Clin. Endocrinol. Metab. 16 (2002), 349–67CrossRefGoogle ScholarPubMed
Wajchenberg, B. L.Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev. 21 (2000), 697–738CrossRefGoogle ScholarPubMed
Courchesne, E., Carper, R. and Akshoomoff, N.Evidence of brain overgrowth in the first year of life in autism. JAMA 290 (2003), 337–44CrossRefGoogle ScholarPubMed
Creswell, J., Fraser, R. P., Bruce, C., et al.Relationship between polycystic ovaries, body mass index and insulin resistance. Acta Obstet. Gynecol. Scand. 82 (2003), 61–4CrossRefGoogle Scholar
Gale, C. R., O'Callaghan, F. J., Godfrey, K. M., Law, C. M., Martyn, C. N.Critical periods of brain growth and cognitive function in children. Brain 127 (2004), 321–9CrossRefGoogle ScholarPubMed
Gale, C. R., Walton, S., Martyn, C. N.Fetal and postnatal head growth and risk of cognitive decline in old age. Brain 126 (2003), 2273–8CrossRefGoogle ScholarPubMed
Hill, E. L. and Frith, U.Understanding autism: insights from mind and brain. Phil. Trans. R. Soc. Lond. B 358 (2003), 281–9CrossRefGoogle ScholarPubMed
Shibata, Y., Yamashita, S., Masyakin, V. B., Panasyuk, G. D. and Nagataki, S.15 years after Chernobyl: new evidence of thyroid cancer. Lancet 358 (2001), 1965–6CrossRefGoogle ScholarPubMed
Vila, M. and Przedborski, S.Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci. 4 (2003), 365–75CrossRefGoogle ScholarPubMed
Aplin, J.Maternal influences on placental development. Seminars in Cell & Dev. Biol. 11 (2000), 115–25CrossRefGoogle ScholarPubMed
*Barker, D. The Best Start in Life. (London: Arrow 2003.)
Barker, D. J., Gluckman, P. D., Godfrey, K. M.et al.Fetal nutrition and cardiovascular disease in adult life. Lancet 341 (1993), 938–41CrossRefGoogle ScholarPubMed
Barker, D. J. P., ed. Fetal Origins of Cardiovascular and Lung Disease. (New York, NY: Marcel Dekker, Inc., 2001.)
Bertram, C., Hanson, M. A. Animal models and the programming of the metabolic syndrome. In Type 2 Diabetes: The Thrifty Phenotype, ed. D. J. P. Barker. Br. Med. Bull.60 (2001): 103–21
Bertram, C. E. and Hanson, M. A.Prenatal programming of postnatal endocrine responses by glucocorticoids. Repro. 124 (2002): 459–67CrossRefGoogle ScholarPubMed
Bloomfield, F. H. and Harding, J. E.Experimental aspects of nutrition and fetal growth. Fetal and Maternal Med. Rev. 10 (1998), 91–107CrossRefGoogle Scholar
Cianfarani, S., Geremia, C., Scott, C. D., and Germani, D. Growth, IGF system and cortisol in children with intrauterine growth retardation: is catch-up growth affected by reprogramming of the hypothalamic–pituitary–adrenal axis? Pediatr. Res. 51 (2002), 94–9CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Hanson, M. A.The developmental origins of the metabolic syndrome. Trends in Endocrinology and Metabolism (Hormones and the Heart Symposium) 15 (2004), 183–7CrossRefGoogle ScholarPubMed
Hales, C. N. and Barker, D. J.Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35 (1992), 595–601CrossRefGoogle ScholarPubMed
Hales, C. N. and Barker, D. J.The thrifty phenotype hypothesis. Br. Med. Bull. 60, 5 (2001), 20CrossRefGoogle ScholarPubMed
Hanson, M. A. and Gluckman, P. D.The effects of pre-natal nutrition on cardiovascular function in offspring: some insights from comparative biology. Havemeyer Foundation Monograph Series, No. 10 (2003a): 51–4Google Scholar
Hanson, M. A. and Gluckman, P. D.The human camel: the concept of predictive adaptive responses and the obesity epidemic. Pract. Diabetes Int. 20, 8 (2003b): 267CrossRefGoogle Scholar
Harding, J. E. and Gluckman, P. D. Growth, metabolic and endocrine adaptations to fetal undernutrition. In Fetal Origins of Cardiovascular Disease and Lung Disease. Lung Biology in Health and Disease, ed. D. J. P. Barker (New York, NY: Marcel Dekkar, 2001), pp. 181–97
Hoet, J. J. and Hanson, M. A.Intrauterine nutrition: its importance during critical periods for cardiovascular and endocrine development. J. Physiol. 514 (1999), 617–27CrossRefGoogle ScholarPubMed
Ingelfinger, J. R.Is microanatomy destiny? New Engl. J. Med. 348 (2003), 99–100CrossRefGoogle ScholarPubMed
Law, C. M.Significance of birth weight for the future. Arch. Dis. Child. Neonatal Edn. 86 (2002), F7–8CrossRefGoogle ScholarPubMed
Moritz, K. M., Dodic, M. and Wintour, E. M.Kidney development and the fetal programming of adult disease. Bioessays 25, 3(2003), 212–20CrossRefGoogle ScholarPubMed
Robinson, R. The fetal origins of adult disease. BMJ 322 (2001), 375–6CrossRef
Silverman, B. L., Cho, N. H., Rizzo, T. A. and Metzger, B. E.Long-term effects of the intrauterine environment. Diabetes Care 21 (1998), B142–9Google ScholarPubMed
Wells, J. C. K.The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? J. Theor. Biol. 221 (2003), 143–61CrossRefGoogle ScholarPubMed
Wintour, E. M., Johnson, K., Koukoulas, I.et al. Programming the cardiovascular system, kidney and the brain: a review. Placenta 24 (2003), Suppl. A Trophoblast Res., S65–71CrossRefGoogle ScholarPubMed
Adair, L. S., Kuzawa, C. W., and Borja, J.Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation 104 (2001), 1034–9CrossRefGoogle ScholarPubMed
Anderson, P. and Doyle, L. W.Neurobehavioral outcomes in school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 289 (2003), 3264–72CrossRefGoogle ScholarPubMed
Barker, D. J. P.The foetal and infant origins of inequalities in health in Britain. J. Public Health Med. 13 (1991), 64–8Google ScholarPubMed
* Barker, D. J. P. Mothers, Babies and Health in Later Life. (Edinburgh: Churchill Livingstone, 1998.)
Barker, D. J. P.Intrauterine nutrition may be important. BMJ 318 (1999), 1477–8Google ScholarPubMed
Barker, D. J. P., Bull, A. R., Osmond, C. and Simmonds, S. J.Fetal and placental size and risk of hypertension in adult life. BMJ 301(1990), 259–62CrossRefGoogle ScholarPubMed
Barker, D. J. P., Eriksson, J. G., Forsén, T., and Osmond, C.Fetal origins of adult disease: strength of effects and biological basis. Int. J. Epidemiol. 31(2002), 1235–9CrossRefGoogle ScholarPubMed
Barker, D. J. P., Forsen, T., Eriksson, J. G., and Osmond, C.Growth and living conditions in childhood and hypertension in adult life: a longitudinal study. J. Hypertens. 20 (2002), 1951–6CrossRefGoogle ScholarPubMed
Barker, D. J. P., Forsen, T., Uutela, A., Osmond, C., and Eriksson, J. G.Size at birth and resilience to effects of poor living conditions in adult life: longitudinal study. BMJ 323 (2001), 1273–6CrossRefGoogle ScholarPubMed
Barker, D. J. P., Godfrey, K. M., Osmond, C., and Bull, A.The relation of fetal length, ponderal index and head circumference to blood pressure and the risk of hypertension in adult life. Paediatr. Perinatal Epidemiol. 6 (1992), 35–44CrossRefGoogle ScholarPubMed
Barker, D. J. P. and Lackland, D. T.Prenatal influences on stroke mortality in England and Wales. Stroke 34 (2003), 1598–602CrossRefGoogle ScholarPubMed
Barker, D. J. P., Osmond, C., Simmonds, S. J., and Weild, G. A.The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ 306 (1993), 422–6CrossRefGoogle ScholarPubMed
Barker, D. J. P., Winter, P. D., Osmond, C., Margetts, B. and Simmonds, S. J.Weight in infancy and death from ischaemic heart disease. Lancet 2 (8663) (1989), 577–80CrossRefGoogle ScholarPubMed
Barker, M., Robinson, S., Osmond, C. and Barker, D. J. P.Birth weight and body fat distribution in adolescent girls. Arch. Dis. Child. 77 (1997), 381–3CrossRefGoogle ScholarPubMed
Bavdekar, A., Yajnik, C. S., Fall, C. H.et al.Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes 48 (1999), 2422–9CrossRefGoogle Scholar
Bolt, R. J., Weissenbruch, M. M., Popp-Snijdeers, C. et al.Fetal growth and the function of the adrenal cortex in preterm infants. J. Clin. Endocrinol. Metab. 87 (2002), 1194–9CrossRefGoogle ScholarPubMed
Brenner, B. M. and Chertow, G. M.Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am. J. Kidney Dis. 23 (1994), 171–5CrossRefGoogle ScholarPubMed
Brenner, B. M., Garcia, D. L., and Anderson, S.Glomeruli and blood pressure: less of one, more of the other? Am. J. Hypertens. 1 (1988), 335–47CrossRefGoogle ScholarPubMed
Campbell, D. M., Hall, M. H., Barker, D. J.et al. Diet in pregnancy and the offspring's blood pressure 40 years later. Br. J. Obstet. Gynaecol. 103 (1996), 273–80CrossRefGoogle ScholarPubMed
Cho, N., Silverman, B. L., Rizzo, T. A. and Metzger, B. E.Correlations between the intrauterine metabolic environment and blood pressure in adolescent offspring of diabetic mothers. J. Pediatr. 136 (2000), 587–92CrossRefGoogle ScholarPubMed
Chotai, J., Forsgren, T., Nilsson, L.-G. and Adolfsson, R.Season of birth variations in the temperament and character inventory of personality in a general population. Neuropsychobiol. 44 (2001), 19–26CrossRefGoogle Scholar
Chotai, J. and Salander-Renberg, E.Season of birth variations in suicide methods in relation to any history of psychiatric contacts support an independent suicidality trait. J. Affect. Disorder. 69 (2002), 69–81CrossRefGoogle ScholarPubMed
Clark, P. M., Atton, C., Law, C. M.et al.Weight gain in pregnancy, triceps skinfold thickness, and blood pressure in offspring. Obstet. Gynecol. 91 (1998), 103–7CrossRefGoogle ScholarPubMed
Cresswell, J. L., Egger, P., Fall, C. H. D.et al. Is the age of menopause determined in-utero? Early Hum. Dev. 49 (1997), 143–8CrossRefGoogle ScholarPubMed
Doblhammer, G. and Vaupel, J. W.Lifespan depends on month of birth. Proc. Natl. Acad. Sci. 98 (2001a), 2934–9CrossRefGoogle Scholar
dos Santos Silva, I., Stavola, B. L., Mann, V.et al. Prenatal factors, childhood growth trajectories and age at menarche. Int. J. Epidemiol. 31 (2002), 405–12CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C. and Barker, D. J. P.Early growth, adult income, and risk of stroke. Stroke 31 (2000), 869–74CrossRefGoogle ScholarPubMed
Eriksson, J., Forsén, T., Tuomilehto, J., Osmond, C., and Barker, D.Size at birth, childhood growth and obesity in adult life. Int. J. Obesity 25 (2001a), 735–40CrossRefGoogle Scholar
Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C. and Barker, D. J.Early growth and coronary heart disease in later life: longitudinal study. BMJ 322 (2001b), 949–53CrossRefGoogle Scholar
Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C. and Barker, D. J.Early adiposity rebound in childhood and risk of Type 2 diabetes in adult life. Diabetologia 46 (2003), 190–4CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsén, T., Tuomilehto, J.et al.Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 318 (1999), 427–31CrossRefGoogle ScholarPubMed
Eriksson, J. G., Lindi, V., Uusitupa, M. et al.The effects of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 gene on insulin sensitivity and insulin metabolism interact with size at birth. Diabetes 51 (2002), 2321–4CrossRefGoogle ScholarPubMed
Eriksson, J. G., Osmond, C., Lindi, V. et al.Interactions between peroxisome proliferator-activated receptor gene polymorphism and birth length influence risk for type 2 diabetes. Diabetes Care 26 (2003), 2476–7CrossRefGoogle ScholarPubMed
Fall, C. H., Barker, D. J., Osmond, C. et al.Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease. BMJ 304 (1992), 801–5CrossRefGoogle ScholarPubMed
Fall, C., Hindmarsh, P., Dennison, E. et al.Programming of growth hormone secretion and bone mineral density in elderly men – a hypothesis. J. Clin. Endocrinol. Metab. 83 (1998a), 135–9Google Scholar
Fall, C. H., Pandit, A. N., Law, C. M.et al.Size at birth and plasma insulin-like growth factor-1 concentrations in childhood. Arch. Dis. Childhood 73 (1995), 287–93CrossRefGoogle Scholar
Fall, C. H., Stein, C. E., Kumaran, K.et al.Size at birth, maternal weight, and Type 2 diabetes in South India. Diabetic Med. 15 (1998), 220–73.0.CO;2-O>CrossRefGoogle ScholarPubMed
Fewtrell, M. S., Doherty, C., Cole, T. J.et al.Effects of size at birth, gestational age and early growth in preterm infants on glucose and insulin concentrations at 9–12 years. Diabetologia 43 (2000), 714–17CrossRefGoogle ScholarPubMed
Flanagan, D. E., Vaile, J. C., Petley, G. W.et al.The autonomic control of heart rate and insulin resistance in young adults. J. Clin. Endocrinol. Metab. 84 (1999), 1263–7Google ScholarPubMed
Forrester, T. E., Wilks, R. J., Bennett, F. I. et al.Fetal growth and cardiovascular risk factors in Jamaican schoolchildren. BMJ 312 (1996), 156–60CrossRefGoogle ScholarPubMed
Forsdahl, A.Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br. J. Preventive Social. Med. 31 (1977), 91–5Google ScholarPubMed
Forsdahl, A.Living conditions in childhood and subsequent development of risk factors for arteriosclerotic heart disease. The cardiovascular survey in Finnmark 1974–75. J. Epidemiol. Community Health 32 (1978), 34–7CrossRefGoogle ScholarPubMed
Forsén, T., Eriksson, J. G., Tuomilehto, J., Osmond, C. and Barker, D. J. P.Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ 319 (1999), 1403–7CrossRefGoogle ScholarPubMed
Forsén, T., Eriksson, J., Tuomilehto, J. et al.The fetal and childhood growth of persons who develop type 2 diabetes. Ann. Intern. Med. 133 (2000), 176–82CrossRefGoogle ScholarPubMed
Forsén, T., Eriksson, J. G., Tuomilehto, J. et al.Mother's weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ 315 (1997), 837–40CrossRefGoogle Scholar
Gale, C. R., Martyn, C. N., Kellingray, S., Eastell, R. and Cooper, C.Intrauterine programming of adult body composition. J. Clin. Endocrinol. Metab. 86 (2001), 267–72Google ScholarPubMed
Gale, C. R., Walton, S. and Martyn, C. N.Foetal and postnatal head growth and risk of cognitive decline in old age. Brain 126 (2003), 2273–8CrossRefGoogle ScholarPubMed
Godfrey, K. M., Barker, D. J., Robinson, S. and Osmond, C.Maternal birthweight and diet in pregnancy in relation to the infant's thinness at birth. Br. J. Obstet. Gynaecol. 104 (1997), 663–7CrossRefGoogle ScholarPubMed
Godfrey, K., Robinson, S., Barker, D. J., Osmond, C. and Cox, V.Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 312 (1996), 410–14CrossRefGoogle ScholarPubMed
Hales, C. H., Barker, D. J., Clark, P. M. et al.Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303 (1991), 1019–22CrossRefGoogle ScholarPubMed
Hardy, R. and Kuh, D.Does early growth influence timing of the menopause? Evidence from a British birth cohort. Hum. Reprod. 17 (2002), 2474–9CrossRefGoogle ScholarPubMed
Hattersley, A. T., Beards, F., Ballantyne, E. et al.Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat. Genet. 19 (1998), 209–10CrossRefGoogle ScholarPubMed
Hilakivi-Clarke, L., Forsén, T., Eriksson, J. G. et al.Tallness and overweight during childhood have opposing effects on breast cancer risk. Br. J. Cancer 85 (2001), 1680–4CrossRefGoogle ScholarPubMed
Hofman, P. L., Cutfield, W. S., Robinson, E. M. et al.Insulin resistance in short children with intrauterine growth retardation. J. Clin. Endocrinol. Metab. 82 (1997), 402–6Google ScholarPubMed
Hokken-Koèlege, A. C. S.Timing of puberty and fetal growth. Best Practice and Res. Clin. Endocrinol. Metab. 16 (2002), 65–71CrossRefGoogle Scholar
Hultman, C. M., Sparén, P. and Cnattingius, S.Perinatal risk factors for infantile autism. Epidemiology 13 (2002), 417–23CrossRefGoogle ScholarPubMed
Huxley, R., Neil, A. and Collins, R.Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet 360 (2002), 659–65CrossRefGoogle ScholarPubMed
Ibáñez, L., Ferrer, A., Marcos, M. V., Hierro, F. R. and Zegher, F.Early puberty: rapid progression and reduced final height in girls with low birth weight. Pediatrics 106 (2000), 72–4CrossRefGoogle ScholarPubMed
Ibanez, L., Potau, N., Enriquez, G. and Zegher, F.Reduced uterine and ovarian size in adolescent girls born small for gestational age. Pediatr Res. 47 (2000), 575–7CrossRefGoogle ScholarPubMed
Ibáñez, L., Potau, N., Enriquez, G., Marcos, M. V. and DeZegher, F.Hypergonadotrophinaemia with reduced uterine and ovarian size in women born small-for-gestational-age. Hum. Reprod. 18 (2003), 1565–9CrossRefGoogle ScholarPubMed
Ibanez, L., Ong, K. K., Mongan, N. et al.Androgen receptor gene CAG repeat polymorphism in the development of ovarian hyperandrogenism. J. Clin. Endocrinol. Metab. 88 (2003), 3333–8CrossRefGoogle ScholarPubMed
Ibanez, L., Valls, C., Potau, N., Marcos, M. V. and Zegher, F.Polycystic ovary syndrome after precocious pubarche: ontogeny of the low-birthweight effect. Clin. Endocinol. 55 (2001), 667–72CrossRefGoogle ScholarPubMed
Ijzerman, R. G., Stehouwer, C. D., Geus, E. J. et al.Low birth weight is associated with increased sympathetic activity: dependence on genetic factors. Circulation 108 (2003), 566–71CrossRefGoogle ScholarPubMed
Jaquet, D., Tregouet, D. A., Godefroy, T. et al.Combined effects of genetic and environmental factors on insulin resistance associated with reduced fetal growth. Diabetes 51 (2002), 3473–8CrossRefGoogle ScholarPubMed
Jefferis, B. J. M. H., Power, C. and Hertzman, C.Birth weight, childhood socioeconomic environment, and cognitive development in the 1958 British birth cohort study. BMJ 325 (2002), 305–11CrossRefGoogle ScholarPubMed
Kaati, G., Bygren, L. O. and Edvinsson, S.Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur. J. Hum. Genet. 10 (2002), 682–8CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Perel, J.et al.The corticotropin-releasing hormone challenge in depressed abused, depressed nonabused, and normal control children. Biol. Psychiatry 42 (1997), 669–79CrossRefGoogle ScholarPubMed
Keen, R. W., Egger, P., Fall, C.et al.Polymorphisms of the vitamin D receptor, infant growth, and adult bone mass. Calcif. Tissue Int. 60 (1997), 233–5CrossRefGoogle ScholarPubMed
Kiserud, T.Liver length in the small-for-gestational-age fetus and ductus venosus flow. Am. J. Obstet. Gynecol. 182 (2000), 252–3CrossRefGoogle ScholarPubMed
Koziel, S. and Jankowska, E. A.Effect of low versus normal birthweight on menarche in 14-year-old Polish girls. J. Paediatr. Child Health 38 (2002), 268–71CrossRefGoogle ScholarPubMed
Kuh, D., Bassey, J., Hardy, R.et al.Birth weight, childhood size, and muscle strength in adult life: evidence from a birth cohort study. Am. J. Epidemiol. 156 (2002), 627–33CrossRefGoogle ScholarPubMed
Law, C. M., Swiet, M., Osmond, C.et al.Initiation of hypertension in utero and its amplification throughout life. BMJ 306 (1993), 24–7CrossRefGoogle ScholarPubMed
Law, C. M., Egger, P., Dada, O.et al.Body size at birth and blood pressure among children in developing countries. Int. J. Epidemiol. 30 (2001), 52–7CrossRefGoogle ScholarPubMed
Law, C. M., Shiell, A. W., Newsome, C. A.et al.Fetal, infant, and childhood growth and adult blood pressure: a longitudinal study from birth to 22 years of age. Circulation 105 (2002), 1088–92CrossRefGoogle ScholarPubMed
Limosin, F., Rouillon, F., Payan, C., Cohen, J. M. and Strub, N.Prenatal exposure to influenza as a risk factor for adult schizophrenia. Acta Psychiatr. Scand. 107 (2003), 331–5CrossRefGoogle ScholarPubMed
Lindsay, R. S., Bennett, P. H., Hanson, R. L. and Knowler, W. C.Secular trends in birth weight, BMI, and diabetes in the offspring of diabetic mothers. Diabetes Care 23 (2000), 1249–54CrossRefGoogle ScholarPubMed
Lucas, A. (1991). Programming by early nutrition in man. In The Childhood Environment, and Adult Disease, ed. G. R. Bock and J. Whelan (Chichester: John Wiley), pp. 38–55
Lucas, A., Morley, R. and Cole, T. J.Randomised trial of early diet in preterm babies and later intelligence quotient. BMJ 317 (1998), 1481–7CrossRefGoogle ScholarPubMed
Lumey, L. H. (1992). Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944–1945. Paediatr. Perinatal Epidemiol. 6, 240–53CrossRefGoogle ScholarPubMed
Lurbe, E., Torro, I., Rodriguez, C., Alvarez, V. and Redon, J.Birth weight influences blood pressure values and variability in children and adolescents. Hypertension 38 (2001), 389–93CrossRefGoogle ScholarPubMed
Mackenzie, H. S. and Brenner, B. M.Fewer nephrons at birth: a missing link in the etiology of essential hypertension? Am. J. Kidney Dis. 26 (1995), 91–8CrossRefGoogle ScholarPubMed
Martyn, C. N., Gale, C. R., Sayer, A. A. and Fall, C.Growth in utero and cognitive function in adult life: follow up study of people born between 1920 and 1943. BMJ 312 (1996), 1393–6CrossRefGoogle ScholarPubMed
Martyn, C. N. and Greenwald, S. E.A hypothesis about a mechanism for the programming of blood pressure and vascular disease in early life. Clin. Exp. Pharm. Physiol. 28 (2001), 948–51CrossRefGoogle ScholarPubMed
McAllister, A. S., Atkinson, A. B., Johnston, G. D. and McCance, D. R.Relationship of endothelial function to birth weight in humans. Diabetes Care 22 (1999), 2061–6CrossRefGoogle ScholarPubMed
McNeil, T. F., Cantor-Graae, E., Nordstrom, L. G. and Rosenlund, T.Head circumference in ‘preschizophrenic’ and control neonates. Br. J. Psychiatry 162 (1993), 517–23CrossRefGoogle ScholarPubMed
Mednick, S. A., Machon, R. A., Huttunen, M. O. and Bonett, D.Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiatry 45 (1988), 189–92CrossRefGoogle Scholar
Mi, J., Law, C., Zhang, K.-L. and Osmond, C.Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann. Intern. Med. 132 (2000), 253–60CrossRefGoogle Scholar
Moore, S. E., Cole, T. J., Collinson, A. C.et al.Prenatal or early postnatal events predict infectious deaths in young adulthood in rural Africa. Int. J. Epidemiol. 28 (1999), 1088–95CrossRefGoogle ScholarPubMed
Moore, V. M., Miller, A. G., Boulton, T. J. et al.Placental weight, birth measurements, and blood pressure at age 8 years. Arch. Dis. Childhood 74 (1996), 538–41CrossRefGoogle ScholarPubMed
Nilsson, P. M., Ostergen, P. O., Nyberg, P., Soderstrom, M. and Allebeck, P.Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149 378 Swedish boys. J. Hypertens. 15 (1997), 1627–31CrossRefGoogle Scholar
O'Keefe, M. J., O'Callaghan, M., Williams, G. M., Najman, J. M. and Bor, W.Learning, cognitive, and attentional problems in adolescents born small for gestational age. Pediatrics 112 (2003), 301–7CrossRefGoogle Scholar
Ong, K. K., Preece, M., Emmett, P. M., Ahmed, M. L. and Dunger, D. B.Size at birth and early chidhood growth in relation to maternal smoking, parity and infant breast-feeding: longitudinal birth cohort study and analysis. Pediatr. Res. 52 (2002), 863–7CrossRefGoogle Scholar
Osmond, C. and Barker, D. J. P.Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ. Health Perspect. 108 (2000), 545–53CrossRefGoogle ScholarPubMed
Osmond, C., Barker, D. J. P. and Slattery, J. M.Risk of death from cardiovascular disease and chronic bronchitis determined by place of birth in England and Wales. J. Epidemiol. Community Health 44 (1990), 139–41CrossRefGoogle ScholarPubMed
Palinski, W. and Napoli, C.Pathophysiological events during pregnancy influence the development of atherosclerosis in humans. Trends Cardiovasc. Med. 9 (1999), 205–14CrossRefGoogle ScholarPubMed
Pastrakuljic, A., Derewlany, L. O. and Koren, G.Maternal cocaine use and cigarette smoking in pregnancy in relation to amino acid transport and fetal growth. Placenta 20 (1999), 499–512CrossRefGoogle ScholarPubMed
Pettitt, D. J. and Knowler, W. C.Long-term effects of the intrauterine environment, birth weight, and breast-feeding in Pima Indians. Diabetes Care 21 (1998), B138–41Google ScholarPubMed
Phillips, D. I., Barker, D. J., Hales, C. N., Hirst, S. and Osmond, C.Thinness at birth and insulin resistance in adult life. Diabetologia 37 (1994), 150–4CrossRefGoogle ScholarPubMed
Phillips, D. I. W., Fall, C. H. D., Cooper, C. et al.Size at birth and plasma leptin concentrations in adult life. Int. J. Obesity 23 (1999), 1025–9CrossRefGoogle ScholarPubMed
Phillips, D. I. W., Handelsman, D. J., Eriksson, J. G.et al.Prenatal growth and subsequent marital status: longitudinal study. BMJ 322 (2001), 771CrossRefGoogle ScholarPubMed
Piven, J., Berthier, M. L., Starkstein, S. E.et al.Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. Am. J. Psychiatry 147 (1990), 734–9Google ScholarPubMed
Poulsen, P., Andersen, G., Fenger, M.et al.Impact on two common polymorphisms in the PPARgamma gene on glucose tolerance and plasma insulin profiles in monozygotic and dizygotic twins: thrifty genotype, thrifty phenotype, or both? Diabetes 52 (2003), 194–8CrossRefGoogle ScholarPubMed
Rao, S., Yajnik, C. S., Kanade, A.et al.Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune maternal nutrition study. J. Nutr. 131 (2001), 1217–24CrossRefGoogle ScholarPubMed
Ravelli, A. C. J.Meulen, J. H. P., Michels, R. P. J.et al.Glucose tolerance in adults after prenatal exposure to famine. Lancet 351 (1998), 173–7CrossRefGoogle Scholar
Ravelli, A. C., Meulen, J. H., Osmond, C., Barker, D. J. and Bleker, O. P.Obesity at the age of 50 y in men and women exposed to famine prenatally. Am. J. Clin. Nutr. 70 (1999), 811–16CrossRefGoogle Scholar
Rich-Edwards, J. W., Stampfer, M. J., Manson, J. E.et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 315 (1997), 396–400CrossRefGoogle Scholar
Roberts, A. B., Mitchell, J. M., McCowan, L. M. and Barker, S.Ultrasonographic measurement of liver length in the small-for-gestational-age fetus. Am. J. Obstet. Gynecol. 180 (1999), 634–8CrossRefGoogle ScholarPubMed
Rogers, I.The influence of birthweight and intrauterine environment on adiposity and fat distribution in later life. Int. J. Obesity 27 (2003), 755–77CrossRefGoogle ScholarPubMed
Sayer, A. A., Cooper, C. and Barker, D. J. P.Is lifespan determined in utero? Fetal and Neonatol. 77 (1997), F162–4CrossRefGoogle ScholarPubMed
Sayer, A. A. and Cooper, C.Early life effects on ageing. Nutrition and Ageing 6 (2002), 33–48CrossRefGoogle Scholar
Singhal, A., Fewtrel, M., Cole, T. J. and Lucas, A.Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 361 (2003), 1089–97CrossRefGoogle ScholarPubMed
Sorenson, H. T., Sabroe, S., Olsen, J.et al.Birth weight and cognitive function in young adult life: historical cohort study. BMJ 315 (1997), 401–3CrossRefGoogle Scholar
Sorenson, H. T., Thulstrum, A. M., Norgdard, B.et al.Fetal growth and blood pressure in a Danish population aged 31–51 years. Scand. Cardiovasc. J. 34 (2000), 390–5Google Scholar
Stanner, S. A., Bulmer, K., Andres, C.et al.Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. BMJ 315 (1997), 1342–8CrossRefGoogle ScholarPubMed
Stein, C. E., Fall, C. H., Kumaran, K.et al.Fetal growth and coronary heart disease in South India. Lancet 348 (1996), 1269–73CrossRefGoogle ScholarPubMed
Stevens, L. M. and Landis, S. C.Developmental interactions between sweat glands and the sympathetic neurons which innervate them: effects of delayed innervation on neurotransmitter plasticity and gland maturation. Dev. Biol. 130 (1988), 703–20CrossRefGoogle ScholarPubMed
Weindrich, D., Jennen-Steinmetz, C., Laucht, M. and Schmidt, M. H.Late sequelae of low birthweight: mediators of poor school performance at 11 years. Dev. Med. Child Neurol. 45 (2003), 463–9CrossRefGoogle ScholarPubMed
Weitz, G., Deckert, P., Heindl, S.et al.Evidence for lower sympathetic nerve activity in young adults with low birth weight. J. Hypertens. 21 (2003), 943–50CrossRefGoogle ScholarPubMed
Williams, J. H. G., Greenhalgh, K. D. and Manning, J. T.Second to fourth finger ratio and possible precursors of developmental psychopathology in preschool children. Early Hum. Dev. 72 (2003), 57–65CrossRefGoogle ScholarPubMed
Wohlfahrt, J., Melbye, M., Christens, P., Andersen, A.-M. N. and Hjalgrim, H.Secular and seasonal variation of length and weight at birth. Lancet. 352 (1998), 1990CrossRefGoogle ScholarPubMed
Yajnik, C. S., Coyaji, K. J., Joglekar, C. V., Kellingray, S. and Fall, C.Paternal insulin resistance and fetal growth: problem for the ‘fetal insulin’ and the ‘fetal origins’ hypotheses. Diabetologia 44 (2003a), 1197–201Google Scholar
Yajnik, C. S., Fall, C. H. D., Coyaji, K. J.et al.Neonatal anthropometry: the thin–fat Indian baby. The Pune maternal nutrition study. Int. J. Obesity 27 (2003b), 173–80CrossRefGoogle Scholar
Yajnik, C. S., Fall, C. H. D., Pandit, A. N.et al.Fetal growth and glucose and insulin metabolism in four-year-old Indian children. Diabetic Med. 12 (1995), 330–6CrossRefGoogle ScholarPubMed
Yajnik, C. S., Lubree, H. G., Rege, S. S.et al.Adiposity and hyperinsulinemia in Indians are present at birth. J. Clin. Endocrinol. Metab. 87 (2002), 5575–80CrossRefGoogle ScholarPubMed
Benediktsson, R., Lindsay, R. S., Noble, J., Seckl, J. R., Edwards, C. R.Glucocorticoid exposure in utero: new model for adult hypertension. Lancet 341 (1993), 339–41CrossRefGoogle ScholarPubMed
Bennis-Taleb, N., Remacle, C., Hoet, J. J. and Reusens, B.A low-protein isocaloric diet during gestation affects brain development and alters permanently cerebral cortex blood vessels in rat offspring. J. Nutr. 129 (1993), 1613–19CrossRefGoogle Scholar
Bertram, C. E. and Hanson, M. A.Animal models and programming of the metabolic syndrome. Br. Med. Bull. 60, 103–21CrossRef
Bloomfield, F. H., Oliver, M. H., Giannoulias, D.et al.Brief undernutrition in late-gestation sheep programmes the hypothalamic–pituitary adrenal axis in adult offspring. Endocrinology 144 (2003b), 2933–40CrossRefGoogle Scholar
Bloomfield, F. H., Oliver, M. H., Hawkins, P.et al.A periconceptual nutritional origin for non-infectious preterm birth. Science 300 (2003c), 606CrossRefGoogle Scholar
Brawley, L., Itoh, S., Torrens, C.et al.Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr. Res. 54(1) (2003): 83–90CrossRefGoogle ScholarPubMed
Brawley, L., Poston, L. and Hanson, M.Mechanisms underlying the programming of small artery dysfunction: review of the model using low protein diet in pregnancy in the rat. Arch. Physiol. Biochem. 111 (2003), 25–35CrossRefGoogle ScholarPubMed
Breier, B. H., Vickers, M. H., Ikenasio, B. A., Chan, K. Y. and Wong, W. P.Fetal programming of appetite and obesity. Mol. Cell. Endocrinol. 185 (2001), 73–9CrossRefGoogle ScholarPubMed
Burns, S. P., Desai, M., Cohen, R. D.et al.Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J. Clin. Invest. 100 (1997), 1768–74CrossRefGoogle ScholarPubMed
Challis, J. R., Sloboda, D., Matthews, S. G.et al.The fetal placental hypothalamic–pituitary–adrenal (HPA) axis, parturition and post natal health. Mol. Cell Endocrinol. 185 (2001), 135–44CrossRefGoogle ScholarPubMed
Chowen, J. A., Goya, L., Ramos, S.et al.Effects of early undernutrition on the brain insulin-like growth factor-1 system. J. Neuroendocrinol. 14 (2002), 163–9CrossRefGoogle Scholar
Christensen, L. W. and Gorski, R. A.Independent masculinization of neuroendocrine systems by intracerebral implants of testosterone or estradiol in the neonatal rat. Brain Res. 146 (1978), 325–40CrossRefGoogle ScholarPubMed
Cooney, C. A., Dave, A. A. and Wolff, G. L.Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr. 132 (2002), 2393S–400CrossRefGoogle ScholarPubMed
Davis, L., Roullet, J. B., Thornburg, K. L.et al.Augmentation of coronary conductance in adult sheep made anaemic during fetal life. J. Physiol. 547 (2003), 53–9CrossRefGoogle ScholarPubMed
Desai, M., Byrne, C. D., Zhang, J.et al.Programming of hepatic insulin-sensitive enzymes in offspring of rat dams fed a protein-restricted diet. Am. J. Physiol. 272 (1997), G1083–90Google ScholarPubMed
Dodic, M., May, C. N., Wintour, E. M. and Coghlan, J. P.An early prenatal exposure to excess glucocorticoid leads to hypertensive offspring in sheep. Clin. Sci. 94 (1998), 149–55CrossRefGoogle Scholar
Dodic, M., Peers, A., Coghlan, J. P.et al.Altered cardiovascular haemodynamics and baroreceptor-heart rate reflex in adult sheep after prenatal exposure to dexamethasone. Clin. Sci. 97 (1999), 103–9Google ScholarPubMed
Gardner, D. K., Pool, T. B. and Lane, M.Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation, and viability. Sem. Reprod. Med. 18 (2000), 205–18CrossRefGoogle ScholarPubMed
Gatford, K. L., Wintour, E. M., Blasio, M. J.et al.Differential timing for programming of glucose homoeostasis, sensitivity to insulin and blood pressure by in utero exposure to dexamethasone in sheep. Clin. Sci. 98 (2000), 553–60Google Scholar
Gotz, F., Stahl, F., Rohde, W. and Dorner, G.The influence of adrenaline on plasma testosterone in adult and newborn male rats. Exp. Clin. Endocrinol. 81 (1983), 239–44CrossRefGoogle ScholarPubMed
Hawkins, P., Hanson, M. A. and Matthews, S. G.Maternal undernutrition in early gestation alters molecular regulation of the hypothalamic–pituitary–adrenal axis in the ovine fetus. J. Neuroendocrinol. 13 (2001), 855–61CrossRefGoogle ScholarPubMed
Hawkins, P., Steyn, C., McGarrigle, H. H. G.et al.Cardiovascular and hypothalamic–pituitary–adrenal axis development in late gestation fetal sheep and young lambs following modest maternal nutrient restriction in early gestation. Reprod. Fertil. Dev. 12 (2001), 443–56CrossRefGoogle Scholar
Hoet, J. J., Ozanne, S. and Reusens, B.Influences of pre- and postnatal nutritional exposures on vascular/endocrine systems in animals. Environmental Health Perspectives 108 (2000), 563–8CrossRefGoogle ScholarPubMed
Jackson, A. A., Dunn, R. L., Marchand, M. C. and Langley-Evans, S. C.Increased systolic blood pressure in rats induced by maternal low-protein diet is reversed by dietary supplementation with glycine. Clin. Sci. 103 (2002), 633–9CrossRefGoogle ScholarPubMed
Khan, I. Y., Taylor, P. D., Dekou, V.et al.Gender-linked hypertension in offspring of lard fed pregnant rats. Hypertension 41 (2003), 168–75CrossRefGoogle ScholarPubMed
Khan I. Y., Hanson, M., Poston, L. and Tylor, P. Predictive adaptation to maternal high fat diet prevents endothelial dysfunction but not hypertension in adult rat offspring. Circulation (in press)
Kind, K. L., Clifton, P. M., Katsman, A. I., Tsiounis, M. and Owens, J. A.Restricted fetal growth and the response to dietary cholesterol in the guinea pig. Am. J. Physiol. 277 (1999), R1675–82Google ScholarPubMed
Kwong, W. Y., Wild, A. E., Roberts, P., Willis, A. C. and Fleming, T. P.Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127 (2000), 4195–202Google ScholarPubMed
Langley-Evans, S. C.Hypertension induced by foetal exposure to a maternal low-protein diet, in the rat, is prevented by pharmacological blockade of maternal glucocorticoid synthesis. J. Hypertens 15 (1997), 537–44CrossRefGoogle ScholarPubMed
Langley-Evans, S. C.Critical differences between two low protein diet protocols in the programming of hypertension in the rat. International Journal of Food Sciences and Nutrition 51 (2000), 11–17CrossRefGoogle ScholarPubMed
Lingas, R., Dean, F. and Matthews, S. G.Maternal nutrient restriction (48 h) modifies brain corticosteroid receptor expression and endocrine function in the fetal guinea pig. Brain Res. 846 (1999), 236–42CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Day, J. C., Francis, D. D. and Meaney, M. J.Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat. Neurosci. 3 (2000), 799–806CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Tannebaum, B.et al.Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science 277 (1997), 1659–62CrossRefGoogle ScholarPubMed
Lonergan, P., Rizos, D., Kanka, J.et al.Temporal sensitivity of bovine embryos to culture environment after fertilization and the implications for blastocyst quality. Reproduction 126, 337–46CrossRef
Mallard, C., Loeliger, M., Copolov, D. and Rees, S.Reduced number of neurons in the hippocampus and the cerebellum in the postnatal guinea-pig following intrauterine growth-restriction. Neuroscience 100 (2000), 327–33CrossRefGoogle ScholarPubMed
Mallard, E. C., Rehn, A., Rees, S., Tolcos, M. and Copolov, D.Ventriculomegaly and reduced hippocampal volume following intrauterine growth-restriction: implications for the aetiology of schizophrenia. Schizophr. Res. 40 (1999), 11–21CrossRefGoogle ScholarPubMed
Marchand, M. C. and Langley-Evans, S. C.Intrauterine programming of nephron number: the fetal flaw revisited. J. Nephrol. 14 (2001), 327–31Google ScholarPubMed
Mehta, G., Roach, H. I., Langley-Evans, S.et al.Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcified Tissue Int. 71 (2002), 493–8CrossRefGoogle ScholarPubMed
Merlet-Benichou, C., Gilbert, T., Muffat-Joly, M., Lelievre-Pegorier, M. and Leroy, B.Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr. Nephrol. 8 (1994), 175–80CrossRefGoogle ScholarPubMed
Miller, S. L., Green, L. R., Peebles, D. M., Hanson, M. A. and Blanco, C. E.Effects of chronic hypoxia and protein malnutrition on growth in the developing chick. Am. J. Obstet. Gynecol. 186, 2 (2002), 261–67CrossRefGoogle ScholarPubMed
Murotsuki, J., Challis, J. R., Han, V. K., Fraher, L. J. and Gagnon, R.Chronic fetal placental embolization and hypoxemia cause hypertension and myocardial hypertrophy in fetal sheep. Am. J. Physiol. 272 (1997), R201–7Google ScholarPubMed
Nishina, H., Green, L. R., McGarrigle, H. H.et al.Effect of nutritional restriction in early pregnancy on isolated femoral artery function in mid gestation fetal sheep. J. Physiol. 553 (2003), 637–47CrossRefGoogle ScholarPubMed
Ozaki, T., Nishina, H., Hanson, M. A. and Poston, L.Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J. Physiol. 530 (2001), 141–52CrossRefGoogle ScholarPubMed
Petrik, J., Reusens, B., Arany, E.et al.A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology 140 (1999), 4861–73CrossRefGoogle ScholarPubMed
Plagemann, A., Harder, T., Rake, A.et al.Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res. 836 (1999), 146–55CrossRefGoogle ScholarPubMed
Plagemann, A., Heidrich, I., Gotz, F., Rohde, W. and Dorner, G.Obesity and enhanced diabetes and cardiovascular risk in adult rats due to early postnatal overfeeding. Exp. Clin. Endocrinol. 99 (1992), 154–8CrossRefGoogle ScholarPubMed
Sayer, A. A., Dunn, R. and Langley-Evans, S.Prenatal exposure to a maternal low protein diet shortens life span in rats. Gerontology 47 (2001), 9–14CrossRefGoogle Scholar
Seckl, J. R.Glucocorticoids, feto-placenta 11 beta-hydroxysteroid dehydrogenase type 2, and the early life origins of adult disease. Steroids 62 (1997), 89–94CrossRefGoogle Scholar
Shiels, P. G., Kind, A. J., Campbell, K. H.et al.Analysis of telomere lengths in cloned sheep. Nature 399 (1999), 316–7CrossRefGoogle ScholarPubMed
Simmons, R. A., Templeton, L. G. and Gertz, S. J.Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 50 (2001), 2279–86CrossRefGoogle ScholarPubMed
Snoeck, A., Remacle, C., Reusens, B. and Hoet, J. J.Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol. Neonate. 57 (1990), 107–18CrossRefGoogle ScholarPubMed
Taylor, P. D., Khan, I. Y., Lakasing, L.et al.Uterine artery function in pregnant rats fed a diet supplemented with animal lard. Exp. Physiol. 88 (2003), 389–98CrossRefGoogle ScholarPubMed
Torrens, C., Brawley, L., Barker, A. C.et al.Maternal protein restriction in the rat impairs resistance but not conduit artery function in pregnant offspring. J. Physiol. 547 (2002), 77–84CrossRefGoogle Scholar
Vickers, M. H., Breier, B. H., Cutfield, W. S., Hofman, P. L. and Gluckman, P. D.Fetal origins of hyperphagia, obesity and hypertension and its postnatal amplification by hypercaloric nutrition. Am. J. Physiol. 279 (2000), E83–7Google ScholarPubMed
Vickers, M., Breier, B., McCarthy, D. and Gluckman, P.Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285 (2003), R271–3CrossRefGoogle ScholarPubMed
Vickers, M. H., Reddy, S., Ikenasio, B. A. and Breier, B. H.Dysregulation of the adipoinsular axis – a mechanism for the pathogenesis of hyperleptinemia and adipogenic diabetes induced by fetal programming. J. Endocrinol. 170 (2001), 323–32CrossRefGoogle Scholar
Weaver, I. C., Cervoni, N., D'Alessio, A. C. et al. Maternal behavior in infancy regulates methylation of the hippocampal glucocorticoid receptor promoter. 10th Annual Pharmacology Research Day, McGill University, Montreal, Quebec (2003a)
Weaver, I. C G., Cervoni, N., D'Alessio, A. C. et al. Transgenerational epigenomic imprinting by maternal behavior through DNA methylation. In press (2003b)
Welberg, L. A. M., Seckl, J. R. and Holmes, M. C.Inhibition of 11ß-hydroxysteroid dehydrogenase, the foeto–placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur. J. Neurosci. 12 (2000), 1047–54CrossRefGoogle Scholar
Welberg, L. A. M., Seckl, J. R. and Holmes, M. C.Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104 (2001), 71–9CrossRefGoogle ScholarPubMed
Woodall, S. M., Johnston, B. M., Breier, B. H. and Gluckman, P. D.Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatr. Res. 40 (1996), 438–43CrossRefGoogle ScholarPubMed
Zhang, J. and Byrne, C. D.Differential hepatic lobar gene expression in offspring exposed to altered maternal dietary protein intake. Am. J. Physiol. Gastrointest. Liver Physiol. 278 (2000), G128–36CrossRefGoogle ScholarPubMed
Aplin, J.Maternal influences on placental development. Seminars in Cell & Dev. Biol. 11 (2000), 115–25CrossRefGoogle ScholarPubMed
*Barker, D. The Best Start in Life. (London: Arrow 2003.)
Barker, D. J., Gluckman, P. D., Godfrey, K. M.et al.Fetal nutrition and cardiovascular disease in adult life. Lancet 341 (1993), 938–41CrossRefGoogle ScholarPubMed
Barker, D. J. P., ed. Fetal Origins of Cardiovascular and Lung Disease. (New York, NY: Marcel Dekker, Inc., 2001.)
Bertram, C., Hanson, M. A. Animal models and the programming of the metabolic syndrome. In Type 2 Diabetes: The Thrifty Phenotype, ed. D. J. P. Barker. Br. Med. Bull.60 (2001): 103–21
Bertram, C. E. and Hanson, M. A.Prenatal programming of postnatal endocrine responses by glucocorticoids. Repro. 124 (2002): 459–67CrossRefGoogle ScholarPubMed
Bloomfield, F. H. and Harding, J. E.Experimental aspects of nutrition and fetal growth. Fetal and Maternal Med. Rev. 10 (1998), 91–107CrossRefGoogle Scholar
Cianfarani, S., Geremia, C., Scott, C. D., and Germani, D. Growth, IGF system and cortisol in children with intrauterine growth retardation: is catch-up growth affected by reprogramming of the hypothalamic–pituitary–adrenal axis? Pediatr. Res. 51 (2002), 94–9CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Hanson, M. A.The developmental origins of the metabolic syndrome. Trends in Endocrinology and Metabolism (Hormones and the Heart Symposium) 15 (2004), 183–7CrossRefGoogle ScholarPubMed
Hales, C. N. and Barker, D. J.Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35 (1992), 595–601CrossRefGoogle ScholarPubMed
Hales, C. N. and Barker, D. J.The thrifty phenotype hypothesis. Br. Med. Bull. 60, 5 (2001), 20CrossRefGoogle ScholarPubMed
Hanson, M. A. and Gluckman, P. D.The effects of pre-natal nutrition on cardiovascular function in offspring: some insights from comparative biology. Havemeyer Foundation Monograph Series, No. 10 (2003a): 51–4Google Scholar
Hanson, M. A. and Gluckman, P. D.The human camel: the concept of predictive adaptive responses and the obesity epidemic. Pract. Diabetes Int. 20, 8 (2003b): 267CrossRefGoogle Scholar
Harding, J. E. and Gluckman, P. D. Growth, metabolic and endocrine adaptations to fetal undernutrition. In Fetal Origins of Cardiovascular Disease and Lung Disease. Lung Biology in Health and Disease, ed. D. J. P. Barker (New York, NY: Marcel Dekkar, 2001), pp. 181–97
Hoet, J. J. and Hanson, M. A.Intrauterine nutrition: its importance during critical periods for cardiovascular and endocrine development. J. Physiol. 514 (1999), 617–27CrossRefGoogle ScholarPubMed
Ingelfinger, J. R.Is microanatomy destiny? New Engl. J. Med. 348 (2003), 99–100CrossRefGoogle ScholarPubMed
Law, C. M.Significance of birth weight for the future. Arch. Dis. Child. Neonatal Edn. 86 (2002), F7–8CrossRefGoogle ScholarPubMed
Moritz, K. M., Dodic, M. and Wintour, E. M.Kidney development and the fetal programming of adult disease. Bioessays 25, 3(2003), 212–20CrossRefGoogle ScholarPubMed
Robinson, R. The fetal origins of adult disease. BMJ 322 (2001), 375–6CrossRef
Silverman, B. L., Cho, N. H., Rizzo, T. A. and Metzger, B. E.Long-term effects of the intrauterine environment. Diabetes Care 21 (1998), B142–9Google ScholarPubMed
Wells, J. C. K.The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? J. Theor. Biol. 221 (2003), 143–61CrossRefGoogle ScholarPubMed
Wintour, E. M., Johnson, K., Koukoulas, I.et al. Programming the cardiovascular system, kidney and the brain: a review. Placenta 24 (2003), Suppl. A Trophoblast Res., S65–71CrossRefGoogle ScholarPubMed
Adair, L. S., Kuzawa, C. W., and Borja, J.Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation 104 (2001), 1034–9CrossRefGoogle ScholarPubMed
Anderson, P. and Doyle, L. W.Neurobehavioral outcomes in school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 289 (2003), 3264–72CrossRefGoogle ScholarPubMed
Barker, D. J. P.The foetal and infant origins of inequalities in health in Britain. J. Public Health Med. 13 (1991), 64–8Google ScholarPubMed
* Barker, D. J. P. Mothers, Babies and Health in Later Life. (Edinburgh: Churchill Livingstone, 1998.)
Barker, D. J. P.Intrauterine nutrition may be important. BMJ 318 (1999), 1477–8Google ScholarPubMed
Barker, D. J. P., Bull, A. R., Osmond, C. and Simmonds, S. J.Fetal and placental size and risk of hypertension in adult life. BMJ 301(1990), 259–62CrossRefGoogle ScholarPubMed
Barker, D. J. P., Eriksson, J. G., Forsén, T., and Osmond, C.Fetal origins of adult disease: strength of effects and biological basis. Int. J. Epidemiol. 31(2002), 1235–9CrossRefGoogle ScholarPubMed
Barker, D. J. P., Forsen, T., Eriksson, J. G., and Osmond, C.Growth and living conditions in childhood and hypertension in adult life: a longitudinal study. J. Hypertens. 20 (2002), 1951–6CrossRefGoogle ScholarPubMed
Barker, D. J. P., Forsen, T., Uutela, A., Osmond, C., and Eriksson, J. G.Size at birth and resilience to effects of poor living conditions in adult life: longitudinal study. BMJ 323 (2001), 1273–6CrossRefGoogle ScholarPubMed
Barker, D. J. P., Godfrey, K. M., Osmond, C., and Bull, A.The relation of fetal length, ponderal index and head circumference to blood pressure and the risk of hypertension in adult life. Paediatr. Perinatal Epidemiol. 6 (1992), 35–44CrossRefGoogle ScholarPubMed
Barker, D. J. P. and Lackland, D. T.Prenatal influences on stroke mortality in England and Wales. Stroke 34 (2003), 1598–602CrossRefGoogle ScholarPubMed
Barker, D. J. P., Osmond, C., Simmonds, S. J., and Weild, G. A.The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ 306 (1993), 422–6CrossRefGoogle ScholarPubMed
Barker, D. J. P., Winter, P. D., Osmond, C., Margetts, B. and Simmonds, S. J.Weight in infancy and death from ischaemic heart disease. Lancet 2 (8663) (1989), 577–80CrossRefGoogle ScholarPubMed
Barker, M., Robinson, S., Osmond, C. and Barker, D. J. P.Birth weight and body fat distribution in adolescent girls. Arch. Dis. Child. 77 (1997), 381–3CrossRefGoogle ScholarPubMed
Bavdekar, A., Yajnik, C. S., Fall, C. H.et al.Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes 48 (1999), 2422–9CrossRefGoogle Scholar
Bolt, R. J., Weissenbruch, M. M., Popp-Snijdeers, C. et al.Fetal growth and the function of the adrenal cortex in preterm infants. J. Clin. Endocrinol. Metab. 87 (2002), 1194–9CrossRefGoogle ScholarPubMed
Brenner, B. M. and Chertow, G. M.Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am. J. Kidney Dis. 23 (1994), 171–5CrossRefGoogle ScholarPubMed
Brenner, B. M., Garcia, D. L., and Anderson, S.Glomeruli and blood pressure: less of one, more of the other? Am. J. Hypertens. 1 (1988), 335–47CrossRefGoogle ScholarPubMed
Campbell, D. M., Hall, M. H., Barker, D. J.et al. Diet in pregnancy and the offspring's blood pressure 40 years later. Br. J. Obstet. Gynaecol. 103 (1996), 273–80CrossRefGoogle ScholarPubMed
Cho, N., Silverman, B. L., Rizzo, T. A. and Metzger, B. E.Correlations between the intrauterine metabolic environment and blood pressure in adolescent offspring of diabetic mothers. J. Pediatr. 136 (2000), 587–92CrossRefGoogle ScholarPubMed
Chotai, J., Forsgren, T., Nilsson, L.-G. and Adolfsson, R.Season of birth variations in the temperament and character inventory of personality in a general population. Neuropsychobiol. 44 (2001), 19–26CrossRefGoogle Scholar
Chotai, J. and Salander-Renberg, E.Season of birth variations in suicide methods in relation to any history of psychiatric contacts support an independent suicidality trait. J. Affect. Disorder. 69 (2002), 69–81CrossRefGoogle ScholarPubMed
Clark, P. M., Atton, C., Law, C. M.et al.Weight gain in pregnancy, triceps skinfold thickness, and blood pressure in offspring. Obstet. Gynecol. 91 (1998), 103–7CrossRefGoogle ScholarPubMed
Cresswell, J. L., Egger, P., Fall, C. H. D.et al. Is the age of menopause determined in-utero? Early Hum. Dev. 49 (1997), 143–8CrossRefGoogle ScholarPubMed
Doblhammer, G. and Vaupel, J. W.Lifespan depends on month of birth. Proc. Natl. Acad. Sci. 98 (2001a), 2934–9CrossRefGoogle Scholar
dos Santos Silva, I., Stavola, B. L., Mann, V.et al. Prenatal factors, childhood growth trajectories and age at menarche. Int. J. Epidemiol. 31 (2002), 405–12CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C. and Barker, D. J. P.Early growth, adult income, and risk of stroke. Stroke 31 (2000), 869–74CrossRefGoogle ScholarPubMed
Eriksson, J., Forsén, T., Tuomilehto, J., Osmond, C., and Barker, D.Size at birth, childhood growth and obesity in adult life. Int. J. Obesity 25 (2001a), 735–40CrossRefGoogle Scholar
Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C. and Barker, D. J.Early growth and coronary heart disease in later life: longitudinal study. BMJ 322 (2001b), 949–53CrossRefGoogle Scholar
Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C. and Barker, D. J.Early adiposity rebound in childhood and risk of Type 2 diabetes in adult life. Diabetologia 46 (2003), 190–4CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsén, T., Tuomilehto, J.et al.Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 318 (1999), 427–31CrossRefGoogle ScholarPubMed
Eriksson, J. G., Lindi, V., Uusitupa, M. et al.The effects of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 gene on insulin sensitivity and insulin metabolism interact with size at birth. Diabetes 51 (2002), 2321–4CrossRefGoogle ScholarPubMed
Eriksson, J. G., Osmond, C., Lindi, V. et al.Interactions between peroxisome proliferator-activated receptor gene polymorphism and birth length influence risk for type 2 diabetes. Diabetes Care 26 (2003), 2476–7CrossRefGoogle ScholarPubMed
Fall, C. H., Barker, D. J., Osmond, C. et al.Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease. BMJ 304 (1992), 801–5CrossRefGoogle ScholarPubMed
Fall, C., Hindmarsh, P., Dennison, E. et al.Programming of growth hormone secretion and bone mineral density in elderly men – a hypothesis. J. Clin. Endocrinol. Metab. 83 (1998a), 135–9Google Scholar
Fall, C. H., Pandit, A. N., Law, C. M.et al.Size at birth and plasma insulin-like growth factor-1 concentrations in childhood. Arch. Dis. Childhood 73 (1995), 287–93CrossRefGoogle Scholar
Fall, C. H., Stein, C. E., Kumaran, K.et al.Size at birth, maternal weight, and Type 2 diabetes in South India. Diabetic Med. 15 (1998), 220–73.0.CO;2-O>CrossRefGoogle ScholarPubMed
Fewtrell, M. S., Doherty, C., Cole, T. J.et al.Effects of size at birth, gestational age and early growth in preterm infants on glucose and insulin concentrations at 9–12 years. Diabetologia 43 (2000), 714–17CrossRefGoogle ScholarPubMed
Flanagan, D. E., Vaile, J. C., Petley, G. W.et al.The autonomic control of heart rate and insulin resistance in young adults. J. Clin. Endocrinol. Metab. 84 (1999), 1263–7Google ScholarPubMed
Forrester, T. E., Wilks, R. J., Bennett, F. I. et al.Fetal growth and cardiovascular risk factors in Jamaican schoolchildren. BMJ 312 (1996), 156–60CrossRefGoogle ScholarPubMed
Forsdahl, A.Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br. J. Preventive Social. Med. 31 (1977), 91–5Google ScholarPubMed
Forsdahl, A.Living conditions in childhood and subsequent development of risk factors for arteriosclerotic heart disease. The cardiovascular survey in Finnmark 1974–75. J. Epidemiol. Community Health 32 (1978), 34–7CrossRefGoogle ScholarPubMed
Forsén, T., Eriksson, J. G., Tuomilehto, J., Osmond, C. and Barker, D. J. P.Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ 319 (1999), 1403–7CrossRefGoogle ScholarPubMed
Forsén, T., Eriksson, J., Tuomilehto, J. et al.The fetal and childhood growth of persons who develop type 2 diabetes. Ann. Intern. Med. 133 (2000), 176–82CrossRefGoogle ScholarPubMed
Forsén, T., Eriksson, J. G., Tuomilehto, J. et al.Mother's weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ 315 (1997), 837–40CrossRefGoogle Scholar
Gale, C. R., Martyn, C. N., Kellingray, S., Eastell, R. and Cooper, C.Intrauterine programming of adult body composition. J. Clin. Endocrinol. Metab. 86 (2001), 267–72Google ScholarPubMed
Gale, C. R., Walton, S. and Martyn, C. N.Foetal and postnatal head growth and risk of cognitive decline in old age. Brain 126 (2003), 2273–8CrossRefGoogle ScholarPubMed
Godfrey, K. M., Barker, D. J., Robinson, S. and Osmond, C.Maternal birthweight and diet in pregnancy in relation to the infant's thinness at birth. Br. J. Obstet. Gynaecol. 104 (1997), 663–7CrossRefGoogle ScholarPubMed
Godfrey, K., Robinson, S., Barker, D. J., Osmond, C. and Cox, V.Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 312 (1996), 410–14CrossRefGoogle ScholarPubMed
Hales, C. H., Barker, D. J., Clark, P. M. et al.Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303 (1991), 1019–22CrossRefGoogle ScholarPubMed
Hardy, R. and Kuh, D.Does early growth influence timing of the menopause? Evidence from a British birth cohort. Hum. Reprod. 17 (2002), 2474–9CrossRefGoogle ScholarPubMed
Hattersley, A. T., Beards, F., Ballantyne, E. et al.Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat. Genet. 19 (1998), 209–10CrossRefGoogle ScholarPubMed
Hilakivi-Clarke, L., Forsén, T., Eriksson, J. G. et al.Tallness and overweight during childhood have opposing effects on breast cancer risk. Br. J. Cancer 85 (2001), 1680–4CrossRefGoogle ScholarPubMed
Hofman, P. L., Cutfield, W. S., Robinson, E. M. et al.Insulin resistance in short children with intrauterine growth retardation. J. Clin. Endocrinol. Metab. 82 (1997), 402–6Google ScholarPubMed
Hokken-Koèlege, A. C. S.Timing of puberty and fetal growth. Best Practice and Res. Clin. Endocrinol. Metab. 16 (2002), 65–71CrossRefGoogle Scholar
Hultman, C. M., Sparén, P. and Cnattingius, S.Perinatal risk factors for infantile autism. Epidemiology 13 (2002), 417–23CrossRefGoogle ScholarPubMed
Huxley, R., Neil, A. and Collins, R.Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet 360 (2002), 659–65CrossRefGoogle ScholarPubMed
Ibáñez, L., Ferrer, A., Marcos, M. V., Hierro, F. R. and Zegher, F.Early puberty: rapid progression and reduced final height in girls with low birth weight. Pediatrics 106 (2000), 72–4CrossRefGoogle ScholarPubMed
Ibanez, L., Potau, N., Enriquez, G. and Zegher, F.Reduced uterine and ovarian size in adolescent girls born small for gestational age. Pediatr Res. 47 (2000), 575–7CrossRefGoogle ScholarPubMed
Ibáñez, L., Potau, N., Enriquez, G., Marcos, M. V. and DeZegher, F.Hypergonadotrophinaemia with reduced uterine and ovarian size in women born small-for-gestational-age. Hum. Reprod. 18 (2003), 1565–9CrossRefGoogle ScholarPubMed
Ibanez, L., Ong, K. K., Mongan, N. et al.Androgen receptor gene CAG repeat polymorphism in the development of ovarian hyperandrogenism. J. Clin. Endocrinol. Metab. 88 (2003), 3333–8CrossRefGoogle ScholarPubMed
Ibanez, L., Valls, C., Potau, N., Marcos, M. V. and Zegher, F.Polycystic ovary syndrome after precocious pubarche: ontogeny of the low-birthweight effect. Clin. Endocinol. 55 (2001), 667–72CrossRefGoogle ScholarPubMed
Ijzerman, R. G., Stehouwer, C. D., Geus, E. J. et al.Low birth weight is associated with increased sympathetic activity: dependence on genetic factors. Circulation 108 (2003), 566–71CrossRefGoogle ScholarPubMed
Jaquet, D., Tregouet, D. A., Godefroy, T. et al.Combined effects of genetic and environmental factors on insulin resistance associated with reduced fetal growth. Diabetes 51 (2002), 3473–8CrossRefGoogle ScholarPubMed
Jefferis, B. J. M. H., Power, C. and Hertzman, C.Birth weight, childhood socioeconomic environment, and cognitive development in the 1958 British birth cohort study. BMJ 325 (2002), 305–11CrossRefGoogle ScholarPubMed
Kaati, G., Bygren, L. O. and Edvinsson, S.Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur. J. Hum. Genet. 10 (2002), 682–8CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Perel, J.et al.The corticotropin-releasing hormone challenge in depressed abused, depressed nonabused, and normal control children. Biol. Psychiatry 42 (1997), 669–79CrossRefGoogle ScholarPubMed
Keen, R. W., Egger, P., Fall, C.et al.Polymorphisms of the vitamin D receptor, infant growth, and adult bone mass. Calcif. Tissue Int. 60 (1997), 233–5CrossRefGoogle ScholarPubMed
Kiserud, T.Liver length in the small-for-gestational-age fetus and ductus venosus flow. Am. J. Obstet. Gynecol. 182 (2000), 252–3CrossRefGoogle ScholarPubMed
Koziel, S. and Jankowska, E. A.Effect of low versus normal birthweight on menarche in 14-year-old Polish girls. J. Paediatr. Child Health 38 (2002), 268–71CrossRefGoogle ScholarPubMed
Kuh, D., Bassey, J., Hardy, R.et al.Birth weight, childhood size, and muscle strength in adult life: evidence from a birth cohort study. Am. J. Epidemiol. 156 (2002), 627–33CrossRefGoogle ScholarPubMed
Law, C. M., Swiet, M., Osmond, C.et al.Initiation of hypertension in utero and its amplification throughout life. BMJ 306 (1993), 24–7CrossRefGoogle ScholarPubMed
Law, C. M., Egger, P., Dada, O.et al.Body size at birth and blood pressure among children in developing countries. Int. J. Epidemiol. 30 (2001), 52–7CrossRefGoogle ScholarPubMed
Law, C. M., Shiell, A. W., Newsome, C. A.et al.Fetal, infant, and childhood growth and adult blood pressure: a longitudinal study from birth to 22 years of age. Circulation 105 (2002), 1088–92CrossRefGoogle ScholarPubMed
Limosin, F., Rouillon, F., Payan, C., Cohen, J. M. and Strub, N.Prenatal exposure to influenza as a risk factor for adult schizophrenia. Acta Psychiatr. Scand. 107 (2003), 331–5CrossRefGoogle ScholarPubMed
Lindsay, R. S., Bennett, P. H., Hanson, R. L. and Knowler, W. C.Secular trends in birth weight, BMI, and diabetes in the offspring of diabetic mothers. Diabetes Care 23 (2000), 1249–54CrossRefGoogle ScholarPubMed
Lucas, A. (1991). Programming by early nutrition in man. In The Childhood Environment, and Adult Disease, ed. G. R. Bock and J. Whelan (Chichester: John Wiley), pp. 38–55
Lucas, A., Morley, R. and Cole, T. J.Randomised trial of early diet in preterm babies and later intelligence quotient. BMJ 317 (1998), 1481–7CrossRefGoogle ScholarPubMed
Lumey, L. H. (1992). Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944–1945. Paediatr. Perinatal Epidemiol. 6, 240–53CrossRefGoogle ScholarPubMed
Lurbe, E., Torro, I., Rodriguez, C., Alvarez, V. and Redon, J.Birth weight influences blood pressure values and variability in children and adolescents. Hypertension 38 (2001), 389–93CrossRefGoogle ScholarPubMed
Mackenzie, H. S. and Brenner, B. M.Fewer nephrons at birth: a missing link in the etiology of essential hypertension? Am. J. Kidney Dis. 26 (1995), 91–8CrossRefGoogle ScholarPubMed
Martyn, C. N., Gale, C. R., Sayer, A. A. and Fall, C.Growth in utero and cognitive function in adult life: follow up study of people born between 1920 and 1943. BMJ 312 (1996), 1393–6CrossRefGoogle ScholarPubMed
Martyn, C. N. and Greenwald, S. E.A hypothesis about a mechanism for the programming of blood pressure and vascular disease in early life. Clin. Exp. Pharm. Physiol. 28 (2001), 948–51CrossRefGoogle ScholarPubMed
McAllister, A. S., Atkinson, A. B., Johnston, G. D. and McCance, D. R.Relationship of endothelial function to birth weight in humans. Diabetes Care 22 (1999), 2061–6CrossRefGoogle ScholarPubMed
McNeil, T. F., Cantor-Graae, E., Nordstrom, L. G. and Rosenlund, T.Head circumference in ‘preschizophrenic’ and control neonates. Br. J. Psychiatry 162 (1993), 517–23CrossRefGoogle ScholarPubMed
Mednick, S. A., Machon, R. A., Huttunen, M. O. and Bonett, D.Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiatry 45 (1988), 189–92CrossRefGoogle Scholar
Mi, J., Law, C., Zhang, K.-L. and Osmond, C.Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann. Intern. Med. 132 (2000), 253–60CrossRefGoogle Scholar
Moore, S. E., Cole, T. J., Collinson, A. C.et al.Prenatal or early postnatal events predict infectious deaths in young adulthood in rural Africa. Int. J. Epidemiol. 28 (1999), 1088–95CrossRefGoogle ScholarPubMed
Moore, V. M., Miller, A. G., Boulton, T. J. et al.Placental weight, birth measurements, and blood pressure at age 8 years. Arch. Dis. Childhood 74 (1996), 538–41CrossRefGoogle ScholarPubMed
Nilsson, P. M., Ostergen, P. O., Nyberg, P., Soderstrom, M. and Allebeck, P.Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149 378 Swedish boys. J. Hypertens. 15 (1997), 1627–31CrossRefGoogle Scholar
O'Keefe, M. J., O'Callaghan, M., Williams, G. M., Najman, J. M. and Bor, W.Learning, cognitive, and attentional problems in adolescents born small for gestational age. Pediatrics 112 (2003), 301–7CrossRefGoogle Scholar
Ong, K. K., Preece, M., Emmett, P. M., Ahmed, M. L. and Dunger, D. B.Size at birth and early chidhood growth in relation to maternal smoking, parity and infant breast-feeding: longitudinal birth cohort study and analysis. Pediatr. Res. 52 (2002), 863–7CrossRefGoogle Scholar
Osmond, C. and Barker, D. J. P.Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ. Health Perspect. 108 (2000), 545–53CrossRefGoogle ScholarPubMed
Osmond, C., Barker, D. J. P. and Slattery, J. M.Risk of death from cardiovascular disease and chronic bronchitis determined by place of birth in England and Wales. J. Epidemiol. Community Health 44 (1990), 139–41CrossRefGoogle ScholarPubMed
Palinski, W. and Napoli, C.Pathophysiological events during pregnancy influence the development of atherosclerosis in humans. Trends Cardiovasc. Med. 9 (1999), 205–14CrossRefGoogle ScholarPubMed
Pastrakuljic, A., Derewlany, L. O. and Koren, G.Maternal cocaine use and cigarette smoking in pregnancy in relation to amino acid transport and fetal growth. Placenta 20 (1999), 499–512CrossRefGoogle ScholarPubMed
Pettitt, D. J. and Knowler, W. C.Long-term effects of the intrauterine environment, birth weight, and breast-feeding in Pima Indians. Diabetes Care 21 (1998), B138–41Google ScholarPubMed
Phillips, D. I., Barker, D. J., Hales, C. N., Hirst, S. and Osmond, C.Thinness at birth and insulin resistance in adult life. Diabetologia 37 (1994), 150–4CrossRefGoogle ScholarPubMed
Phillips, D. I. W., Fall, C. H. D., Cooper, C. et al.Size at birth and plasma leptin concentrations in adult life. Int. J. Obesity 23 (1999), 1025–9CrossRefGoogle ScholarPubMed
Phillips, D. I. W., Handelsman, D. J., Eriksson, J. G.et al.Prenatal growth and subsequent marital status: longitudinal study. BMJ 322 (2001), 771CrossRefGoogle ScholarPubMed
Piven, J., Berthier, M. L., Starkstein, S. E.et al.Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. Am. J. Psychiatry 147 (1990), 734–9Google ScholarPubMed
Poulsen, P., Andersen, G., Fenger, M.et al.Impact on two common polymorphisms in the PPARgamma gene on glucose tolerance and plasma insulin profiles in monozygotic and dizygotic twins: thrifty genotype, thrifty phenotype, or both? Diabetes 52 (2003), 194–8CrossRefGoogle ScholarPubMed
Rao, S., Yajnik, C. S., Kanade, A.et al.Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune maternal nutrition study. J. Nutr. 131 (2001), 1217–24CrossRefGoogle ScholarPubMed
Ravelli, A. C. J.Meulen, J. H. P., Michels, R. P. J.et al.Glucose tolerance in adults after prenatal exposure to famine. Lancet 351 (1998), 173–7CrossRefGoogle Scholar
Ravelli, A. C., Meulen, J. H., Osmond, C., Barker, D. J. and Bleker, O. P.Obesity at the age of 50 y in men and women exposed to famine prenatally. Am. J. Clin. Nutr. 70 (1999), 811–16CrossRefGoogle Scholar
Rich-Edwards, J. W., Stampfer, M. J., Manson, J. E.et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 315 (1997), 396–400CrossRefGoogle Scholar
Roberts, A. B., Mitchell, J. M., McCowan, L. M. and Barker, S.Ultrasonographic measurement of liver length in the small-for-gestational-age fetus. Am. J. Obstet. Gynecol. 180 (1999), 634–8CrossRefGoogle ScholarPubMed
Rogers, I.The influence of birthweight and intrauterine environment on adiposity and fat distribution in later life. Int. J. Obesity 27 (2003), 755–77CrossRefGoogle ScholarPubMed
Sayer, A. A., Cooper, C. and Barker, D. J. P.Is lifespan determined in utero? Fetal and Neonatol. 77 (1997), F162–4CrossRefGoogle ScholarPubMed
Sayer, A. A. and Cooper, C.Early life effects on ageing. Nutrition and Ageing 6 (2002), 33–48CrossRefGoogle Scholar
Singhal, A., Fewtrel, M., Cole, T. J. and Lucas, A.Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 361 (2003), 1089–97CrossRefGoogle ScholarPubMed
Sorenson, H. T., Sabroe, S., Olsen, J.et al.Birth weight and cognitive function in young adult life: historical cohort study. BMJ 315 (1997), 401–3CrossRefGoogle Scholar
Sorenson, H. T., Thulstrum, A. M., Norgdard, B.et al.Fetal growth and blood pressure in a Danish population aged 31–51 years. Scand. Cardiovasc. J. 34 (2000), 390–5Google Scholar
Stanner, S. A., Bulmer, K., Andres, C.et al.Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. BMJ 315 (1997), 1342–8CrossRefGoogle ScholarPubMed
Stein, C. E., Fall, C. H., Kumaran, K.et al.Fetal growth and coronary heart disease in South India. Lancet 348 (1996), 1269–73CrossRefGoogle ScholarPubMed
Stevens, L. M. and Landis, S. C.Developmental interactions between sweat glands and the sympathetic neurons which innervate them: effects of delayed innervation on neurotransmitter plasticity and gland maturation. Dev. Biol. 130 (1988), 703–20CrossRefGoogle ScholarPubMed
Weindrich, D., Jennen-Steinmetz, C., Laucht, M. and Schmidt, M. H.Late sequelae of low birthweight: mediators of poor school performance at 11 years. Dev. Med. Child Neurol. 45 (2003), 463–9CrossRefGoogle ScholarPubMed
Weitz, G., Deckert, P., Heindl, S.et al.Evidence for lower sympathetic nerve activity in young adults with low birth weight. J. Hypertens. 21 (2003), 943–50CrossRefGoogle ScholarPubMed
Williams, J. H. G., Greenhalgh, K. D. and Manning, J. T.Second to fourth finger ratio and possible precursors of developmental psychopathology in preschool children. Early Hum. Dev. 72 (2003), 57–65CrossRefGoogle ScholarPubMed
Wohlfahrt, J., Melbye, M., Christens, P., Andersen, A.-M. N. and Hjalgrim, H.Secular and seasonal variation of length and weight at birth. Lancet. 352 (1998), 1990CrossRefGoogle ScholarPubMed
Yajnik, C. S., Coyaji, K. J., Joglekar, C. V., Kellingray, S. and Fall, C.Paternal insulin resistance and fetal growth: problem for the ‘fetal insulin’ and the ‘fetal origins’ hypotheses. Diabetologia 44 (2003a), 1197–201Google Scholar
Yajnik, C. S., Fall, C. H. D., Coyaji, K. J.et al.Neonatal anthropometry: the thin–fat Indian baby. The Pune maternal nutrition study. Int. J. Obesity 27 (2003b), 173–80CrossRefGoogle Scholar
Yajnik, C. S., Fall, C. H. D., Pandit, A. N.et al.Fetal growth and glucose and insulin metabolism in four-year-old Indian children. Diabetic Med. 12 (1995), 330–6CrossRefGoogle ScholarPubMed
Yajnik, C. S., Lubree, H. G., Rege, S. S.et al.Adiposity and hyperinsulinemia in Indians are present at birth. J. Clin. Endocrinol. Metab. 87 (2002), 5575–80CrossRefGoogle ScholarPubMed
Benediktsson, R., Lindsay, R. S., Noble, J., Seckl, J. R., Edwards, C. R.Glucocorticoid exposure in utero: new model for adult hypertension. Lancet 341 (1993), 339–41CrossRefGoogle ScholarPubMed
Bennis-Taleb, N., Remacle, C., Hoet, J. J. and Reusens, B.A low-protein isocaloric diet during gestation affects brain development and alters permanently cerebral cortex blood vessels in rat offspring. J. Nutr. 129 (1993), 1613–19CrossRefGoogle Scholar
Bertram, C. E. and Hanson, M. A.Animal models and programming of the metabolic syndrome. Br. Med. Bull. 60, 103–21CrossRef
Bloomfield, F. H., Oliver, M. H., Giannoulias, D.et al.Brief undernutrition in late-gestation sheep programmes the hypothalamic–pituitary adrenal axis in adult offspring. Endocrinology 144 (2003b), 2933–40CrossRefGoogle Scholar
Bloomfield, F. H., Oliver, M. H., Hawkins, P.et al.A periconceptual nutritional origin for non-infectious preterm birth. Science 300 (2003c), 606CrossRefGoogle Scholar
Brawley, L., Itoh, S., Torrens, C.et al.Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr. Res. 54(1) (2003): 83–90CrossRefGoogle ScholarPubMed
Brawley, L., Poston, L. and Hanson, M.Mechanisms underlying the programming of small artery dysfunction: review of the model using low protein diet in pregnancy in the rat. Arch. Physiol. Biochem. 111 (2003), 25–35CrossRefGoogle ScholarPubMed
Breier, B. H., Vickers, M. H., Ikenasio, B. A., Chan, K. Y. and Wong, W. P.Fetal programming of appetite and obesity. Mol. Cell. Endocrinol. 185 (2001), 73–9CrossRefGoogle ScholarPubMed
Burns, S. P., Desai, M., Cohen, R. D.et al.Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J. Clin. Invest. 100 (1997), 1768–74CrossRefGoogle ScholarPubMed
Challis, J. R., Sloboda, D., Matthews, S. G.et al.The fetal placental hypothalamic–pituitary–adrenal (HPA) axis, parturition and post natal health. Mol. Cell Endocrinol. 185 (2001), 135–44CrossRefGoogle ScholarPubMed
Chowen, J. A., Goya, L., Ramos, S.et al.Effects of early undernutrition on the brain insulin-like growth factor-1 system. J. Neuroendocrinol. 14 (2002), 163–9CrossRefGoogle Scholar
Christensen, L. W. and Gorski, R. A.Independent masculinization of neuroendocrine systems by intracerebral implants of testosterone or estradiol in the neonatal rat. Brain Res. 146 (1978), 325–40CrossRefGoogle ScholarPubMed
Cooney, C. A., Dave, A. A. and Wolff, G. L.Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr. 132 (2002), 2393S–400CrossRefGoogle ScholarPubMed
Davis, L., Roullet, J. B., Thornburg, K. L.et al.Augmentation of coronary conductance in adult sheep made anaemic during fetal life. J. Physiol. 547 (2003), 53–9CrossRefGoogle ScholarPubMed
Desai, M., Byrne, C. D., Zhang, J.et al.Programming of hepatic insulin-sensitive enzymes in offspring of rat dams fed a protein-restricted diet. Am. J. Physiol. 272 (1997), G1083–90Google ScholarPubMed
Dodic, M., May, C. N., Wintour, E. M. and Coghlan, J. P.An early prenatal exposure to excess glucocorticoid leads to hypertensive offspring in sheep. Clin. Sci. 94 (1998), 149–55CrossRefGoogle Scholar
Dodic, M., Peers, A., Coghlan, J. P.et al.Altered cardiovascular haemodynamics and baroreceptor-heart rate reflex in adult sheep after prenatal exposure to dexamethasone. Clin. Sci. 97 (1999), 103–9Google ScholarPubMed
Gardner, D. K., Pool, T. B. and Lane, M.Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation, and viability. Sem. Reprod. Med. 18 (2000), 205–18CrossRefGoogle ScholarPubMed
Gatford, K. L., Wintour, E. M., Blasio, M. J.et al.Differential timing for programming of glucose homoeostasis, sensitivity to insulin and blood pressure by in utero exposure to dexamethasone in sheep. Clin. Sci. 98 (2000), 553–60Google Scholar
Gotz, F., Stahl, F., Rohde, W. and Dorner, G.The influence of adrenaline on plasma testosterone in adult and newborn male rats. Exp. Clin. Endocrinol. 81 (1983), 239–44CrossRefGoogle ScholarPubMed
Hawkins, P., Hanson, M. A. and Matthews, S. G.Maternal undernutrition in early gestation alters molecular regulation of the hypothalamic–pituitary–adrenal axis in the ovine fetus. J. Neuroendocrinol. 13 (2001), 855–61CrossRefGoogle ScholarPubMed
Hawkins, P., Steyn, C., McGarrigle, H. H. G.et al.Cardiovascular and hypothalamic–pituitary–adrenal axis development in late gestation fetal sheep and young lambs following modest maternal nutrient restriction in early gestation. Reprod. Fertil. Dev. 12 (2001), 443–56CrossRefGoogle Scholar
Hoet, J. J., Ozanne, S. and Reusens, B.Influences of pre- and postnatal nutritional exposures on vascular/endocrine systems in animals. Environmental Health Perspectives 108 (2000), 563–8CrossRefGoogle ScholarPubMed
Jackson, A. A., Dunn, R. L., Marchand, M. C. and Langley-Evans, S. C.Increased systolic blood pressure in rats induced by maternal low-protein diet is reversed by dietary supplementation with glycine. Clin. Sci. 103 (2002), 633–9CrossRefGoogle ScholarPubMed
Khan, I. Y., Taylor, P. D., Dekou, V.et al.Gender-linked hypertension in offspring of lard fed pregnant rats. Hypertension 41 (2003), 168–75CrossRefGoogle ScholarPubMed
Khan I. Y., Hanson, M., Poston, L. and Tylor, P. Predictive adaptation to maternal high fat diet prevents endothelial dysfunction but not hypertension in adult rat offspring. Circulation (in press)
Kind, K. L., Clifton, P. M., Katsman, A. I., Tsiounis, M. and Owens, J. A.Restricted fetal growth and the response to dietary cholesterol in the guinea pig. Am. J. Physiol. 277 (1999), R1675–82Google ScholarPubMed
Kwong, W. Y., Wild, A. E., Roberts, P., Willis, A. C. and Fleming, T. P.Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127 (2000), 4195–202Google ScholarPubMed
Langley-Evans, S. C.Hypertension induced by foetal exposure to a maternal low-protein diet, in the rat, is prevented by pharmacological blockade of maternal glucocorticoid synthesis. J. Hypertens 15 (1997), 537–44CrossRefGoogle ScholarPubMed
Langley-Evans, S. C.Critical differences between two low protein diet protocols in the programming of hypertension in the rat. International Journal of Food Sciences and Nutrition 51 (2000), 11–17CrossRefGoogle ScholarPubMed
Lingas, R., Dean, F. and Matthews, S. G.Maternal nutrient restriction (48 h) modifies brain corticosteroid receptor expression and endocrine function in the fetal guinea pig. Brain Res. 846 (1999), 236–42CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Day, J. C., Francis, D. D. and Meaney, M. J.Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat. Neurosci. 3 (2000), 799–806CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Tannebaum, B.et al.Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science 277 (1997), 1659–62CrossRefGoogle ScholarPubMed
Lonergan, P., Rizos, D., Kanka, J.et al.Temporal sensitivity of bovine embryos to culture environment after fertilization and the implications for blastocyst quality. Reproduction 126, 337–46CrossRef
Mallard, C., Loeliger, M., Copolov, D. and Rees, S.Reduced number of neurons in the hippocampus and the cerebellum in the postnatal guinea-pig following intrauterine growth-restriction. Neuroscience 100 (2000), 327–33CrossRefGoogle ScholarPubMed
Mallard, E. C., Rehn, A., Rees, S., Tolcos, M. and Copolov, D.Ventriculomegaly and reduced hippocampal volume following intrauterine growth-restriction: implications for the aetiology of schizophrenia. Schizophr. Res. 40 (1999), 11–21CrossRefGoogle ScholarPubMed
Marchand, M. C. and Langley-Evans, S. C.Intrauterine programming of nephron number: the fetal flaw revisited. J. Nephrol. 14 (2001), 327–31Google ScholarPubMed
Mehta, G., Roach, H. I., Langley-Evans, S.et al.Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcified Tissue Int. 71 (2002), 493–8CrossRefGoogle ScholarPubMed
Merlet-Benichou, C., Gilbert, T., Muffat-Joly, M., Lelievre-Pegorier, M. and Leroy, B.Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr. Nephrol. 8 (1994), 175–80CrossRefGoogle ScholarPubMed
Miller, S. L., Green, L. R., Peebles, D. M., Hanson, M. A. and Blanco, C. E.Effects of chronic hypoxia and protein malnutrition on growth in the developing chick. Am. J. Obstet. Gynecol. 186, 2 (2002), 261–67CrossRefGoogle ScholarPubMed
Murotsuki, J., Challis, J. R., Han, V. K., Fraher, L. J. and Gagnon, R.Chronic fetal placental embolization and hypoxemia cause hypertension and myocardial hypertrophy in fetal sheep. Am. J. Physiol. 272 (1997), R201–7Google ScholarPubMed
Nishina, H., Green, L. R., McGarrigle, H. H.et al.Effect of nutritional restriction in early pregnancy on isolated femoral artery function in mid gestation fetal sheep. J. Physiol. 553 (2003), 637–47CrossRefGoogle ScholarPubMed
Ozaki, T., Nishina, H., Hanson, M. A. and Poston, L.Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J. Physiol. 530 (2001), 141–52CrossRefGoogle ScholarPubMed
Petrik, J., Reusens, B., Arany, E.et al.A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology 140 (1999), 4861–73CrossRefGoogle ScholarPubMed
Plagemann, A., Harder, T., Rake, A.et al.Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res. 836 (1999), 146–55CrossRefGoogle ScholarPubMed
Plagemann, A., Heidrich, I., Gotz, F., Rohde, W. and Dorner, G.Obesity and enhanced diabetes and cardiovascular risk in adult rats due to early postnatal overfeeding. Exp. Clin. Endocrinol. 99 (1992), 154–8CrossRefGoogle ScholarPubMed
Sayer, A. A., Dunn, R. and Langley-Evans, S.Prenatal exposure to a maternal low protein diet shortens life span in rats. Gerontology 47 (2001), 9–14CrossRefGoogle Scholar
Seckl, J. R.Glucocorticoids, feto-placenta 11 beta-hydroxysteroid dehydrogenase type 2, and the early life origins of adult disease. Steroids 62 (1997), 89–94CrossRefGoogle Scholar
Shiels, P. G., Kind, A. J., Campbell, K. H.et al.Analysis of telomere lengths in cloned sheep. Nature 399 (1999), 316–7CrossRefGoogle ScholarPubMed
Simmons, R. A., Templeton, L. G. and Gertz, S. J.Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 50 (2001), 2279–86CrossRefGoogle ScholarPubMed
Snoeck, A., Remacle, C., Reusens, B. and Hoet, J. J.Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol. Neonate. 57 (1990), 107–18CrossRefGoogle ScholarPubMed
Taylor, P. D., Khan, I. Y., Lakasing, L.et al.Uterine artery function in pregnant rats fed a diet supplemented with animal lard. Exp. Physiol. 88 (2003), 389–98CrossRefGoogle ScholarPubMed
Torrens, C., Brawley, L., Barker, A. C.et al.Maternal protein restriction in the rat impairs resistance but not conduit artery function in pregnant offspring. J. Physiol. 547 (2002), 77–84CrossRefGoogle Scholar
Vickers, M. H., Breier, B. H., Cutfield, W. S., Hofman, P. L. and Gluckman, P. D.Fetal origins of hyperphagia, obesity and hypertension and its postnatal amplification by hypercaloric nutrition. Am. J. Physiol. 279 (2000), E83–7Google ScholarPubMed
Vickers, M., Breier, B., McCarthy, D. and Gluckman, P.Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285 (2003), R271–3CrossRefGoogle ScholarPubMed
Vickers, M. H., Reddy, S., Ikenasio, B. A. and Breier, B. H.Dysregulation of the adipoinsular axis – a mechanism for the pathogenesis of hyperleptinemia and adipogenic diabetes induced by fetal programming. J. Endocrinol. 170 (2001), 323–32CrossRefGoogle Scholar
Weaver, I. C., Cervoni, N., D'Alessio, A. C. et al. Maternal behavior in infancy regulates methylation of the hippocampal glucocorticoid receptor promoter. 10th Annual Pharmacology Research Day, McGill University, Montreal, Quebec (2003a)
Weaver, I. C G., Cervoni, N., D'Alessio, A. C. et al. Transgenerational epigenomic imprinting by maternal behavior through DNA methylation. In press (2003b)
Welberg, L. A. M., Seckl, J. R. and Holmes, M. C.Inhibition of 11ß-hydroxysteroid dehydrogenase, the foeto–placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur. J. Neurosci. 12 (2000), 1047–54CrossRefGoogle Scholar
Welberg, L. A. M., Seckl, J. R. and Holmes, M. C.Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104 (2001), 71–9CrossRefGoogle ScholarPubMed
Woodall, S. M., Johnston, B. M., Breier, B. H. and Gluckman, P. D.Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatr. Res. 40 (1996), 438–43CrossRefGoogle ScholarPubMed
Zhang, J. and Byrne, C. D.Differential hepatic lobar gene expression in offspring exposed to altered maternal dietary protein intake. Am. J. Physiol. Gastrointest. Liver Physiol. 278 (2000), G128–36CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×