Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T13:00:48.905Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

4 - Effectively axiomatized theories

Peter Smith
Affiliation:
University of Cambridge
Get access

Summary

Gödel's Incompleteness Theorems tell us about the limits of theories of arithmetic. More precisely, they tell us about the limits of effectively axiomatized formal theories of arithmetic. But what exactly does that mean?

Formalization as an ideal

Rather than just dive into a series of definitions, it is well worth pausing to remind ourselves of why we might care about formalizing theories.

So let's get back to basics. In elementary logic classes, beginners are drilled in translating arguments into an appropriate formal language and then constructing formal deductions of the stated conclusions from given premisses.

Why bother with formal languages? Because everyday language is replete with redundancies and ambiguities, not to mention sentences which simply lack clear truth-conditions. So, in assessing complex arguments, it helps to regiment them into a suitable artificial language which is expressly designed to be free from obscurities, and where surface form reveals logical structure.

Why bother with formal deductions? Because everyday arguments often involve suppressed premisses and inferential fallacies. It is only too easy to cheat. Setting out arguments as formal deductions in one style or another enforces honesty: we have to keep a tally of the premisses we invoke, and of exactly what inferential moves we are using. And honesty is the best policy. For suppose things go well with a particular formal deduction. Suppose we get from the given premisses to some target conclusion by small inference steps each one of which is obviously valid (no suppressed premisses are smuggled in, and there are no suspect inferential moves).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×