Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T16:40:42.570Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Mark Z. Jacobson
Affiliation:
Stanford University, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdella, K. and McFarlane, N. (1997) A new second-order turbulence closure scheme for the planetary boundary layer. J. Atmos. Sci. 54, 1850–672.0.CO;2>CrossRefGoogle Scholar
ACEA (1999) ACEA Programme on Emissions of Fine Particles from Passenger Cars. Brussels, ACEA
Adamson, A. W. (1990) Physical Chemistry of Surfaces, 5th edn. New York, John Wiley and Sons, Inc.Google Scholar
Alam, M. K. (1987) The effect of van der Waals and viscous forces on aerosol coagulation. Aerosol Sci. Technol. 6, 41–52CrossRefGoogle Scholar
Alfaro, S. C. and Gomes, L. (2001) Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J. Geophys. Res. 106, 18075–84CrossRefGoogle Scholar
Allen P. and Wagner K. (1992) 1987 California Air Resources Board emissions inventory, magnetic tapes ARA806, ARA807
Al Nakshabandi, G. and Konhke, H. (1965) Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties. Agric. Meteor. 2, 271–9CrossRefGoogle Scholar
Ambartzumiam, V. (1936) The effect of the absorption lines on the radiative equilibrium of the outer layers of the stars. Publ. Obs. Astron. Univ. Leningrad 6, 7–18Google Scholar
Anandakumar, K. (1999) A study of the partition of net radiation into heat fluxes on a dry asphalt surface. Atmos. Environ. 33, 3911–18CrossRefGoogle Scholar
Anbar, M. and Neta, P. (1967) A compilation of specific bimolecular rate constants for the reactions of hydrated electrons, hydrogen atoms, and hydroxyl radicals with inorganic and organic compounds in aqueous solution. Int. J. Appl. Radiat. Isot. 18, 493–523CrossRefGoogle Scholar
Andre, J. C., Moor, G., Lacarrere, P., and Du Vachat, R. (1978) Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer. J. Atmos. Sci. 35, 1861–832.0.CO;2>CrossRefGoogle Scholar
Andreae, M. O. and Merlet, P. (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955–66CrossRefGoogle Scholar
Andreas, E. L. (1992) Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res. 97, 11, 429–41CrossRefGoogle Scholar
Andrén, A. (1990) Evaluation of a turbulence closure scheme suitable for air pollution applications. J. Appl. Math. Phys. 29, 224–39Google Scholar
Andres, R. J. and Kasgnoc, A. D. (1998) A time-averaged inventory of subaerial volcanic sulfur emissions. J. Geophys. Res. 103, 25251–61CrossRefGoogle Scholar
Angell, C. A., Guni, M. O., and Sichina, W. J. (1982) Heat capacity of water at extremes of supercooling and superheating. J. Phys. Chem. 86, 998–1002CrossRefGoogle Scholar
Anthes, R. A. (1977) A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev. 105, 270–862.0.CO;2>CrossRefGoogle Scholar
Anthes, A., Kuo, Y.-H., Hsie, E.-Y., Low-Nam, S., and Bettge, T. W. (1989) Estimation of skill and uncertainty in regional numerical models. Q. J. Roy. Meteor. Soc. 115, 763–806CrossRefGoogle Scholar
Apsley, D. D. and Castro, I. P. (1997) A limited-length-scale k-ε model for the neutral and stably-stratified atmospheric boundary layer. Boundary-Layer Meteor. 83, 75–98CrossRefGoogle Scholar
Arakawa, A. (1984) Boundary conditions in limited-area models. Course notes, Department of Atmospheric Sciences, University of California, Los AngelesGoogle Scholar
Arakawa, A. (1997) Adjustment mechanisms in atmospheric models. J. Meteor. Soc. Japan 75, 155–79CrossRefGoogle Scholar
Arakawa, A. and Konor, C. S. (1995) Vertical differencing of the primitive equations based on the Charney–Phillips grid in hybrid σ–p vertical coordinates. Mon. Wea. Rev. 124, 511–282.0.CO;2>CrossRefGoogle Scholar
Arakawa, A. and Lamb, V. R. (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys. 17, 174–265Google Scholar
Arakawa, A. and Schubert, W. H. (1974) Interaction of a cumulus cloud ensemble with large scale environment, Part I. J. Atmos. Sci. 31, 674–7012.0.CO;2>CrossRefGoogle Scholar
Arakawa, A. and Suarez., M. J. (1983) Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev. 111, 34–452.0.CO;2>CrossRefGoogle Scholar
Archer, C. L. and Jacobson, M. Z. (2003) Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. J. Geophys. Res. 108 (D9), 4289, doi:10.1029/2002JD002076CrossRefGoogle Scholar
Arking, A. A. and Grossman, K. (1972) The influence of line shape and band structure on temperatures in planetary atmospheres. J. Atmos. Sci. 29, 937–492.0.CO;2>CrossRefGoogle Scholar
Arstila, H., Korhonen, P., and Kulmala, M. (1999) Ternary nucleation: Kinetics and application to water–ammonia–hydrochloric acid system. J. Aerosol Sci. 30, 131–8CrossRefGoogle Scholar
Artelt, C., Schmid, H.-J., and Peukert, W. (2003) On the relevance of accounting for the evolution of the fractal dimension in aerosol process simulations. J. Aerosol Sci. 34, 511–34CrossRefGoogle Scholar
Arya, S. P. (1988) Introduction to Micrometeorology. San Diego, Academic Press, 307ppGoogle Scholar
Asphalt Roofing Manufacturers Association (ARMA) (1999) Roofing Basics, http://www. asphaltroofing.org/basics.html
Atkinson, R., Lloyd, A. C., and Winges, L. (1982) An updated chemical mechanism for hydrocarbon/NOx/SO2 photooxidations suitable for inclusion in atmospheric simulation models. Atmos. Environ. 16, 1341–55CrossRefGoogle Scholar
Atkinson, R., Baulch, D. L., Cox, R. A., et al. (1997) Evaluated kinetic, photochemical, and heterogeneous data for atmospheric chemistry. Supplement V. J. Phys. Chem. Ref. Data 26, 521–1011CrossRefGoogle Scholar
Austin, J. (1991) On the explicit versus family solution of the fully diurnal photochemical equations of the stratosphere. J. Geophys. Res. 96, 12, 941–74CrossRefGoogle Scholar
Avissar, R. and Mahrer, Y. (1988) Mapping frost-sensitive areas with a three-dimensional local-scale numerical model. Part I: Physical and numerical aspects. J. Appl. Meteor. 27, 400–132.0.CO;2>CrossRefGoogle Scholar
Bader, G. and Deuflhard, P. (1983) A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numer. Math. 41, 373–98CrossRefGoogle Scholar
Bagnold, R. A. (1941) The Physics of Blown Sand and Desert Dunes. New York, Methuen, 265ppGoogle Scholar
Baldocchi, D. D., Hicks, B. B., and Camara, P. (1987) A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos. Environ. 21, 91–101CrossRefGoogle Scholar
Bannon, P. R. (1966) On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci. 53, 3618–282.0.CO;2>CrossRefGoogle Scholar
Bassett, M. E. and Seinfeld, J. H. (1983) Atmospheric equilibrium model of sulfate and nitrate aerosol. Atmos. Environ. 17, 2237–52CrossRefGoogle Scholar
Bassett, M. E. and Seinfeld, J. H. (1984) Atmospheric equilibrium model of sulfate and nitrate aerosol-II. Particle size analysis. Atmos. Environ. 18, 1163–70CrossRefGoogle Scholar
Bates, T. S., Kiene, R. P., Wolfe, G. V., et al. (1994) The cycling of sulfur in surface seawater of the Northeast Pacific. J. Geophys. Res. 99, 7835–43CrossRefGoogle Scholar
Beard, K. V. (1976) Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci. 33, 851–642.0.CO;2>CrossRefGoogle Scholar
Beard, K. V. and Grover, S. N. (1974) Numerical collision efficiencies for small raindrops colliding with micron size particles. J. Atmos. Sci. 31, 543–502.0.CO;2>CrossRefGoogle Scholar
Beard, K. V. and Ochs, H. T. III (1984) Collection and coalescence efficiencies for accretion. J. Geophys. Res. 89, 7165–9CrossRefGoogle Scholar
Beard, K. V. and Pruppacher, H. R. (1971) A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci. 28, 1455–642.0.CO;2>CrossRefGoogle Scholar
Behar, D., Czapski, G., and Duchovny, I. (1970) Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions. J. Phys. Chem. 74, 2206–10CrossRefGoogle Scholar
Bermejo, R. and Conde, J. (2002) A conservative quasi-monotone semi-Lagrangian scheme. Mon. Wea. Rev. 130, 423–302.0.CO;2>CrossRefGoogle Scholar
Berresheim H., Wine P. H., and Davis D. D. (1995) Sulfur in the atmosphere. In Composition, Chemistry, and Climate of the Atmosphere. Singh, H. B., ed., New York, Van Nostrand Reinhold, 251–307Google Scholar
Betterton, E. A. and Hoffmann, M. R. (1988) Henry's law constants of some environmentally important aldehydes. Environ. Sci. Technol. 22, 1415–18CrossRefGoogle ScholarPubMed
Betts, A. K. (1986) A new convective adjustment scheme. Part I: Observational and theoretical basis. Q. J. Roy. Meteor. Soc. 112, 677–91Google Scholar
Betts, A. K. and Miller, M. J. (1986) A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX, and arctic air-mass data sets. Q. J. Roy. Meteor. Soc. 112, 693–709Google Scholar
Bhumralkar, C. M. (1975) Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J. Appl. Meteor. 14, 67–1002.0.CO;2>CrossRefGoogle Scholar
Bielski, B. H. J. (1978) Reevaluation of the spectral and kinetic properties of HO2 and O2− free radicals. Photochem. Photobiol. 28, 645–9CrossRefGoogle Scholar
Bigg, E. K. (1953) The formation of atmospheric ice crystals by the freezing of droplets. Q. J. Roy. Meteor. Soc. 79, 510–19CrossRefGoogle Scholar
Binkowski, F. S. and Roselle, S. J. (2003) Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. J. Geophys. Res. 108 (D6), 4183, doi:10.1029/2001JD001409CrossRefGoogle Scholar
Binkowski, F. S. and Shankar, U. (1995) The regional particulate matter model 1. Model description and preliminary results. J. Geophys. Res. 100, 26191–209CrossRefGoogle Scholar
Blackadar A. K. (1976) Modeling the nocturnal boundary layer. Proceedings of the Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality, Boston, American Meteorological Society, 46–9
Blackadar A. K. (1978) Modeling pollutant transfer during daytime convection. Proceedings of the Fourth Symposium on Atmospheric Turbulence, Diffusion, and Air Quality, Reno, American Meteorological Society, 443–7
Blumthaler, M. and Ambach, W. (1988) Solar UVB-albedo of various surfaces. Photochem. Photobiol. 48, 85–8CrossRefGoogle ScholarPubMed
Boccippio, D. J., CumminsK. L., Christian H. J. K. L., Christian H. J., and Goodman, S. J. (2001) Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev. 129, 108–222.0.CO;2>CrossRefGoogle Scholar
Bohren, C. F. (1986) Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmos. Sci. 43, 468–752.0.CO;2>CrossRefGoogle Scholar
Bohren C. F. and Huffman D. R. (1983) Absorption and Scattering of Light by Small Particles. New York, John Wiley and Sons, 530pp
Bojkov, R. D. and Fioletov, V. E. (1995) Estimating the global ozone characteristics during the last 30 years. J. Geophys. Res. 100, 16, 537–51CrossRefGoogle Scholar
Bolsaitis, P. and Elliott, J. F. (1990) Thermodynamic activities and equilibrium partial pressures for aqueous sulfuric acid solutions. J. Chem. Eng. Data 35, 69–85CrossRefGoogle Scholar
Bolton, D. (1980) The computation of equivalent potential temperature. Mon. Wea. Rev. 108, 1046–532.0.CO;2>CrossRefGoogle Scholar
Bond, D. W., Steiger, S., Zhang, R., Tie, X., and Orville, R. E. (2002) The importance of NOx production by lightning in the tropics. Atmos. Environ. 36, 1509–19CrossRefGoogle Scholar
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and Klimont, Z. (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 109, (D1) 4203, doi: 10.1029/2003JD003697CrossRefGoogle Scholar
Bonsang, B., Martin, D., Lambert, G., Kanakidou, M., Roulley, J. C., and Sennequier, G. (1991) Vertical distribution of nonmethane hydrocarbons in the remote marine boundary layer. J. Geophys. Res. 96, 7313–24CrossRefGoogle Scholar
Bothe, E. and Schulte-Frohlinde, D. (1980) Reaction of dihydroxymethyl radical with molecular oxygen in aqueous solution. Z. Naturforsch. B, Anorg. Chem. Org. Chem. 35, 1035–9Google Scholar
Bott, A. (1989) A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev. 117, 1006–152.0.CO;2>CrossRefGoogle Scholar
Bott, A. (2000) A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci. 57, 284–942.0.CO;2>CrossRefGoogle Scholar
Bott, A. and Carmichael, G. R. (1993) Multiphase chemistry in a microphysical radiation fog model – a numerical study. Atmos. Environ. 27A, 503–22CrossRefGoogle Scholar
Boubel, R. W., Fox, D. L., Turner, D. B., and Stern, A. C. S. (1994) Fundamentals of Air Pollution. San Diego, Academic Press, Inc.Google Scholar
Boyce, S. D. and Hoffmann, M. R. (1984) Kinetics and mechanism of the formation of hydroxymethanesulfonic acid at low pH. J. Phys. Chem. 88, 4740–6CrossRefGoogle Scholar
Brewer, P. G. (1997) Ocean chemistry of the fossil fuel CO2 signal: The haline signal of “business as usual.”Geophys. Res. Lett. 24, 1367–9CrossRefGoogle Scholar
Briere, S. (1987) Energetics of daytime sea breeze circulation as determined from a two-dimensional and third-order closure mode. J. Atmos. Sci. 44, 1455–742.0.CO;2>CrossRefGoogle Scholar
Brock, J. R., Zehavi, D., and Kuhn, P. (1986) Condensation aerosol formations and growth in a laminar coaxial jet: Experimental. J. Aerosol Sci. 17, 11–22CrossRefGoogle Scholar
Bromley, L. A. (1973) Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313–20CrossRefGoogle Scholar
Brownawell M. (2004) http://isa.dknet.dk/~innova/gemarkus.htm
Bruggeman, D. A. G. (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. (Leipzig) 24, 639–79Google Scholar
Brutsaert, W. (1991) Evaporation in the Atmosphere. Dordrecht, Kluwer Academic Publishers, 299ppGoogle Scholar
Burtscher, H. and Schmidt-Ott, A. (1982) Enormous enhancement of van der Waals forces between small silver particles. Phys. Rev. Lett. 48, 1734–7CrossRefGoogle Scholar
Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F. (1971) Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181–92.0.CO;2>CrossRefGoogle Scholar
Butler, J. N. (1982) Carbon Dioxide Equilibria and Their Applications. Reading MA, Addison-Wesley Publishing Co., 259ppGoogle Scholar
Calder, K. L. (1949) Eddy diffusion and evaporation in flow over aerodynamically smooth and rough surfaces: A treatment based on laboratory laws of turbulent flow with special reference to conditions in the lower atmosphere. Q.J. Mech. Appl. Math. 2, 153–76CrossRefGoogle Scholar
Caldeira, K. and Wickett, M. E. (2003) Anthropogenic carbon and ocean pH. Nature 425, 265CrossRefGoogle ScholarPubMed
California Air Resources Board (CARB) (1988) Method Used to Develop a Size-Segregated Particulate Matter Inventory.Technical Support Division, Emission Inventory Branch, California Air Resources Board, Sacramento, CA
Campbell, F. W. and Maffel, L. (1974) Contrast and spatial frequency. Sci. Am. 231, 106–14CrossRefGoogle ScholarPubMed
Capaldo, K. P., Pilinis, C., and Pandis, S. N. (2000) A computationally efficient hybrid approach for dynamic gas/aerosol transfer in air quality models. Atmos. Environ. 34, 3617–27CrossRefGoogle Scholar
Carmichael, G. R., Peters, L. K., and Kitada, T. (1986) A second generation model for regional-scale transport/chemistry/deposition. Atmos. Environ. 20, 173–88CrossRefGoogle Scholar
Carpenter, R. L., Droegemeier, K. K., Woodward, P. R., and Hane, C. E. (1990) Application of the piecewise parabolic method (PPM) to meteorological modeling. Mon. Wea. Rev. 118, 586–6122.0.CO;2>CrossRefGoogle Scholar
Carter, W. P. L. (1990) A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmos. Environ. 24A, 481–518CrossRefGoogle Scholar
Carter, W. P. L. (1991) Development of Ozone Reactivity Scales for Volatile Organic Compounds. EPA-600/3-91-050. U.S. Environmental Protection Agency, Research Triangle Park, NCGoogle Scholar
Carter, W. P. L. (2000) Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment. Final Report to the California Air Resources Board Under Contracts 92–329 and 95–308, California Air Resources Board, Sacramento, CA.Google Scholar
Cass, G. R. (1979) On the relationship between sulfate air quality and visibility with examples in Los Angeles. Atmos. Environ. 13, 1069–84CrossRefGoogle Scholar
Castro, T., Madronich, S., Rivale, S., Muhlia, A., and Mar, B. (2001) The influence of aerosols on photochemical smog in Mexico City. Atmos. Environ. 35, 1765–72CrossRefGoogle Scholar
Celia, M. A. and Gray, W. G. (1992) Numerical Methods for Differential Equations. Englewood Cliffs, Prentice-HallGoogle Scholar
Chameides, W. L. (1984) The photochemistry of a remote marine stratiform cloud. J. Geophys. Res. 89, 4739–55CrossRefGoogle Scholar
Chameides, W. L. and Stelson, A. W. (1992) Aqueous-phase chemical processes in deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt. J. Geophys. Res. 97, 20, 565–80CrossRefGoogle Scholar
Chang, E., Nolan, K., Said, M., Chico, T., Chan, S., and Pang, E. (1991) 1987 Emissions Inventory for the South Coast Air Basin: Average Annual Day.South Coast Air Quality Management District (SCAQMD), Los AngelesGoogle Scholar
Chang, S., Brodzinsky G. R., Gundel L. A., and Novakov T. (1982) Chemical and catalytic properties of elemental carbon. In Particulate Carbon: Atmospheric Life Cycle, Wolff, G. T. and Klimsch, R. L., eds., New York, Plenum Press, 158–81CrossRefGoogle Scholar
Chang, W., Heikes, B. G., and Lee, M. (2004) Ozone deposition to the sea surface: chemical enhancement and wind speed dependence. Atmos. Environ. 38, 1053–9CrossRefGoogle Scholar
Chapman, S. (1930) A theory of upper-atmospheric ozone. Mem. Roy. Meteor. Soc. 3, 104–25Google Scholar
Chapman, S. and Cowling, T. G. (1970) The Mathematical Theory of Nonuniform Gases. Cambridge, Cambridge University PressGoogle Scholar
Charney, J. G. (1949) On a physical basis for numerical prediction of large-scale motions in the atmosphere. J. Meteor. 6, 371–852.0.CO;2>CrossRefGoogle Scholar
Charney J. G. (1951) Dynamical forecasting by numerical process. In Compendium of Meteorology, Malone, T. F., ed., Boston, American Meteorological Society, 470–82Google Scholar
Charney, J. G. and Phillips, N. A. (1953) Numerical integration of the quasigeostrophic equations for barotropic and simple baroclinic flows. J. Meteor. 10, 71–992.0.CO;2>CrossRefGoogle Scholar
Charnock, H. (1955) Wind stress on a water surface. Q. J. Roy. Meteor. Soc. 81, 639–40CrossRefGoogle Scholar
Chatfield, R. B., Gardner, E. P., and Calvert, J. G. (1987) Sources and sinks of acetone in the troposphere: Behavior of reactive hydrocarbons and a stable product. J. Geophys. Res. 92, 4208–16CrossRefGoogle Scholar
Chen, C. (1991) A nested grid, nonhydrostatic, elastic model using a terrain-following coordinate transformation: The radiative-nesting boundary conditions. Mon. Wea. Rev. 119, 2852–692.0.CO;2>CrossRefGoogle Scholar
Chen, S., Cope, V. W., and Hoffman, M. Z. (1973) Behavior of CO3− radicals generated in the flash photolysis of carbonatoamines complexes of cobalt(III) in aqueous solution. J. Phys. Chem. 77, 1111–6CrossRefGoogle Scholar
Cheng, M.-D. and Arakawa, A. (1997) Inclusion of rainwater budget and convective downdrafts in the Arakawa-Schubert cumulus parameterization. J. Atmos. Sci. 54, 1359–782.0.CO;2>CrossRefGoogle Scholar
Cheng, Y., Canuto, V. M., and Howard, A. M. (2002) An improved model for the turbulent PBL. J. Atmos. Sci. 59, 1550–652.0.CO;2>CrossRefGoogle Scholar
Chock, D. P. (1991) A comparison of numerical methods for solving the advection equation – III. Atmos. Environ. 25A, 853–71CrossRefGoogle Scholar
Chock, D. P. and Winkler, S. L. (1994) A comparison of advection algorithms coupled with chemistry. Atmos. Environ. 28, 2659–75CrossRefGoogle Scholar
Chock, D. P. and Winkler, S. L. (2000) A trajectory-grid approach for solving the condensation and evaporation equations of aerosols. Atmos. Environ. 34, 2957–73CrossRefGoogle Scholar
Chock, D. P., Sun, P., and Winkler, S. L. (1996) Trajectory-grid: An accurate sign-preserving advection–diffusion approach for air quality modeling. Atmos. Environ. 30, 857–68CrossRefGoogle Scholar
Christensen, H., Sehested, K., and Corfitzen, H. (1982) Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. J. Phys. Chem. 86, 1588–90CrossRefGoogle Scholar
Chylek, P. (1977) A note on extinction and scattering efficiencies. J. Appl. Meteor. 16, 321–22.0.CO;2>CrossRefGoogle Scholar
Chylek, P., Srivastava, V., Pinnick, R. G., and Wang, R. T. (1988) Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations. Appl. Opt. 27, 2396–404CrossRefGoogle Scholar
Chylek, P., Videen, G., Ngo, D., Pinnick, R. G., and Klett, J. D. (1995) Effect of black carbon on the optical properties and climate forcing of sulfate aerosols. J. Geophys. Res. 100, 16,325–32CrossRefGoogle Scholar
Clapp, R. B. and Hornberger, G. M. (1978) Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601–4CrossRefGoogle Scholar
Cleaver, B., Rhodes, E., and Ubbelohde, A. R. (1963) Studies of phase transformations in nitrates and nitrites I. Changes in ultra-violet absorption spectra on melting. Proc. Roy. Soc. London 276, 437–53CrossRefGoogle Scholar
Clegg, S. L. and Brimblecombe, P. (1995) Application of a multicomponent thermodynamic model to activities and thermal properties of 0–40 mol kg−1 aqueous sulphuric acid from < 200 K to 328 K. J. Chem. Eng. Data 40, 43–64CrossRefGoogle Scholar
Clegg, S. L. and Seinfeld, J. H. (2004) Improvement of the Zdanovskii–Stokes–Robinson model for mixtures containing solutes of different charge types. J. Phys. Chem. 108, 1008–17CrossRefGoogle Scholar
Clegg, S. L., Brimblecombe, P., Liang, Z., and Chan, C. K. (1997) Thermodynamic properties of aqueous aerosols to high supersaturation: II – A model of the system Na+–Cl−–NO3−–SO42−–H2O at 298.15 K. Aerosol. Sci. Technol. 27, 345–66CrossRefGoogle Scholar
Clegg, S. L., Seinfeld, J. H., and Edney, E. O. (2003) Thermodynamic modeling of aqueous aerosols containing electrolytes and dissolved organic compounds. II. An extended Zdanovskii–Stokes–Robinson approach. J. Aerosol Sci. 34, 667–90CrossRefGoogle Scholar
Clyne, M. A. A., Monkhouse, P. B., and Townsend, L. W. (1976) Reactions of O(3P) atoms with halogens: The rate constants for the elementary reactions O(3P) + BrCl, O(3P) + Br2 and O(3P) + Cl2. Int. J. Chem. Kinet. 8, 425–49CrossRefGoogle Scholar
Coffman, D. J. and Hegg, D. A. (1995) A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer. J. Geophys. Res. 100, 7147–60CrossRefGoogle Scholar
Cohen, M. D., Flagan, R. C., and Seinfeld, J. H. (1987a) Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions. J. Phys. Chem. 91, 4563–74CrossRefGoogle Scholar
Cohen, M. D., Flagan, R. C., and Seinfeld, J. H. (1987b) Studies of concentrated electrolyte solutions using the electrodynamic balance. 2. Water activities for mixed-electrolyte solutions. J. Phys. Chem. 91, 4575–82CrossRefGoogle Scholar
Coleman, G. N. (1999) Similarity statistics from a direct numerical simulation of the neutrally stratified planetary boundary layer. J. Atmos. Sci. 56, 891–92.0.CO;2>CrossRefGoogle Scholar
Collela, P. and Woodward, P. R. (1984) The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comp. Phys. 54, 174–201CrossRefGoogle Scholar
Comes, F. J., Forberich, O., and Walter, J. (1997) OH field measurements: A critical input into model calculations on atmospheric chemistry. J. Atmos. Sci. 54, 1886–942.0.CO;2>CrossRefGoogle Scholar
Conklin, M. H. and Hoffmann, M. R. (1988) Metal ion-S(IV) chemistry III. Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes. Environ. Sci. Technol. 22, 891–8CrossRefGoogle Scholar
Cooke, W. F. and Wilson, J. J. N. (1996) A global black carbon aerosol model. J. Geophys. Res. 101, 19, 395–409CrossRefGoogle Scholar
Cooke, W. F., Liousse, C., Cachier, H., and Feichter, J. (1999) Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res. 104, 22, 137–62CrossRefGoogle Scholar
Cotton, W. R. and Anthes, R. A. (1989) Storm and Cloud Dynamics. San Diego, Academic Press, Inc.Google Scholar
Courant, R., Friedrichs, K., and Lewy, H. (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74CrossRefGoogle Scholar
Crank, J. (1975) The Mathematics of Diffusion, 2nd edn. Oxford, Clarendon PressGoogle Scholar
Crank, J. and Nicolson, P. (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Camb. Philos. Soc. 43, 50–67CrossRefGoogle Scholar
Crutzen, P. J. (1971) Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere. J. Geophys. Res. 76, 7311–27CrossRefGoogle Scholar
Cuenca, R. H., Ek, M., and Mahrt, L. (1996) Impact of soil water property parameterization on atmospheric boundary layer simulation. J. Geophys. Res. 101, 7269–77CrossRefGoogle Scholar
Cunningham, E. (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc. Roy. Soc. London A83, 357–65CrossRefGoogle Scholar
Curtiss, C. F. and Hirschfelder, J. O. (1952) Integration of stiff equations. Proc. Nat. Acad. Sci. USA 38, 235–43CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Ackerman, T. P., and Helmle, L. C. (1982) The delta-four-stream approximation for radiative transfer. J. Atmos. Sci. 39, 917–252.0.CO;2>CrossRefGoogle Scholar
Dabdub, D. and Seinfeld, J. H. (1994) Numerical advective schemes used in air quality models – sequential and parallel implementation. Atmos. Environ. 28, 3369–85CrossRefGoogle Scholar
Dabdub, D. and Seinfeld, J. H. (1995) Extrapolation techniques used in the solution of stiff ODEs associated with chemical kinetics of air quality models. Atmos. Environ. 29, 403–10CrossRefGoogle Scholar
Danielsen, E. F., Bleck, R., and Morris, D. A. (1972) Hail growth by stochastic collection in a cumulus model. J. Atmos. Sci. 29, 135–552.0.CO;2>CrossRefGoogle Scholar
Davies, H. C. (1976) A lateral boundary formulation for multi-level prediction models. Q. J. Roy. Meteor. Soc. 102, 405–18Google Scholar
Davis, E. J. (1983) Transport phenomena with single aerosol particles. Aerosol Sci. Technol. 2, 121–44CrossRefGoogle Scholar
Dean, J. A. (1992) Lange's Handbook of Chemistry. New York, McGraw-Hill, Inc.Google Scholar
Deardorff, J. W. (1972) Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci. 29, 91–1152.0.CO;2>CrossRefGoogle Scholar
Deardorff, J. W. (1977) A parameterization of ground surface moisture content for use in atmospheric prediction models. J. Appl. Meteor. 16, 1182–52.0.CO;2>CrossRefGoogle Scholar
Deardorff, J. W. (1978) Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res. 83, 1889–903CrossRefGoogle Scholar
Arellano, J. V., Duynkerke, P., and Weele, M. (1994) Tethered-balloon measurements of actinic flux in a cloud-capped marine boundary layer. J. Geophys. Res. 99, 3699–705CrossRefGoogle Scholar
Leeuw, G., Neele, F. P., Hill, M., Smith, M. H., and Vignati, E. (2000) Production of sea spray aerosol in the surf zone. J. Geophys. Res. 105, 29397–409CrossRefGoogle Scholar
Deirmendjian, D. (1969) Electromagnetic Scattering on Spherical Polydispersions. New York, ElsevierGoogle Scholar
DeMore, W. B., Sanders, S. P., Golden, D. M., et al. (1997) Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation number 12, JPL Publ. 97–4, Jet Propulsion Laboratory, Pasadena, CAGoogle Scholar
Dickerson, R. R., Kondragunta, S., Stenchikov, G., Civerolo, K. L., Doddridge, B. G., and Holben, B. N. (1997) The impact of aerosols on solar UV radiation and photochemical smog. Science 278, 827–30CrossRefGoogle ScholarPubMed
Dickinson R. E. (1984) Modeling evapotranspiration for three-dimensional global climate models. In Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., Vol. 29, J. E. Hanson and T. Takahashi, eds., Washington, DC, American Geophysical Union, 58–72
Ding, P. and Randall, D. A. (1998) A cumulus parameterization with multiple cloud-base levels. J. Geophys. Res. 103, 11,341–53CrossRefGoogle Scholar
Donea, J. (1984) A Taylor–Galerkin method for convective transport problems. Int. J. Numer. Methods Engng. 20, 101–19CrossRefGoogle Scholar
Dorsch, R. G. and Hacker, P. (1951) Experimental Values of Surface Tension of Supercooled Water.National Advisory Committee for Aeronautics (NACA), Tech. Note 2510Google Scholar
Duce, R. A. (1969) On the source of gaseous chlorine in the marine atmosphere. J. Geophys. Res. 70, 1775–9CrossRefGoogle Scholar
Dudhia, J. (1993) A nonhydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev. 121, 1493–5132.0.CO;2>CrossRefGoogle Scholar
Durran, D. R. (1999) Numerical Methods for Wave Equations in Geophysical Fluid Dynamics.New York, Springer-VerlagCrossRefGoogle Scholar
Dyer, A. J. (1974) A review of flux-profile relationships. Boundary-Layer Meteor. 7, 363–72CrossRefGoogle Scholar
Dyer, A. J. and Bradley, E. F. (1982) An alternative analysis of flux-gradient relationships at the 1976 ITCE. Boundary-Layer Meteor. 22, 3–19CrossRefGoogle Scholar
Easter, R. C. (1993) Two modified versions of Bott's positive-definite numerical advection scheme. Mon. Wea. Rev. 121, 297–3042.0.CO;2>CrossRefGoogle Scholar
Eddington, S. A. (1916) On the radiative equilibrium of the stars. Mon. Not. Roy. Astron. Soc. 77, 16–35CrossRefGoogle Scholar
Edlen, B. (1966) The refractive index of air. Meteorology 2, 71–80Google Scholar
Eliasen, E., Machenhauer, B., and Rasmussen, E. (1970) On a Numerical Method for Integration of the Hydrodynamical Equations with a Spectral Representation of the Horizontal Fields. Report No. 2, Institut for Teoretisk Meteorologi, University of Copenhagen, 35ppGoogle Scholar
Elliott, D. L., Holladay, C. G., Barchet, W. R., Foote, H. P., and Sandusky, W. F. (1986) Wind Energy Resource Atlas of the United States.DOE/CH 10093–4 Natl. Renew. Energy Lab., Golden, CO.Google Scholar
Elliott, S., Turco, R. P., and Jacobson, M. Z. (1993) Tests on combined projection/forward differencing integration for stiff photochemical family systems at long time step. Computers Chem. 17, 91–102CrossRefGoogle Scholar
Emanuel, K. A. (1991) A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 38, 1541–572.0.CO;2>CrossRefGoogle Scholar
Enger, L. (1986) A higher order closure model applied to dispersion in a convective PGL. Atmos. Environ. 20, 879–94CrossRefGoogle Scholar
Eriksson, E. (1960) The yearly circulation of chloride and sulfur in nature; meteorological, geochemical and pedological implications. Part II. Tellus 12, 63–109CrossRefGoogle Scholar
Erisman, J. W., Pul, W. A. J., and Wyers, P. (1994) Parameterization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos. Environ. 28, 2595–607CrossRefGoogle Scholar
Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J. (1999) Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 401, 257–9CrossRefGoogle Scholar
Fang, M., Zheng, M., Wang, F., To, K. L., Jaafar, A. B., and Tong, S. L. (1999) The solvent-extractable organic compounds in the Indonesia biomass burning aerosols – characterization studies. Atmos. Environ. 33, 783–95CrossRefGoogle Scholar
Farhataziz, and Ross, A. B. (1977) Selected Specific Rates of Transients From Water in Aqueous Solutions, III. Hydroxyl Radical and Perhydroxyl Radical and Their Radical Ions, Rep. NSRDBS-NBS 59, U.S. Department of Commerce, Washington, DC.Google Scholar
Farman, J. C., Gardiner, B. G., and Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–10CrossRefGoogle Scholar
Fassi-Fihri, A., Suhre, K., and Rosset, R. (1997) Internal and external mixing in atmospheric aerosols by coagulation: Impact on the optical and hygroscopic properties of the sulphate–soot system. Atmos. Environ. 31, 1392–402CrossRefGoogle Scholar
Ferek, R. J., Reid, J. S., Hobbs, P. V., Blake, D. R., and Liousse, C. (1998) Emission factors of hydrocarbons, halocarbons, trace gases, and particles from biomass burning in Brazil. J. Geophys. Res. 103, 32, 107–18CrossRefGoogle Scholar
Fernandez-Diaz, J. M., Gonzalez-Pola, Muniz C., Rodriguez, Brana M. A., Arganza, Garcia B., and Garcia, Nieto P. J. (2000) A modified semi-implicit method to obtain the evolution of an aerosol by coagulation. Atmos. Environ. 34, 4301–14CrossRefGoogle Scholar
Filippov, V. K., Charykova, M. V., and Trofimov, Y. M. (1985) Thermodynamics of the system NH4H2PO4-(NH4)2SO4-H2O at 25 °C. J. Appl. Chem. USSR 58, 1807–11Google Scholar
Finlayson-Pitts, B. and Pitts, J. N. Jr. (2000) Chemistry of the Upper and Lower Atmosphere, San Diego, Academic PressGoogle Scholar
Fleming, E. L., Chandra, S., Schoeberl, M. R., and Barnett, J. J. (1988) Monthly Mean Global Climatology of Temperature, Wind, Geopotential Height, and Pressure for 1–120 km.Tech. Memo. 100697, NASA, 85ppGoogle Scholar
Fletcher, N. H. (1958) Size effect in heterogeneous nucleation. J. Chem. Phys. 29, 572–76CrossRefGoogle Scholar
Flossmann, A. I., Hall, W. D., and Pruppacher, H. R. (1985) A theoretical study of the wet removal of atmospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. J. Atmos. Sci. 42, 582–6062.0.CO;2>CrossRefGoogle Scholar
Flubacher, P., Leadbetter, A. J., and Morrison, J. A. (1960) Heat capacity of ice at low temperatures. J. Chem. Phys. 33, 1751–5CrossRefGoogle Scholar
Foster, V. G. (1992) Determination of the refractive index dispersion of liquid nitrobenzene in the visible and ultraviolet. J. Phys. D 25, 525–9CrossRefGoogle Scholar
Fowler, L. D., Randall, D. A., and Rutledge, S. (1996) Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate 9, 489–5292.0.CO;2>CrossRefGoogle Scholar
Frank, W. M. and Cohen, C. (1987) Simulation of tropical convective systems. Part I: A cumulus parameterization. J. Atmos. Sci. 44, 3787–992.0.CO;2>CrossRefGoogle Scholar
Freedman, F. R. and Jacobson, M. Z. (2002) Transport-dissipation analytical solutions to the E-ε turbulence model and their role in predictions of the neutral ABL. Boundary-Layer Meteor. 102, 117–38CrossRefGoogle Scholar
Freedman, F. R. and Jacobson, M. Z. (2003) Modification of the standard ε-equation for the stable ABL through enforced consistency with Monin–Obukhov similarity theory. Boundary-Layer Meteor. 106, 383–410CrossRefGoogle Scholar
Fridlind, A. M. and Jacobson, M. Z. (2000) A study of gas–aerosol equilibrium and aerosol pH in the remote marine boundary layer during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 105, 17325–40CrossRefGoogle Scholar
Fridlind, A. M. and Jacobson, M. Z. (2003) Point and column aerosol radiative closure during ACE 1: Effects of particle shape and size. J. Geophys. Res. 108 (D3) doi:10.1029/2001JD001553CrossRefGoogle Scholar
Friedlander, S. K. (1977) Smoke, Dust, and Haze. Fundamentals of Aerosol Behavior. New York, John Wiley & Sons, Inc.Google Scholar
Friedlander, S. K. (1983) Dynamics of aerosol formation by chemical reaction. Ann. N. Y. Acad. Sci. 404, 354–64CrossRefGoogle Scholar
Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B. (1996) Ice core record of 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237–8CrossRefGoogle Scholar
Fritsch, J. M. and Chappel, C. F. (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci. 37, 1722–332.0.CO;2>CrossRefGoogle Scholar
Fu, Q. and Liou, K. N. (1992) On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci. 49, 2139–562.0.CO;2>CrossRefGoogle Scholar
Fu, Q. and Liou, K. N. (1993) Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci. 50, 2008–252.0.CO;2>CrossRefGoogle Scholar
Fu, Q., Liou, K. N., Cribb, M. C., Charlock, T. P., and Grossman, A. (1997) Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci 54, 2799–8122.0.CO;2>CrossRefGoogle Scholar
Fuchs, N. A. (1964) The Mechanics of Aerosols (translated by R. E. Daisley and M. Fuchs). New York, Pergamon PressGoogle Scholar
Fuchs N. A. and Sutugin A. G. (1971). Highly dispersed aerosols. In Topics in Current Aerosol Research, Vol. 2, Hidy, G. M. and Brock, J. R., eds., New York, Pergamon Press, 1–60Google Scholar
Fuller, K. A. (1995) Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities. J. Opt. Soc. Am. A 12, 893–904CrossRefGoogle Scholar
Fuller, K. A., Malm, W. C., and Kreidenweis, S. M. (1999) Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res. 104, 15, 941–54CrossRefGoogle Scholar
Galbally, I. E. and Roy, C. R. (1980) Destruction of ozone at the earth's surface. Q. J. Roy. Meteor. Soc. 106, 599–620CrossRefGoogle Scholar
Ganzeveld, L. and Lelieveld, J. (1995) Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases. J. Geophys. Res. 100, 20, 999–1, 012CrossRefGoogle Scholar
Garcia, R. R., Stordal, F., Solomon, S., and Kiehl, J. T. (1992) A new numerical model of the middle atmosphere 1. Dynamics and transport of tropospheric source gases. J. Geophys. Res. 97, 12, 967–91CrossRefGoogle Scholar
Garratt, J. R. (1992) The Atmospheric Boundary Layer. Cambridge, Cambridge University PressGoogle Scholar
Garratt, J. R. and Hicks, B. B. (1973) Momentum, heat and water vapour transfer to and from natural and artificial surfaces. Q. J. Roy. Meteor. Soc. 99, 680–7CrossRefGoogle Scholar
Gaydos, T. M., Koo, B., Pandis, S. N., and Chock, D. P. (2003) Atmos. Environ. 37, 3303–16CrossRef
Gazdag, J. (1973) Numerical convective schemes based on accurate computation of space derivatives. J. Comp. Phys. 13, 100–13CrossRefGoogle Scholar
Gear, C. W. (1971) Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, NJ, Prentice-HallGoogle Scholar
Gelbard, F. (1990) Modeling multicomponent aerosol particle growth by vapor condensation. Aerosol Sci. Technol. 12, 399–412CrossRefGoogle Scholar
Gelbard, F. and Seinfeld, J. H. (1980) Simulation of multicomponent aerosol dynamics. J. Colloid Interface Sci. 78, 485–501CrossRefGoogle Scholar
Gelbard, F., Fitzgerald, J. W., and Hoppel, W. A. (1998) A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer. 3. Numerical methods and comparisons with exact solutions. J. Geophys. Res. 103, 16, 119–132CrossRefGoogle Scholar
Gerber, H., Takano, Y., Garrett, T. J., and Hobbs, P. V. (2000) Nephelometer measurements of the asymmetry parameter, volume extinction coefficient, and backscatter ratio in Arctic clouds. J. Atmos. Sci. 57, 3021–332.0.CO;2>CrossRefGoogle Scholar
Gery, M. W., Whitten, G. Z., and Killus, J. P. (1988) Development and Testing of the CBM-IV for Urban and Regional Modeling. Report EPA-600/3-88-012. U.S. Environmental Protection Agency, Research Triangle Park, NCGoogle Scholar
Gery, M. W., Whitten, G. Z., Killus, J. P., and Dodge, M. C. (1989) A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. 94, 12, 925–56CrossRefGoogle Scholar
Ghio A. J. and Samet J. M. (1999) Metals and air pollution particles. In Air Pollution and Health, Holgate, S. T., Samet, J. M., Koren, H. S., and Maynard, R. L., eds., San Diego, Academic Press, 635–51Google Scholar
Giauque, W. F. and Stout, J. W. (1936) The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15 to 273 K. J. Am. Chem. Soc. 58, 1144–50CrossRefGoogle Scholar
Gillette, D. A. (1974) On the production of soil wind erosion aerosols having the potential for long range transport. Atmos. Res. 8, 735–44Google Scholar
Gillette D. A., Patterson Jr. E. M., Prospero J. M., and Jackson M. L. (1993) Soil aerosols. In Aerosol Effects on Climate, Jennings, S. G., ed., Tucson, University of Arizona Press, 73–109Google Scholar
Giorgi, F., Marinucci, M. R., Bates, G. T., and Canio, G. (1993) Development of a second-generation climate model (RegCM2) Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev. 121, 2814–322.0.CO;2>CrossRefGoogle Scholar
Gittens, G. J. (1969) Variation of surface tension of water with temperature. J. Colloid Interface Sci. 30, 406–12CrossRefGoogle Scholar
Goldberg, R. N. (1981) Evaluated activity and osmotic coefficients for aqueous solutions: Thirty-six uni-bivalent electrolytes. J. Phys. Chem. Ref. Data 10, 671–764CrossRefGoogle Scholar
Golding, B. W. (1992) An efficient nonhydrostatic forecast model. Meteor. Atmos. Phys. 50, 89–103CrossRefGoogle Scholar
Gong, W. and Cho, H.-R. (1993) A numerical scheme for the integration of the gas-phase chemical rate equations in three-dimensional atmospheric models. Atmos. Environ. 27A, 2147–60CrossRefGoogle Scholar
Goodin, W. R., McRae, G. J., and Seinfeld, J. H. (1979) A comparison of interpolations methods for sparse data: Application to wind and concentration fields. J. Appl. Meteor. 18, 761–712.0.CO;2>CrossRefGoogle Scholar
Goody, R. M., West, R., Chen, L., and Crisp, D. (1989) The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transfer 42, 539–50CrossRefGoogle Scholar
Graedel, T. E. and Goldberg, K. I. (1983) Kinetic studies of raindrop chemistry, 1. Inorganic and organic processes. J. Geophys. Res. 88, 10, 865–82CrossRefGoogle Scholar
Graedel, T. E. and Weschler, C. J. (1981) Chemistry within aqueous atmospheric aerosols and raindrops. Rev. Geophys. 19, 505–39CrossRefGoogle Scholar
Greeley, R. and Iversen, J. D. (1985) Wind as a Geological Process on Earth, Mars, Venus, and Titan. New York, Cambridge University Press, 333ppCrossRefGoogle Scholar
Greenberg, R. R., Zoller, W. H., and Gordon, G. E. (1978) Composition and size distributions of articles released in refuse incineration. Environ. Sci. Technol. 12, 566–73CrossRefGoogle Scholar
Grell, G. A. (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev. 121, 764–872.0.CO;2>CrossRefGoogle Scholar
Griffin, R. J., Dabdub, D., and Seinfeld, J. H. (2002) Secondary organic aerosol 1. Atmospheric chemical mechanism for production of molecular constituents. J. Geophys. Res. 107 (D17), 4332, doi:10.1029/2001JD000541CrossRefGoogle Scholar
Groblicki, P. J., Wolff, G. T., and Countess, R. J. (1981) Visibility-reducing species in the Denver “brown cloud” – I. Relationships between extinction and chemical composition. Atmos. Environ. 15, 2473–84CrossRefGoogle Scholar
Guelle, W., Schulz, M., Balkanski, Y., and Dentener, F. (2001) Influence of source formulation on modeling the atmospheric global distribution of sea salt aerosol. J. Geophys. Res. 106, 27509–24CrossRefGoogle Scholar
Hack J. J. (1992) Climate system simulation: Basic numerical and computational concepts. In Climate System Modeling, Trenberth, K. E., ed., Cambridge, Cambridge University Press, 283–318Google Scholar
Hack, J. J. (1994) Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2). J. Geophys. Res. 99, 5551–68CrossRefGoogle Scholar
Hagesawa, K. and Neta, P. (1978) Rate constants and mechanisms of reaction for Cl2− radicals. J. Phys. Chem. 82, 854–7Google Scholar
Hairer, E. and Wanner, G. (1991) Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Berlin, Springer-VerlagGoogle Scholar
Hale, G. M. and Querry, M. R. (1973) Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 12, 555–63CrossRefGoogle Scholar
Hamer, W. J. and Wu, Y.-C. (1972) Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–99CrossRefGoogle Scholar
Hamill, P., Turco, R. P., Kiang, C. S., Toon, O. B., and Whitten, R. C. (1982) An analysis of various nucleation mechanisms for sulfate particles in the stratosphere. J. Aerosol Sci. 13, 561–85CrossRefGoogle Scholar
Hansen, J. E. (1969) Radiative transfer by doubling very thin layers. Astrophys. J. 155, 565–73CrossRefGoogle Scholar
Harned, H. S. and Owen, B. B. (1958) The Physical Chemistry of Electrolyte Solutions. New York, Reinhold, Chapter 8Google Scholar
Harrington, J. Y., Meyers, M. P., Walko, R. L., and Cotton, W. R. (1995) Parameterization of ice crystal conversion process due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci. 52, 4344–662.0.CO;2>CrossRefGoogle Scholar
Harris, S. J. and Maricq, M. M. (2001) Signature size distributions for diesel and gasoline engine exhaust particulate matter. J. Aerosol Sci. 32, 749–64CrossRefGoogle Scholar
Hartmann, D. L. (1994) Global Physical Climatology. San Diego, Academic Press, Inc.Google Scholar
Harvey, R. B., Stedman, D. H., and Chameides, W. (1977) Determination of the absolute rate of solar photolysis of NO2. J. Air Pol. Control Assn. 27, 663–6CrossRefGoogle Scholar
Harvie, C. E., Moller, N., and Weare, J. H. (1984) The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25 °C. Geochim. Cosmochim. Acta 48, 723–51CrossRefGoogle Scholar
Henry, W. M. and Knapp, K. T. (1980) Compound forms of fossil fuel fly ash emissions. Environ. Sci. Technol. 14, 450–6CrossRefGoogle ScholarPubMed
Henyey, L. C. and Greenstein, J. L. (1941) Diffuse radiation in the galaxy. Astrophys. J. 93, 70–83CrossRefGoogle Scholar
Hering, S. V. and Friedlander, S. K. (1982) Origins of aerosol sulfur size distributions in the Los Angeles Basin. Atmos. Environ. 16, 2647–56CrossRefGoogle Scholar
Hering, S. V., Friedlander, S. K., Collins, J. C., and Richards, L. W. (1979) Design and evaluation of a new low pressure impactor 2. Environ. Sci. Technol. 13, 184–8CrossRefGoogle Scholar
Hertel, O., Berkowicz, R., and Christensen, J. (1993) Test of two numerical schemes for use in atmospheric transport-chemistry models. Atmos. Environ. 27A, 2591–611CrossRefGoogle Scholar
Hesstvedt, E., Hov, O., and Isaksen, I. S. A. (1978) Quasi-steady-state approximations in air pollution modeling: Comparison of two numerical schemes for oxidant prediction. Int. J. Chem. Kin. 10, 971–94CrossRefGoogle Scholar
Himmelblau, P. M. (1964) Diffusion of dissolved gases in liquids. Chem. Rev. 64, 527–50CrossRefGoogle Scholar
Hindmarsh A. C. (1983) ODEPACK, a systematized collection of ODE solvers. In Scientific Computing, Stepleman, R. S.et al., eds., Amsterdam, North-Holland, 55–74Google Scholar
Hinze, J. O. (1975) Turbulence: An Introduction to its Mechanism and Theory, 2nd edn. New York, McGraw-Hill, 790ppGoogle Scholar
Hitchcock, D. R., Spiller, L. L., and Wilson, W. E. (1980) Sulfuric acid aerosols and HCl release in coastal atmospheres: Evidence of rapid formation of sulfuric acid particulates. Atmos. Environ. 14, 165–82CrossRefGoogle Scholar
Hoffmann, M. R. and Calvert, J. G. (1985) Chemical Transformation Modules for Eulerian Acid Deposition Models, Vol. 2. The Aqueous-phase Chemistry. EPA/600/3–85/017. U.S. Environmental Protection Agency, Research Triangle Park, NCGoogle Scholar
Hogstrom, U. (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: A reevaluation. Boundary-Layer Meteor. 42, 55–78CrossRefGoogle Scholar
Holmes, H. F. and Mesmer, R. E. (1986) Thermodynamics of aqueous solutions of the alkali metal sulfates. J. Solution Chem. 15, 495–518CrossRefGoogle Scholar
Holton, J. R. (1992) An Introduction to Dynamical Meteorology. San Diego, Academic Press, Inc.Google Scholar
Hounslow, M. J., Ryall, R. L., and Marshall, V. R. (1988) A discretized population balance for nucleation, growth, and aggregation. AIChE J. 34, 1821–32CrossRefGoogle Scholar
Houze, R. A. Jr. (1993) Cloud Dynamics. San Diego, Academic Press, Inc.Google Scholar
Huang, H.–C. and Chang, J. S. (2001) On the performance of numerical solvers for a chemistry submodel in three-dimensional air quality models. 1. Box model simulations. J. Geophys. Res. 106, 20,175–88CrossRefGoogle Scholar
Hughes T. J. R. and Brooks A. N. (1979) A multidimensional upwind scheme with no crosswind diffusion. In Finite Element Methods for Convection Dominated Flows, Hughes, T. J. R., ed., AMD Vol. 34, ASME, New York, 19–35Google Scholar
Huie, R. E. and Neta, P. (1987) Rate constants for some oxidations of S(IV) by radicals in aqueous solutions. Atmos. Environ. 21, 1743–7CrossRefGoogle Scholar
Hulburt, H. M. and Katz, S. (1964) Some problems in particle technology: A statistical mechanical formulation. Chem. Eng. Sci. 19, 555–74CrossRefGoogle Scholar
Hynes, A. J., Wine, P. H., and Semmes, D. H. (1986) Kinetic mechanism of OH reactions with organic sulfides. J. Phys. Chem. 90, 4148–56CrossRefGoogle Scholar
Irvine, W. M. (1968) Multiple scattering by large particles. II. Optically thick layers. Astrophys. J. 152, 823–34CrossRefGoogle Scholar
Irvine, W. M. (1975) Multiple scattering in planetary atmospheres. Icarus 25, 175–204CrossRefGoogle Scholar
Ishizaka, Y. and Adhikari, M. (2003) Composition of cloud condensation nuclei. J. Geophys. Res. 108 (D4), 4138, doi:10.1029/2002JD002085CrossRefGoogle Scholar
Jackman, C. H., Fleming, E. L., Chandra, S., Considine, D. B., and Rosenfield, J. E. (1996) Past, present, and future modeled ozone trends with comparisons to observed trends. J. Geophys. Res. 101, 28,753–67CrossRefGoogle Scholar
Jacob, D. J. (1986) Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfonate. J. Geophys. Res. 91, 9807–26CrossRefGoogle Scholar
Jacob, D. J., Gottlieb, E. W., and Prather, M. J. (1989a) Chemistry of a polluted cloudy boundary layer. J. Geophys. Res. 94, 12, 975–13, 002CrossRefGoogle Scholar
Jacob, D. J., Sillman, S., Logan, J. A., and Wofsy, S. C. (1989b) Least independent variables method for simulation of tropospheric ozone. J. Geophys. Res. 94, 8497–509CrossRefGoogle Scholar
Jacobson M. Z. (1994) Developing, coupling, and applying a gas, aerosol, transport, and radiation model to study urban and regional air pollution. Ph. D. Thesis, Dept. of Atmospheric Sciences, University of California, Los Angeles
Jacobson, M. Z. (1995) Computation of global photochemistry with SMVGEAR II. Atmos. Environ. 29A, 2541–6CrossRefGoogle Scholar
Jacobson, M. Z. (1997a) Development and application of a new air pollution modeling system. Part II: Aerosol module structure and design. Atmos. Environ. 31A, 131–44CrossRefGoogle Scholar
Jacobson, M. Z. (1997b) Development and application of a new air pollution modeling system. Part III: Aerosol-phase simulations. Atmos. Environ. 31A, 587–608CrossRefGoogle Scholar
Jacobson, M. Z. (1997c) Numerical techniques to solve condensational and dissolutional growth equations when growth is coupled to reversible aqueous reactions. Aerosol Sci. Technol. 27, 491–8CrossRefGoogle Scholar
Jacobson, M. Z. (1998a) Vector and scalar improvement of SMVGEAR II through absolute error tolerance control. Atmos. Environ. 32, 791–6CrossRefGoogle Scholar
Jacobson, M. Z. (1998b) Studying the effects of aerosols on vertical photolysis rate coefficient and temperature profiles over an urban airshed. J. Geophys. Res. 103, 10, 593–604CrossRefGoogle Scholar
Jacobson, M. Z. (1999a) Effects of soil moisture on temperatures, winds, and pollutant concentrations in Los Angeles. J. Appl. Meteorol. 38, 607–162.0.CO;2>CrossRefGoogle Scholar
Jacobson, M. Z. (1999b) Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II. Atmos. Environ. 33, 3634–49CrossRefGoogle Scholar
Jacobson, M. Z. (1999c) Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption. J. Geophys. Res. 104, 3527–42CrossRefGoogle Scholar
Jacobson, M. Z. (2000) A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophys. Res. Lett. 27, 217–20CrossRefGoogle Scholar
Jacobson, M. Z. (2001a) GATOR-GCMM: A global- through urban-scale air pollution and weather forecast model 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow. J. Geophys. Res. 106, 5385–401CrossRefGoogle Scholar
Jacobson, M. Z. (2001b) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695–7CrossRefGoogle Scholar
Jacobson, M. Z. (2002) Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions. J. Geophys. Res. 107 (D19), 4366, doi:10.1029/2001JD002044CrossRefGoogle Scholar
Jacobson, M. Z. (2003) Development of mixed-phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal. J. Geophys. Res. 108 (D8), 4245, doi:10.1029/2002JD002691CrossRefGoogle Scholar
Jacobson, M. Z. (2005a) A refined method of parameterizing absorption coefficients among multiple gases simultaneously from line-by-line data. J. Atmos. Sci. 62, 506–17CrossRefGoogle Scholar
Jacobson, M. Z. (2005b) Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air–ocean exchange and ocean equilibrium chemistry. J. Geophys. Res., in reviewCrossRefGoogle Scholar
Jacobson, M. Z. (2005c) A solution to the problem of nonequilibrium acid/base gas-particle transfer at long time step. Aerosol Sci. Technol. 39, 92–103CrossRefGoogle Scholar
Jacobson, M. Z. and Seinfeld, J. H. (2004) Evolution of nanoparticle size and mixing state near the point of emission. Atmos. Environ. 38, 1839–50CrossRefGoogle Scholar
Jacobson, M. Z. and Turco, R. P. (1994) SMVGEAR: A sparse-matrix, vectorized Gear code for atmospheric models. Atmos. Environ. 28A, 273–84CrossRefGoogle Scholar
Jacobson, M. Z. (1995) Simulating condensational growth, evaporation, and coagulation of aerosols using a combined moving and stationary size grid. Aerosol Sci. Technol. 22, 73–92CrossRefGoogle Scholar
Jacobson, M. Z., Turco, R. P., Jensen, E. J., and Toon, O. B. (1994) Modeling coagulation among particles of different composition and size. Atmos. Environ. 28A, 1327–38CrossRefGoogle Scholar
Jacobson, M. Z., Tabazadeh, A., and Turco, R. P. (1996b) Simulating equilibrium within aerosols and non-equilibrium between gases and aerosols. J. Geophys. Res. 101, 9079–91CrossRefGoogle Scholar
Jaecker-Voirol, A. and Mirabel, P. (1989) Heteromolecular nucleation in the sulfuric acid-water system. Atmos. Environ. 23, 2033–57CrossRefGoogle Scholar
Jaenicke R. (1988) Aerosol physics and chemistry. In Numerical Data and Functional Relationships in Science and Technology. New Series Vol. 4, Meteorology Subvol. b, Physical and Chemical Properties of Air, Fischer, G., ed., Berlin, Springer-VerlagGoogle Scholar
Jarvis, P. G., James, G. B., and Landsberg, J. J. (1976) Coniferous forest. In Vegetation and the Atmosphere, Vol. 2. Monteight, J. L., ed., New York, Academic Press, 171–240Google Scholar
Jayne, J. T., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E. (1990) Uptake of SO2 by aqueous surfaces as a function of pH: The effect of chemical reaction at the interface. J. Phys. Chem. 94, 6041–8CrossRefGoogle Scholar
Jayson, G. G., Parsons, B. J., and Swallow, A. J. (1973) Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Trans. Faraday Soc. 69, 1597–607CrossRefGoogle Scholar
Jeans, J. (1954) The Dynamical Theory of Gases. New York, DoverGoogle Scholar
Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, J. (2003) Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys. 3, 181–93CrossRefGoogle Scholar
John W., Wall S. M., Ondo J. L., and Winklmayr W. (1989) Acidic Aerosol Size Distributions During SCAQS. Final Report for the California Air Resources Board under Contract No. A6-112-32
Joseph, J. H., Wiscombe, W. J., and Weinman, J. A. (1976) The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci. 33, 2452–92.0.CO;2>CrossRefGoogle Scholar
Joslin, R. D., Streett, C. L., and Chang, C.-L. (1993) Spatial direct numerical simulation of boundary-layer transition mechanisms–validation of PSE theory. Theor. Comput. Fluid Dyn. 4, 271–88CrossRefGoogle Scholar
Junge, C. E. (1961) Vertical profiles of condensation nuclei in the stratosphere. J. Meteor. 18, 501–92.0.CO;2>CrossRefGoogle Scholar
Kaimal, J. C. and Finnigan, J. J. (1994) Atmospheric Boundary Layer Flows: Their Structure and Measurement. New York, Oxford University PressGoogle Scholar
Kain, J. S. (2004) The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. 43, 170–812.0.CO;2>CrossRefGoogle Scholar
Kain, J. S. and Fritsch, J. M. (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 47, 2784–8022.0.CO;2>CrossRefGoogle Scholar
Kao, C.-Y. J. and Ogura, Y. (1987) Response of cumulus clouds to large-scale forcing using the Arakawa–Schubert cumulus parameterization. J. Atmos. Sci. 44, 2437–5482.0.CO;2>CrossRefGoogle Scholar
Kaps, P. and Rentrop, P. (1979) Generalized Runge–Kutta methods of order four with stepsize control for stiff ordinary differential equations. Numer. Math. 33, 55–88CrossRefGoogle Scholar
Kasahara, A. (1974) Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev. 102, 509–222.0.CO;2>CrossRefGoogle Scholar
Kasten, F. (1968) Falling speed of aerosol particles. J. Appl. Meteor. 7, 944–72.0.CO;2>CrossRefGoogle Scholar
Katrinak, K. A., Rez, P., Perkes, P. R., and Buseck, P. R. (1993) Fractal geometry of carbonaceous aggregates from an urban aerosol. Environ. Sci. Technol. 27, 539–47CrossRefGoogle Scholar
Kawata, Y. and Irvine, W. M. (1970) The Eddington approximation for planetary atmospheres. Astrophys. J. 160, 787–90CrossRefGoogle Scholar
Keeling C. D. and Whorf T. P. (2003) Atmospheric CO2 concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory, Hawaii. cdiac.esd.ornl.gov./ftp/maunaloa-co2/maunaloa.co2
Kerker, M. (1969) The Scattering of Light and Other Electromagnetic Radiation. New York, Academic PressGoogle Scholar
Ketefian G. (2005) Development, testing, and application of a 3-D nonhydrostatic potential-energy-conserving, compressible atmospheric model. Ph. D. Dissertation, Stanford University
Ketefian, G. and Jacobson, M. Z. (2005a) Development and application of a 2-D potential-enstrophy-, energy-, and mass-conserving mixed-layer ocean model with arbitrary boundaries, Mon. Wea. Rev., in submissionGoogle Scholar
Ketefian, G. and Jacobson, M. Z. (2005b) Development and application of an orthogonal-curvilinear-grid nonhydrostatic potential-enstrophy-, energy-, and mass-conserving atmospheric model with arbitrary boundaries, Mon. Wea. Rev., in submissionGoogle Scholar
Kettle, A. J. and Andreae, M. O. (2000) Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models. J. Geophys. Res. 105, 26, 793–808CrossRefGoogle Scholar
Kim, Y. P. and Seinfeld, J. H. (1995) Atmospheric gas-aerosol equilibrium: III. Thermodynamics of crustal elements Ca2+, K+, and Mg2+. Aerosol Sci. Technol. 22, 93–110CrossRefGoogle Scholar
Kim, J., Moin, P., and Moser, R. (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–66CrossRefGoogle Scholar
Kim, Y. P., Seinfeld, J. H., and Saxena, P. (1993a) Atmospheric gas–aerosol equilibrium I. Thermodynamic model. Aerosol Sci. Technol. 19, 157–81CrossRefGoogle Scholar
Kim, Y. P., Seinfeld, J. H., and Saxena, P. (1993b) Atmospheric gas–aerosol equilibrium II. Analysis of common approximations and activity coefficient calculation methods. Aerosol Sci. Technol. 19, 182–98CrossRefGoogle Scholar
Kittelson, D. B. (1998) Engine and nanoparticles: a review. J. Aerosol Sci. 6, 443–51Google Scholar
Klemp, J. B. and Wilhelmson, R. B. (1978) The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci. 3, 1070–962.0.CO;2>CrossRefGoogle Scholar
Klingen, H.-J. and Roth, P. (1989) Size analysis and fractal dimension of diesel particles based on REM measurements with an automatic imaging system. J. Aerosol Sci. 20, 861–4CrossRefGoogle Scholar
Knudsen, M. and Weber, S. (1911) Luftwiderstand gegen die langsame Bewegung kleiner Kugeln. Ann. Phys. 36, 981–94CrossRefGoogle Scholar
Köhler, H. (1936) The nucleus in the growth of hygroscopic droplets. Trans. Faraday Soc. 32, 1152–61CrossRefGoogle Scholar
Kondo, J., Saigusa, N., and Sato, T. (1990) A parameterization of evaporation from bare soil surfaces. J. Appl. Meteor. 29, 385–92.0.CO;2>CrossRefGoogle Scholar
Kondratyev, K.Ya. (1969) Radiation in the Atmosphere. San Diego, Academic Press, 912ppGoogle Scholar
Korhonen, H., Napari, I., Timmreck, C., et al. (2003) Heterogeneous nucleation as a potential sulphate-coating mechanism of atmospheric mineral dust particles and implications of coated dust on new particle formation. J. Geophys. Res. 108 (D17), 4546, doi:10.1029/2003JD003553CrossRefGoogle Scholar
Koschmieder, H. (1924) Theorie der horizontalen Sichtweite. Beitr. Phys. Freien Atm. 12, 33–53, 171–81Google Scholar
Kozac-Channing, L. F. and Heltz, G. R. (1983) Solubility of ozone in aqueous solutions of 0–0.6 M ionic strength at 5–30 °C. Environ. Sci. Technol. 17, 145–9CrossRefGoogle Scholar
Kreidenweis, S. M., Zhang, Y., and Taylor, G. R. (1997) The effects of clouds on aerosol and chemical species production and distribution 2. Chemistry model description and sensitivity analysis. J. Geophys. Res. 102, 23, 867–82CrossRefGoogle Scholar
Kreidenweis, S. M., Walcek, C., Kim, C.-H., et al. (2003) Modification of aerosol mass and size distribution due to aqueous-phase SO2 oxidation in clouds: comparison of several models. J. Geophys. Res. 108 (D7) doi:10.1029/2002JD002697CrossRefGoogle Scholar
Kreitzberg, C. W. and Perkey, D. (1976) Release of potential instability. Part I: A sequential plume model within a hydrostatic primitive equation model. J. Atmos. Sci. 33, 456–752.0.CO;2>CrossRefGoogle Scholar
Krekov G. M. (1993) Models of atmospheric aerosols. In Aerosol Effects on Climate. Jennings, S. G., ed., Tucson, University of Arizona Press, 9–72Google Scholar
Krishnamurti, T. N. and Moxim, W. J. (1971) On parameterization of convective and non-convective latent heat release. J. Appl. Meteor. 10, 3–132.0.CO;2>CrossRefGoogle Scholar
Krishnamurti, T. N., Bedi, H. S., and Hardiker, V. M. (1998) An Introduction to Global Spectral Modeling. New York, Oxford University PressGoogle Scholar
Krishnamurti, T. N., Pan, H.-L., Pasch, R. J., and Molinari, J. (1980) Cumulus parameterization and rainfall rates I. Mon. Wea. Rev. 108, 465–722.0.CO;2>CrossRefGoogle Scholar
Kritz, M. A. and Rancher, J. (1980) Circulation of Na, Cl, and Br in the tropical marine atmosphere. J. Geophys. Res. 85, 1633–9CrossRefGoogle Scholar
Kulmala, M., Laaksonen, A., and Pirjola, L. (1998) Parameterizations for sulfuric acid/water nucleation rates. J. Geophys. Res. 103, 8301–7CrossRefGoogle Scholar
Kuo, H. L. (1965) On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci. 22, 40–632.0.CO;2>CrossRefGoogle Scholar
Kuo, H. L. (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci. 31, 1232–402.0.CO;2>CrossRefGoogle Scholar
Kurihara, Y. (1973) A scheme of moist convective adjustment. Mon. Wea. Rev. 101, 547–532.3.CO;2>CrossRefGoogle Scholar
Kurihara, Y. and Bender, M. A. (1983) A numerical scheme to treat the open lateral boundary of limited area model. Mon. Wea. Rev. 111, 445–542.0.CO;2>CrossRefGoogle Scholar
Kusik, C. L. and Meissner, H. P. (1978) Electrolyte activity coefficients in inorganic processing. AIChE J. Symp. Ser. 173, 14–20Google Scholar
Lacis, A. A. and Hansen, J. E. (1974) A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci. 31, 118–332.0.CO;2>CrossRefGoogle Scholar
Lacis, A., Wang, W. C., and Hansen, J. (1979) Correlated k-distribution method for radiative transfer in climate models: Application to effect of cirrus clouds on climate. NASA Conf. Publ. 2076, 309–314Google Scholar
Lacis, A. A. and Oinas, V. (1991) A description of the correlated k-distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res. 96, 9027–63CrossRefGoogle Scholar
Lamb, H. (1910) On atmospheric oscillations. Proc. Roy. Soc. London 84, 551–72CrossRefGoogle Scholar
Langford, A. O., Proffitt, M. H., VanZandt, T. E., and Lamarque, J.-F. (1996) Modulation of tropospheric ozone by a propagating gravity wave. J. Geophys. Res. 101, 26, 605–13CrossRefGoogle Scholar
Larson S., Cass G., Hussey K., and Luce F. (1984) Visibility Model Verification by Image Processing Techniques. Final report to the California Air Resources Board under Agreement A2-077-32
Lary, D. J. (1997) Catalytic destruction of stratospheric ozone. J. Geophys. Res. 102, 21, 515–26CrossRefGoogle Scholar
Lazrus, A. L., Cadle, R. D., Gandrud, B. W., Greenberg, J. P., Huebert, B. J., and Rose, W. I. (1979) Sulfur and halogen chemistry of the stratosphere and of volcanic eruption plumes. J. Geophys. Res. 84, 7869CrossRefGoogle Scholar
Ledbury, W. and Blair, E. W. (1925) The partial formaldehyde vapour pressure of aqueous solutions of formaldehyde, II. J. Chem. Soc. 127, 2832–39CrossRefGoogle Scholar
Lee H. D. P., translator (1951) Meteorologica by Aristotle, T. E. Page, ed., Cambridge, MA, Harvard University PressGoogle Scholar
Lee K. O., Cole R., Sekar R., et al. (2001) Detailed characterization of morphology and dimensions of diesel particulates via thermophoretic sampling, SAF 2001-01-3572
Lee, K. W. (1985) Conservation of particle size distribution parameters during Brownian coagulation. J. Colloid Interface Sci. 108, 199–206CrossRefGoogle Scholar
Lee, T. J. and Pielke, R. A. (1992) Estimating the soil surface specific humidity. J. Appl. Meteor. 31, 480–42.0.CO;2>CrossRefGoogle Scholar
Lee Y.-N. (1984) Kinetics of some aqueous-phase reactions of peroxyacetyl nitrate. In Gas-Liquid Chemistry of Natural Waters, Vol.1, BNL 51757, pp. 21/1–21/7, Brookhaven National Laboratory, Brookhaven, NY
Henaff, P. (1968) Méthodes d'étude et propriétés des hydrates, hemiacétals et hemiacétals derivés des aldehydes et des cétones. Bull. Soc. Chim. France, 11, 4687–700Google Scholar
Lenschow, D. H., Li, X. S., Zhu, C. J., and Stankov, B. B. (1988) The stably stratified boundary layer over the great planes. Boundary-Layer Meteor. 42, 95–121CrossRefGoogle Scholar
Lesins, G., Chylek, P., and Lohmann, U. (2002) A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J. Geophys. Res. 107 (D10), doi:10.1029/2001JD000973CrossRefGoogle Scholar
Lettau, H. H. (‘1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness element description. J. Appl. Meteor. 8, 828–322.0.CO;2>CrossRefGoogle Scholar
Li, Z., Williams, A. L., and Rood, M. J. (1998) Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute. J. Atmos. Sci. 55, 1859–662.0.CO;2>CrossRefGoogle Scholar
Liang, J. and Jacob, D. J. (1997) Effect of aqueous-phase cloud chemistry on tropospheric ozone. J. Geophys. Res. 102, 5993–6002CrossRefGoogle Scholar
Liang, J. and Jacobson, M. Z. (1999) A study of sulfur dioxide oxidation pathways for a range of liquid water contents, pHs, and temperatures. J. Geophys. Res. 104, 13, 749–69CrossRefGoogle Scholar
Liang, J. and Jacobson, M. Z. (2000) Comparison of a 4000-reaction chemical mechanism with the carbon bond IV and an adjusted carbon bond IV-EX mechanism using SMVGEAR II. Atmos. Environ. 34, 3015–26CrossRefGoogle Scholar
Lide, D. R., ed.-in-chief (2003) CRC Handbook of Chemistry and Physics. Boca Raton, FL, CRC Press, Inc.Google Scholar
Lilly, D. K. (1996) A comparison of incompressible, anelastic and Boussinesq dynamics. Atmos. Res. 40, 143–51CrossRefGoogle Scholar
Lind, J. A. and Kok, G. L. (1986) Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid. J. Geophys. Res. 91, 7889–95CrossRefGoogle Scholar
Lind, J. A., Kok, G. L., and Lazrus, A. L. (1987) Aqueous phase oxidation of sulfur(IV) by hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid. J. Geophys. Res. 92, 4171–7CrossRefGoogle Scholar
Lindzen, R. S. (1981) Turbulence and stress due to gravity wave and tidal breakdown. J. Geophys. Res. 86, 9707–14CrossRefGoogle Scholar
Liou, K. N. (1974) Analytic two-stream and four-stream solutions for radiative transfer. J. Atmos. Sci. 31, 1473–52.0.CO;2>CrossRefGoogle Scholar
Liou, K. N. (2002) An Introduction to Atmospheric Radiation. Amsterdam, Academic PressGoogle Scholar
Liousse, C., Penner, J. E., Chuang, C., Walton, J. J., Eddleman, H., and Cachier, H. (1996) A global three-dimensional model study of carbonaceous aerosols. J. Geophys. Res. 101, 19, 411–32CrossRefGoogle Scholar
Liss P. S. and Merlivat L. (1986) Air–sea gas exchange rates: Introduction and synthesis. In The Role of Air–Sea Exchange in Geochemical Cycling. Buat-Menard, P., ed., Hingham, MA, D. Reidel Publishing Co., 113–127CrossRefGoogle Scholar
List, R. J., ed. (1984) Smithsonian Meteorological Tables, 6th edn. Washington, DC, Smithsonian Institution PressGoogle Scholar
List, R. and Gillespie, J. R. (1976) Evolution of raindrop spectra with collision-induced breakup. J. Atmos. Sci. 33, 2007–132.0.CO;2>CrossRefGoogle Scholar
Lister, J. D., Smit, D. J., and Hounslow, M. J. (1995) Adjustable discretized population balance for growth and aggregation. AIChE Journal 41, 591–603CrossRefGoogle Scholar
Liu, C. H. and Leung, D. Y. C. (2001) Turbulence and dispersion studies using a three-dimensional second-order closure Eulerian model. J. Appl. Meteorol. 40, 92–1132.0.CO;2>CrossRefGoogle Scholar
Lord, S. J. and Arakawa, A. (1980) Interaction of a cumulus cloud ensemble with the large-scale environment. Part II. J. Atmos. Sci. 37, 2677–922.0.CO;2>CrossRefGoogle Scholar
Lorentz H. A. (1906) The absorption and emission of lines of gaseous bodies. In H. A. Lorentz Collected Papers (The Hague, 1934–1939) 3, 215–38
Lorenz, E. N. (1960) Energy and numerical weather prediction. Tellus 12, 364–73CrossRefGoogle Scholar
Louis, J.-F. (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteor. 17, 187–202CrossRefGoogle Scholar
Lu R. (1994) Development of an integrated air pollution modeling system and simulations of ozone distributions over the Los Angeles Basin. Ph. D. Thesis, University of California, Los Angeles
Lu, R. and Turco, R. P. (1994) Air pollution transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects. J. Atmos. Sci. 51, 2285–3082.0.CO;2>CrossRefGoogle Scholar
Ludlum, F. H. (1980) Clouds and Storms. University Park, PA, The Pennsylvania State University PressGoogle Scholar
Lurmann, F. W., Carter, W. P. L., and Coyner, L. A. (1987) A Surrogate Species Chemical Reaction Mechanism for Urban Scale Air Quality Simulation Models. Volume I: Adaption of the Mechanism. EPA-600/3–87/014a, U.S. Environmental Protection Agency, Research Triangle Park, NCGoogle Scholar
Lurmann F. W., Main H. H., Knapp K. T., Stockburger L., Rasmussen R. A., and Fung K. (1992) Analysis of the Ambient VOC Data Collected in the Southern California Air Quality Study, Final Report to the California Air Resources Board under Contract A832-130
Madronich, S. (1987) Photodissociation in the atmosphere 1. Actinic flux and the effects of ground reflections and clouds. J. Geophys. Res. 92, 9740–52CrossRefGoogle Scholar
Madronich, S. and Calvert, J. G. (1989) The NCAR Master Mechanism of the Gas-phase Chemistry-Version 2.0. Rep. NCAR/TN-333+STR, National Center for Atmospheric ResearchGoogle Scholar
Mahfouf, J.-F. and Noilhan, J. (1991) Comparative study of various formulations of evaporation from bare soil using in situ data. J. Appl. Meteor. 30, 1354–652.0.CO;2>CrossRefGoogle Scholar
Mahfouf, J.-F. and Noilhan, J. (1996) Inclusion of gravitational drainage in a land surface scheme based on the force-restore method. J. Appl. Meteor. 35, 987–922.0.CO;2>CrossRefGoogle Scholar
Mahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B., and Troen, I. (1979) An observational study of the structure of the nocturnal boundary layer. Boundary-Layer Meteor. 17, 247–64CrossRefGoogle Scholar
Makar, P. A. (2001) The estimation of organic gas vapour pressure. Atmos. Environ. 35, 961–74CrossRefGoogle Scholar
Makar, P. A. and Karpik, S. R. (1996) Basis-spline interpolation on the sphere: Applications to semi-lagrangian advection. Mon. Wea. Rev. 124, 182–992.0.CO;2>CrossRefGoogle Scholar
Makar, P. A., Vouchet, V. S., and Nenes, A. (2003) Inorganic chemistry calculations using HETV – a vectorized solver for the SO42−-NO3−-NH4+ system based on the ISORROPIA algorithms. Atmos. Environ. 37, 2279–94CrossRefGoogle Scholar
Makar, P. A., Moran, M. D., Scholtz, M. T., and Taylor, A. (2003) Speciation of volatile organic compound emissions for regional air quality modeling of particulate matter and ozone. J. Geophys. Res. 108 (D2), 4041, doi:10.1029/2001JD000797CrossRefGoogle Scholar
Manabe, S. J., Smagorinsky, J., and Strickler, R. F. (1965) Simulated climatology of a general circulation model with a hydrological cycle. Mon. Wea. Rev. 93, 769–982.3.CO;2>CrossRefGoogle Scholar
Marbaix, P., Gallee, H., Brasseur, O., and Ypersele, J.-P. (2003) Lateral boundary conditions in regional climate models: A detailed study of the relaxation procedure. Mon. Wea. Rev. 131, 461–792.0.CO;2>CrossRefGoogle Scholar
Maricq, M. M., Chase, R. E., Podsiadlik, D. H., and Vogt, R. (1999) Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements. SAE Technical Paper 1999-01-1461, Warrendale, PA, USAGoogle Scholar
Marland G., Boden T. A., and Andres R. J. (2003) Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751–2000. In Trends Online: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA
Marlow, W. H. (1981) Size effects in aerosol particle interactions: The van der Waals potential and collision rates. Surf. Sci. 106, 529–37CrossRefGoogle Scholar
Marsh, A. R. W. and McElroy, W. J. (1985) The dissociation constant and Henry's law constant of HCl in aqueous solution. Atmos. Environ. 19, 1075–80CrossRefGoogle Scholar
Marshall, J. S. and Palmer, W. (1948) The distribution of raindrops with size. J. Meteor. 3, 165–82.0.CO;2>CrossRefGoogle Scholar
Marshall, S. F., Covert, D. S., and Charlson, R. J. (1995) Relationship between asymmetry parameter and hemispheric backscatter ratio: implications for climate forcing by aerosols. Appl. Opt. 34, 6306–11CrossRefGoogle ScholarPubMed
Martens, C. S., Wesolowski, J. J., Hariss, R. C., and Kaifer, R. (1973) Chlorine loss from Puerto Rican and San Francisco Bay Area marine aerosols. J. Geophys. Res. 78, 8778–92CrossRefGoogle Scholar
Martensson, E. M., Nilsson, E. D., Leeuw, G., Cohen, L. H., and Hansson, H.-C. (2003) Laboratory simulation and parameterization of the primary marine aerosol production. J. Geophys. Res. 108 (D9), 4297, doi:10.1029/2002JD002263CrossRefGoogle Scholar
Marticorena, B. and Bergametti, G. (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 100, 16415–30CrossRefGoogle Scholar
Marticorena, B., Bergametti, G., Gillette, D., and Belnap, J. (1997) Factors controlling threshold friction velocity in semiarid and arid areas of the United States. J. Geophys. Res. 102, 23277–87CrossRefGoogle Scholar
Martin, J. J., Wang, P. K., and Pruppacher, H. R. (1980) A theoretical study of the effect of electric charges on the efficiency with which aerosol particles are collected by ice crystal plates. J. Colloid Interface Sci. 78, 44–56CrossRefGoogle Scholar
Martin, L. R. and Hill, M. W. (1987a) The iron-catalyzed oxidation of sulfur: Reconciliation of the literature rates. Atmos. Environ. 21, 1487–90CrossRefGoogle Scholar
Martin, L. R. and Hill, M. W. (1987b) The effect of ionic strength on the manganese catalyzed oxidation of sulfur(IV). Atmos. Environ. 21, 2267–70CrossRefGoogle Scholar
Mason, B. J. (1971) The Physics of Clouds. Oxford, Clarendon PressGoogle Scholar
Matsuno, T. (1966) Numerical integrations of the primitive equations by simulated backward difference scheme. J. Meteor. Soc. Japan 44, 76–84CrossRefGoogle Scholar
Mauna Loa Data Center (2001) Data for atmospheric trace gases. http://mloserv.mlo.hawaii.gov/
Maxwell J. C. (1890) The Scientific Papers of James Clerk Maxwell, Vol. II. Niven, W. D., ed., Cambridge, Cambridge University Press, 636–40Google Scholar
Garnett, Maxwell J. C. (1904) Colours in metal glasses and in metallic films. Philos. Trans. Roy. Soc. A203, 385–420CrossRefGoogle Scholar
McClelland, L., Simkin, T., Summers, M., Nielsen, E., and Stein, T. C. (eds.) (1989) Global Volcanism 1975–1985. Englewood Cliffs, NJ, Prentice-Hall, 655ppGoogle Scholar
McCumber M. C. (1980) A numerical simulation of the influence of heat and moisture fluxes upon mesoscale circulations, Ph.D. Thesis, University of Virginia, Charlottesville
McCumber, M. C. and Pielke, R. A. (1981) Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model. Part I: Soil layer. J. Geophys. Res. 86, 9929–38CrossRefGoogle Scholar
McElroy, M. B., Salawitch, R. J., Wofsy, S. C., and Logan, J. A. (1986) Reduction of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature 321, 759–62CrossRefGoogle Scholar
McGraw, R. and Saunders, J. H. (1984) A condensation feedback mechanism for oscillatory nucleation and growth. Aerosol Sci. Technol. 3, 367–80CrossRefGoogle Scholar
McMurry, P. H. and Grosjean, D. (1985) Photochemical formation of organic aerosols: growth laws and mechanisms. Atmos. Environ. 19, 1445–51CrossRefGoogle Scholar
McRae, G. J., Goodin, W. R., and Seinfeld, J. H. (1982) Development of a second-generation mathematical model for urban air pollution – I. Model formulation. Atmos. Environ. 16, 679–96CrossRefGoogle Scholar
Meador, W. E. and Weaver, W. R. (1980) Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci. 37, 630–432.0.CO;2>CrossRefGoogle Scholar
Mellor, G. L. and Yamada, T. (1974) A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31, 1791–8062.0.CO;2>CrossRefGoogle Scholar
Mellor, G. L. and Yamada, T. (1982) Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851–75CrossRefGoogle Scholar
Meng, Z. and Seinfeld, J. H. (1996) Time scales to achieve atmospheric gas–aerosol equilibrium for volatile species. Atmos. Environ. 30, 2889–900CrossRefGoogle Scholar
Meng, Z., Seinfeld, J. H., Saxena, P., and Kim, Y. P. (1995) Atmospheric gas–aerosol equilibrium: IV. Thermodynamics of carbonates. Aerosol. Sci. Technol. 23, 131–54CrossRefGoogle Scholar
Meng, Z., Dabdub, D., and Seinfeld, J. H. (1998) Size-resolved and chemically resolved model of atmospheric aerosol dynamics. J. Geophys. Res. 103, 3419–35CrossRefGoogle Scholar
Mesinger, F. and Arakawa, A. (1976) Numerical Methods Used in Atmospheric Models. GARP Publication Series. No. 17, 1. World Meteorological Organization, 64ppGoogle Scholar
Metzger, S., Dentener, F., Pandis, S., and Lelieveld, J. (2002) Gas/aerosol partitioning: 1. A computationally efficient model. J. Geophys. Res. 107 (D16) 10.1029/2001JD001102Google Scholar
Middleton, P. and Brock, J. R. (1976) Simulation of aerosol kinetics. J. Colloid Interface Sci. 54, 249–64CrossRefGoogle Scholar
Middleton, W. E. K. (1952) Vision Through the Atmosphere. Toronto, Canada, University of Toronto PressGoogle Scholar
Mihailovic, D. T., Rajkovic, B., Lalic, B., and Dekic, L. (1995) Schemes for parameterizing evaporation from a non-plant covered surface and their impact on partitioning the surface energy in land–air exchange parameterization. J. Appl. Meteor. 34, 2462–752.0.CO;2>CrossRefGoogle Scholar
Millero, F. J. (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta 59, 661–7CrossRefGoogle Scholar
Millikan, R. A. (1923) The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces. Phys. Rev. 22, 1–23CrossRefGoogle Scholar
Mitchell, A. R. (1969) Computational Methods in Partial Differential Equations. New York, John WileyGoogle Scholar
Miyakoda, K., Smagorinsky, J., Strickler, R. F., and Hembree, G. D. (1969) Experimental extended predictions with a nine-level hemispheric model. Mon. Wea. Rev. 97, 1–762.3.CO;2>CrossRefGoogle Scholar
Moeng, C. H. (1984) A large-eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 2202–162.0.CO;2>CrossRefGoogle Scholar
Molina, L. T. and Molina, M. J. (1986) Production of Cl2O2 by the self reaction of the ClO radical. J. Phys. Chem. 91, 433–6CrossRefGoogle Scholar
Molina, M. J. and Rowland, F. S. (1974) Stratospheric sink for chlorofluoromethanes: Chlorine atom catalysed destruction of ozone. Nature 249, 810–2CrossRefGoogle Scholar
Molinari, J. (1982) A method for calculating the effects of deep cumulus convection in numerical models. Mon. Wea. Rev. 11, 1527–342.0.CO;2>CrossRefGoogle Scholar
Monahan E. C., Spiel D. E., and Davidson K. L. (1986) A model of marine aerosol generation via whitecaps and wave disruption. In Oceanic Whitecaps and Their Role in Air–Sea Exchange Processes. Monahan, E. C. and MacNiocaill, G., eds., Norwell, MA, D. Reidel, 167–74Google Scholar
Monin, A. S. and Obukhov, A. M. (1954) Basic laws of turbulent mixing in the ground layer of the atmosphere. Trans. Geophys. Inst. Akad. Nauk USSR 151, 1963–87Google Scholar
Monin, A. S. and Yaglom, (1971) Statistical Fluid Mechanics. Cambridge, MA, MIT PressGoogle Scholar
Monteith, J. L. and Szeicz, G. (1962) Radiative temperature in the heat balance of natural surfaces. Q. J. Roy. Meteor. Soc. 88, 496–507CrossRefGoogle Scholar
Moorthi, S. and Suarez, M. J. (1992) Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev. 120, 978–862.0.CO;2>CrossRefGoogle Scholar
Mordy, W. (1959) Computations of the growth by condensation of a population of cloud droplets. Tellus 11, 16–44CrossRefGoogle Scholar
Mountain, R. D., Mulholland, G. W., and Baum, H. (1986) Simulation of aerosol agglomeration in the free molecular and continuum flow regimes. J. Colloid. Interface Sci. 114, 67–81CrossRefGoogle Scholar
Moya, M., Pandis, S. N., and Jacobson, M. Z. (2001) Is the size distribution of urban aerosols determined by thermodynamic equilibrium? An application to Southern California. Atmos. Environ. 36, 2349–65CrossRefGoogle Scholar
Mozurkewich, M., McMurry, P. H., Gupta, A., and Calvert, J. G. (1987) Mass accommodation coefficients for HO2 radicals on aqueous particles. J. Geophys. Res. 92, 4163–70CrossRefGoogle Scholar
Mulholland, G. W., Samson, R. J., Mountain, R. D., and Ernst, M. H. (1988) Cluster size distribution for free molecular agglomeration. Energy and Fuels 2, 481–6CrossRefGoogle Scholar
Muller, H. (1928) Zur allgemeinen Theorie der raschen Koagulation. Die koagulation von Stabchen- und Blattchen-kolloiden; die Theorie beliebig polydisperser Systeme und der Stromungskoagulation. Kolloidbeihefte 27, 223–50Google Scholar
Munger, W. J., Collett, J. Jr., Daube, B. C., and Hoffmann, M. R. (1989) Carboxylic acids and carbonyl compounds in southern California clouds and fogs. Tellus 41b, 230–42CrossRefGoogle Scholar
Mylonas, D. T., Allen, D. T., Ehrman, S. H., and Pratsinis, S. E. (1991) The sources and size distributions of organonitrates in Los Angeles aerosols. Atmos. Environ. 25A, 2855–61CrossRefGoogle Scholar
Nair, R. D., Scroggs, J. S., and Semazzi, F. H. M. (2002) Efficient conservative global transport schemes for climate and atmospheric chemistry models. Mon. Wea. Rev. 130, 2059–732.0.CO;2>CrossRefGoogle Scholar
Nakicenovic, N. and Swart, R., eds. (2000) Emissions Scenarios. A Special Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University PressGoogle Scholar
Napari, I., Noppel, M., Vehkamaki, H., and Kulmala, M. (2002) Parameterization of ternary nucleation rates for H2SO4-NH3-H2O vapors. J. Geophys. Res. 107 (D19), 4381, doi:10.1029/2002JD002132CrossRefGoogle Scholar
National Oceanic and Atmospheric Administration (NOAA) (1976) U.S. Standard Atmosphere. Washington, DC
Naumann, K.-H. (2003) COSIMA-A computer program simulating the dynamics of fractal aerosols. J. Aerosol Sci. 34, 1371–97CrossRefGoogle Scholar
Nautical Almanac Office (NAO) and Her Majesty's Nautical Almanac Office (1993) Astronomical Almanac. Washington, DC, U.S. Government Printing Office
Nebeker, F. (1995) Calculating the Weather. San Diego, Academic Press, Inc.Google Scholar
Nenes, A., Pandis, S. N., and Pilinis, C. (1998) ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 4, 123–52CrossRefGoogle Scholar
Nenes, A., Pandis, S. N., and Pilinis, C. (1999) Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality. Atmos. Environ. 33, 1553–1560CrossRefGoogle Scholar
Nesbitt, F. L., Monks, P. S., Wayne, W. A., Stief, L. J., and Touni, R. (1995) The reaction of O(3P) + HOBr: Temperature dependence of the rate constant and importance of the reaction as an HOBr loss process. Geophys. Res. Lett. 22, 827–30CrossRefGoogle Scholar
Nguyen, K. and Dabdub, D. (2001) Two-level time-marching scheme using splines for solving the advection equation. Atmos. Environ. 35, 1627–37CrossRefGoogle Scholar
Nguyen, K. and Dabdub, D. (2002) Semi-Lagrangian flux scheme for the solution of the aerosol condensation/ evaporation equation. Aerosol Sci. Technol. 36, 407–418CrossRefGoogle Scholar
Nicolet, M. (1989) Solar spectral irradiances with their diversity between 120 and 900 nm. Planet. Space Sci. 37, 1249–89CrossRefGoogle Scholar
Noilhan, J. and Planton, S. (1989) A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev. 117, 536–492.0.CO;2>CrossRefGoogle Scholar
Noll, K. E., Fang, K. Y. P., and Khalili, E. (1990) Characterization of atmospheric coarse particles in the Los Angeles Basin. Aerosol Sci. Technol. 12, 28–38CrossRefGoogle Scholar
Odum, J. R., Hoffmann, T., Bowman, F., Collins, T., Flagan, R. C., and Seinfeld, J. H. (1996) Gas-particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 30, 2580–5CrossRefGoogle Scholar
Ogura, Y. and Phillips, N. A. (1962) Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173–92.0.CO;2>CrossRefGoogle Scholar
Okada, K. and Hitzenberger, R. (2001) Mixing properties of individual submicrometer particles in Vienna. Atmos. Environ. 35, 5617–28CrossRefGoogle Scholar
Oke, T. R. (1978) Boundary Layer Climates. London, MethuenCrossRefGoogle Scholar
Oke, T. R., Spronken-Smith, R. A., Jauregui, E., and Grimmond, C. S. B. (1999) The energy balance of central Mexico City during the dry season. Atmos. Environ. 33, 3919–30CrossRefGoogle Scholar
Okuyama, K., Kousaka, Y., and Hayashi, K. (1984) Change in size distribution of ultrafine aerosol particles undergoing Brownian coagulation. J. Colloid Interface Sci. 101, 98–109CrossRefGoogle Scholar
Olscamp, P. J., translator (1965) Discourse on Method, Optics, Geometry, and Meteorology by René Descartes. Indianapolis, Bobbs-Merrill Company, Inc.Google Scholar
Ooyama, V. K. (1971) A theory on parameterization of cumulus convection. J. Meteor. Soc. Japan 49, 744–56CrossRefGoogle Scholar
Orszag, S. A. (1970) Transform method for calculation of vector coupled sums: Application to the spectral form of the vorticity equation. J. Atmos. Sci. 27, 890–52.0.CO;2>CrossRefGoogle Scholar
Orszag, S. A. (1971) Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representations. Stud. Appl. Math. 50, 293–326CrossRefGoogle Scholar
Orville, H. D. and Kopp, F. J. (1977). Numerical simulations of the history of a hailstorm. J. Atmos. Sci. 34, 1596–6182.0.CO;2>CrossRefGoogle Scholar
Osborne, N. S., Stimson, H. F., and Ginnings, D. C. (1939) Measurements of heat capacity and heat of vaporization of water in the range of 0 degrees to 100 degrees celsius. J. Res. Nat. Bur. Stand. 23, 197–260CrossRefGoogle Scholar
Pandis, S. N. and Seinfeld, J. H. (1989) Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry. J. Geophys. Res. 94, 1105–26CrossRefGoogle Scholar
Pandis, S. N., Harley, R. A., Cass, G. R., and Seinfeld, J. H. (1992) Secondary organic aerosol formation and transport. Atmos. Environ. 26A, 2269–82CrossRefGoogle Scholar
Pandis, S. N., Russell, L. M., and Seinfeld, J. H. (1994) The relationship between DMS flux and CCN concentration in remote marine regions. J. Geophys. Res. 99, 16945–57CrossRefGoogle Scholar
Park J.-Y. and Lee Y.-N. (1987) Aqueous solubility and hydrolysis kinetics of peroxynitric acid. Paper presented at 193rd Meeting, American Chemical Society, Denver, CO, April 5–10
Parker, V. B. (1965) Thermal Properties of Aqueous Uni-univalent Electrolytes. National Standard Reference Data Series – NBS 2. U.S. Government Printing Office, Washington, DCCrossRefGoogle Scholar
Parkinson, C. L. and Washington, W. M. (1979) A large-scale numerical model for sea ice. J. Geophys. Res. 84, 311–37CrossRefGoogle Scholar
Pasquill, F. (1962) Atmospheric Diffusion. London, Van NostrandGoogle Scholar
Paulson, S. E. and Seinfeld, J. H. (1992) Development and evaluation of a photooxidation mechanism for isoprene. J. Geophys. Res. 97, 20, 703–15CrossRefGoogle Scholar
Peng, C., Chan, M. N., and Chan, C. K. (2001) The hygroscopic properties of dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions. Environ. Sci. Technol. 35, 4495–501CrossRefGoogle ScholarPubMed
Pepper, D. W., Kern, C. D., and Long, P. E. Jr. (1979) Modeling the dispersion of atmospheric pollution using cubic splines and chapeau functions. Atmos. Environ. 13, 223–37CrossRefGoogle Scholar
Perrin, D. D. (1982) Ionization Constants of Inorganic Acids and Bases in Aqueous Solution, 2nd edn. New York, PergamonGoogle Scholar
Perron, G., Roux, A., and Desnoyers, J. E. (1981) Heat capacities and volumes of NaCl, MgCl2, CaCl2, and NiCl2 up to 6 molal in water. Can. J. Chem. 59, 3049–54CrossRefGoogle Scholar
Petersen, R. L. (1997) A wind tunnel evaluation of methods for estimating surface roughness length at industrial facilities. Atmos. Environ. 31, 45–57CrossRefGoogle Scholar
Philip, J. R. (1957) Evaporation, and moisture and heat fields in the soil. J. Meteor. 14, 354–662.0.CO;2>CrossRefGoogle Scholar
Phillips, N. A. (1957) A coordinate system having some special advantages for numerical forecasting. J. Meteor. 14, 184–52.0.CO;2>CrossRefGoogle Scholar
Pielke, R. A. (1984) Mesoscale Meteorological Modeling. San Diego, Academic Press, IncGoogle Scholar
Pilinis, C. and Seinfeld, J. H. (1987) Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols. Atmos. Environ. 21, 2453–66CrossRefGoogle Scholar
Pilinis, C. and Seinfeld, J. H. (1988) Development and evaluation of an eulerian photochemical gas-aerosol model. Atmos. Environ. 22, 1985–2001CrossRefGoogle Scholar
Pilinis, C., Capaldo, K. P., Nenes, A., and Pandis, S. N. (2000) MADM-A new multicomponent aerosol dynamics model. Aerosol Sci. Technol. 32, 482–502CrossRefGoogle Scholar
Pinto, J. P., Turco, R. P., and Toon, O. B. (1989) Self-limiting physical and chemical effects in volcanic eruption clouds. J. Geophys. Res. 94, 11, 165CrossRefGoogle Scholar
Pitter, R. L. and Pruppacher, H. R. (1973) A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air. Q. J. Roy. Meteor. Soc. 99, 540–50CrossRefGoogle Scholar
Pitzer K. S. (1991) Ion interaction approach: Theory and data correlation. In Activity Coefficients in Electrolyte Solutions, 2nd edn. Pitzer, K. S., ed., Boca Raton, FL, CRC Press, 75–153Google Scholar
Pitzer, K. S. and Mayorga, G. (1973) Thermodynamics of electrolytes II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–8CrossRefGoogle Scholar
Pollack, J. B. and Cuzzi, J. N. (1980) Scattering by nonspherical particles of size comparable to a wavelength: A new semi-empirical theory and its application to tropospheric aerosols. J. Atmos. Sci. 37, 868–812.0.CO;2>CrossRefGoogle Scholar
Pooley F. D. and Mille M. (1999) Composition of air pollution particles. In Air Pollution and Health. Holgate, S. T., Samet, J. M., Koren, H. S., and Maynard, R. L., eds., San Diego, Academic Press, 619–34Google Scholar
Potter, J. F. (1970) The delta-function approximation in radiative transfer theory. J. Atmos. Sci. 27, 943–92.0.CO;2>CrossRefGoogle Scholar
Prather, M. J. (1986) Numerical advection by conservation of second-order moments. J. Geophys. Res. 91, 6671–81CrossRefGoogle Scholar
Pratsinis, S. E. (1988) Simultaneous nucleation, condensation, and coagulation in aerosol reactors. J. Colloid Interface Sci. 124, 416–27CrossRefGoogle Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1992). Numerical Recipes: The Art of Scientific Computing. Cambridge, Cambridge University PressGoogle Scholar
Price, C., Penner, J., and Prather, M. (1997) NOx from lightning 1. Global distribution based on lightning physics. J. Geophys. Res. 102, 5929–41CrossRefGoogle Scholar
Price, G. V. and MacPherson, A. K. (1973) A numerical weather forecasting method using cubic splines on a variable mesh. J. Appl. Meteor. 12, 1102–132.0.CO;2>CrossRefGoogle Scholar
Pruppacher, H. R. and Klett, J. D. (1997) Microphysics of Clouds and Precipitation, 2nd rev. and enl. edn., Dordrecht, Kluwer Academic PublishersGoogle Scholar
Pruppacher, H. R. and Rasmussen, R. (1979) A wind tunnel investigation of the rate of evaporation of large water drops falling at terminal velocity in air. J. Atmos. Sci. 36, 1255–602.0.CO;2>CrossRefGoogle Scholar
Purnell, D. K. (1976) Solution of the advection equation by upstream interpolation with a cubic spline. Mon. Wea. Rev. 104, 42–82.0.CO;2>CrossRefGoogle Scholar
Rahmes, T. F., Omar, A. H., and Wuebbles, D. J. (1998) Atmospheric distributions of soot particles by current and future aircraft fleets and resulting radiative forcing on climate. J. Geophys. Res. 103, 31, 657–67CrossRefGoogle Scholar
Rao, N. P. and McMurry, P. H. (1989) Nucleation and growth of aerosol in chemically reacting systems. Aerosol Sci. Technol. 11, 120–33CrossRefGoogle Scholar
Raoult, F.-M. (1887) General law of the vapor pressure of solvents. Comptes Rendus 104, 1430–3Google Scholar
Rasch, P. J. (1994) Conservative shape-preserving two-dimensional transport on a spherical grid. Mon. Wea. Rev. 122, 1337–502.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R. and Pruppacher, H. R. (1982) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: A wind tunnel study of frozen drops of radius <500 mm. J. Atmos. Sci. 39, 152–82.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R., Levizzani, M. V., and Pruppacher, H. R. (1984) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. II: A theoretical study for frozen drops of radius <500 mm. J. Atmos. Sci. 41, 374–802.0.CO;2>CrossRefGoogle Scholar
Reid, J. S. and Hobbs, P. V. (1998) Physical and optical properties of young smoke from individual biomass fires in Brazil. J. Geophys. Res. 103, 32, 013–30CrossRefGoogle Scholar
Reid, J. S., Hobbs, P. V., Ferek, R. J., et al. (1998) Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil. J. Geophys. Res. 103, 32, 059–80CrossRefGoogle Scholar
Reisin, T., Levin, Z., and Tzivion, S. (1996) Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci. 53, 497–5192.0.CO;2>CrossRefGoogle Scholar
Reynolds, S. D., Roth, P. M., and Seinfeld, J. H. (1973) Mathematical modeling of photochemical air pollution – I: Formulation of the model. Atmos. Environ. 7, 1033–61CrossRefGoogle Scholar
Richardson, L. F. (1922) Weather Prediction by Numerical Process. Cambridge, Cambridge University Press, reprinted 1965, 236ppGoogle Scholar
Robert, A. (1982) A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Japan Meteor. Soc. 60, 319–25CrossRefGoogle Scholar
Robinson, R. A. and Stokes, R. H. (1955) Electrolyte Solutions. New York, Academic PressGoogle Scholar
Rogak, S. N. and Flagan, R. C. (1992) Coagulation of aerosol agglomerates in the transition regime. J. Colloid Interface Sci. 151, 203–24CrossRefGoogle Scholar
Rogers, R. R. and Yau, M. K. (1989) A Short Course in Cloud Physics. Oxford, Pergamon PressGoogle Scholar
Rosenbaum, J. S. (1976) Conservation properties of numerical integration methods for systems of ordinary differential equations. J. Comp. Phys. 20, 259–67CrossRefGoogle Scholar
Ross, A. B. and Neta, P. (1979) Rate Constants for Reactions of Inorganic Radicals in Aqueous Solutions. NSRDS-NBS 65. National Bureau of Standards, U.S. Department of Commerce, Washington, DCCrossRefGoogle Scholar
Rossby, C. and collaborators (1939) Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Marine Res. 2, 38–55CrossRefGoogle Scholar
Rothman, L. S., et al. (2003) The HITRAN molecular spectroscopic database: Edition of 2000 including updates of 2001. J. Quant. Spectrosc. Radiat. Transfer 82, 5–44CrossRefGoogle Scholar
Roux, A., Musbally, G. M., Perron, G., et al. (1978) Apparent molal heat capacities and volumes of aqueous electrolytes at 25 °C: NaClO3, NaClO4, NaNO3, NaBrO3, NaIO3, KClO3, KBrO3, KIO3, NH4NO3, NH4Cl, and NH4ClO4. Can. J. Chem. 56, 24–8CrossRefGoogle Scholar
Russell, A. G., Winner, D. A., Harley, R. A., McCue, K. F., and Cass, G. R. (1993) Mathematical modeling and control of the dry deposition flux of nitrogen-containing air pollutants. Environ. Sci. Technol. 27, 2772–82CrossRefGoogle Scholar
Russell, L. M., Pandis, S. N., and Seinfeld, J. H. (1994) Aerosol production and growth in the marine boundary layer. J. Geophys. Res. 99, 20, 989–21, 003CrossRefGoogle Scholar
Saffman, P. G. and Turner, J. S. (1956) On the collision of drops in turbulent clouds. J. Fluid Mech. 1, 16–30CrossRefGoogle Scholar
Sander, R., Lelieveld, J., and Crutzen, P. J. (1995) Modelling of nighttime nitrogen and sulfur chemistry in size resolved droplets of an orographic cloud. J. Atmos. Chem. 20, 89–116CrossRefGoogle Scholar
Sandu, A. (2001) Positive numerical integration methods for chemical kinetic systems. J. Comp. Phys. 170, 589–602CrossRefGoogle Scholar
Sandu, A. (2002) A Newton–Cotes quadrature approach for solving the aerosol coagulation equation. Atmos. Environ. 36, 583–9CrossRefGoogle Scholar
Sandu, A., Verwer, J. G., Loon, M., et al. (1997) Benchmarking stiff ODE solvers for atmospheric chemistry problems X: Implicit versus explicit. Atmos. Environ. 31, 3151–66CrossRefGoogle Scholar
San Jose, R., Casanova, J. L., Viloria, R. E., and Casanova, J. (1985) Evaluation of the turbulent parameters of the unstable surface boundary layer outside Businger's range. Atmos. Environ. 19, 1555–61CrossRefGoogle Scholar
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J. (2003) Protocol for the development of the Mater Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 3, 161–80CrossRefGoogle Scholar
Saxena, P., Hudischewskyj, A. B., Seigneur, C., and Seinfeld, J. H. (1986) A comparative study of equilibrium approaches to the chemical characterization of secondary aerosols. Atmos. Environ. 20, 1471–83CrossRefGoogle Scholar
Saxena P., Mueller P. K., and Hildemann L. M. (1993) Sources and chemistry of chloride in the troposphere: A review. In Managing Hazardous Air Pollutants: State of the Art. Chow, W. and Connor, K. K., eds., Boca Raton, FL, Lewis Publishers, 173–90Google Scholar
Schmidt, K. H. (1972) Electrical conductivity techniques for studying the kinetics of radiation-induced chemical reactions in aqueous solutions. Int. J. Radiat. Phys. Chem. 4, 439–68CrossRefGoogle Scholar
Schmidt-Ott, A. and Burtscher, H. (1982) The effect of van der Waals forces on aerosol coagulation. J. Colloid Interface Sci. 89, 353–7CrossRefGoogle Scholar
Schnaiter, M., Horvath, H., Mohler, O., Naumann, K.-H., Saathoff, H., and Schock, O. W. (2003) UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J. Aerosol Sci. 34, 1421–44CrossRefGoogle Scholar
Schneider, W., Moortgat, G. K., Tyndall, G. S., and Burrows, J. P. (1987) Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K. J. Photochem. Photobiol, A: Chem. 40, 195–217CrossRefGoogle Scholar
Scholes, G. and Willson, R. L. (1967) γ-radiolysis of aqueous thymine solutions. Determination of relative reaction rates of OH radicals. Trans. Faraday Soc. 63, 2982–93CrossRefGoogle Scholar
Schroeder, W. H., Dobson, M., Kane, D. M., and Johnson, N. D. (1987) Toxic trace elements associated with airborne particulate matter: a review. J. Air Pollut. Control Assoc. 37, 1267–85Google ScholarPubMed
Schwartz, S. E. (1984) Gas- and aqueous-phase chemistry of HO2 in liquid water clouds. J. Geophys. Res. 89, 11, 589–98CrossRefGoogle Scholar
Schwartz S. E. (1986) Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds. In Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, Vol. G6. Jaeschke, W., ed., Berlin, Springer-Verlag, 415–71CrossRefGoogle Scholar
Schwartz, S. E. and White, W. H. (1981) Solubility equilibria of the nitrogen oxides and oxyacids in aqueous solution. Adv. Environ. Sci. Eng. 4, 1–45Google Scholar
Seaman, N. L., Ludwig, F. L., Donall, E. G., Warner, T. T., and Bhumralkar, C. M. (1989) Numerical studies of urban planetary boundary-layer structure under realistic synoptic conditions. J. Appl. Meteor. 28, 760–812.0.CO;2>CrossRefGoogle Scholar
Seery, D. J. and Britton, D. (1964) The continuous absorption spectra of chlorine, bromine, bromine chloride, iodine chloride, and iodine bromide. J. Phys. Chem. 68, 2263–6CrossRefGoogle Scholar
Sehested, K., Rasmussen, O. L., and Fricke, H. (1968) Rate constants of OH with HO2, O2−, and H2O2+ from hydrogen peroxide formation in pulse-irradiated oxygenated water. J. Phys. Chem. 72, 626–31CrossRefGoogle Scholar
Sehmel, G. A. (1980) Particle and gas dry deposition: A review. Atmos. Environ. 14, 983–1011CrossRefGoogle Scholar
Seinfeld, J. H. and Pandis, S. N. (1998) Atmospheric Chemistry and Physics. New York, Wiley-InterscienceGoogle Scholar
Sellers, W. D. (1965) Physical Climatology. Chicago, University of Chicago Press, 272ppGoogle Scholar
Sellers, P. J., Los, S. O., Tucker, C. J., et al. (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Clim. 9, 706–372.0.CO;2>CrossRefGoogle Scholar
Shao, Y. (2001) A model for mineral dust emission. J. Geophys. Res. 106, 20239–54CrossRefGoogle Scholar
Shao, Y., Raupach, M. R., and Leys, J. F. (1996) A model for predicting Aeolian sand drift and dust entrainment on scales from paddock to region. Aust. J. Soil Res. 34, 309–42CrossRefGoogle Scholar
Shen T.-L., Wooldridge P. J., and Molina M. J. (1995) Stratospheric pollution and ozone depletion. In Composition, Chemistry, and Climate of the Atmosphere. Singh, H. B., ed., New York, Van Nostrand ReinholdGoogle Scholar
Sheridan, P. J., Brock, C. A., and Wilson, J. C. (1994) Aerosol particles in the upper troposphere and lower stratosphere: Elemental composition and morphology of individual particles in northern midlatitudes. Geophys. Res. Lett. 21, 2587–90CrossRefGoogle Scholar
Sherman A. H. and Hindmarsh A. C. (1980) GEARS: A Package for the Solution of Sparse, Stiff Ordinary Differential Equations. Report UCRL-84102, Lawrence Livermore Laboratory
Shimazaki, T. and Laird, A. R. (1970) A model calculation of the diurnal variation in minor neutral constituents in the mesosphere and lower thermosphere including transport effects. J. Geophys. Res. 75, 3221–35CrossRefGoogle Scholar
Shir, C. C. and Bornstein, R. D. (1976) Eddy exchange coefficients in numerical models of the planetary boundary layer. Boundary-Layer Meteor. 11, 171–85CrossRefGoogle Scholar
Shuttleworth, W. J. (1989) Micrometeorology of temperate and tropical forest. Phil. Trans. Roy. Soc. London B324, 299–334CrossRefGoogle Scholar
Siegel, R. and Howell, J. R. (1992) Thermal Radiation Heat Transfer. Washington, DC, Taylor and FrancisGoogle Scholar
Singh H. B. (1995) Halogens in the atmospheric environment. In Composition, Chemistry, and Climate of the Atmosphere. Singh, H. B., ed., New York, Van Nostrand ReinholdGoogle Scholar
Singh, H. B., Viezee, W., and Salas, L. J. (1988) Measurements of selected C2-C5 hydrocarbons in the troposphere: Latitudinal, vertical, and temporal variations. J. Geophys. Res. 93, 15, 861–78CrossRefGoogle Scholar
Singh, H. B., Kanakidou, M., Crutzen, P. J., and Jacob, D. J. (1995) High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature 378, 50–4CrossRefGoogle Scholar
Singh, H. B., Herlth, D., Kolyer, R., et al. (1996) Reactive nitrogen and ozone over the western Pacific: Distributions, partitioning, and sources. J. Geophys. Res. 101, 1793–808CrossRefGoogle Scholar
Skamarock, W. C. and Klemp, J. B. (1992) The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Wea. Rev. 120, 2109–272.0.CO;2>CrossRefGoogle Scholar
Skamarock, W. C., Dye, J. E., Defer, E., Barth, M. C., Stith, J. L., and Ridley, B. A. (2003) Observational- and modeling-based budget of lightning-produced NOx in a continental thunderstorm. J. Geophys. Res. 108 (D10), 4305, doi:10.1029/2002JD002163CrossRefGoogle Scholar
Slinn, W. G. N., Hasse, L., Hicks, B. B., et al. (1978) Some aspects of the transfer of atmospheric trace constituents past the air–sea interface. Atmos. Environ. 12, 2055–87CrossRefGoogle Scholar
Smith, M. H. and Harrison, N. M. (1998) The sea spray generation function. J. Aerosol Sci. 29, Suppl. 1, S189–S190CrossRefGoogle Scholar
Smith, R. M. and Martell, A. E. (1976) Critical Stability Constants, Vol. 4: Inorganic Complexes. New York, PlenumCrossRefGoogle Scholar
Smolarkiewicz, P. K. (1983) A simple positive definite advection scheme with small implicit diffusion. Mon. Wea. Rev. 111, 479–862.0.CO;2>CrossRefGoogle Scholar
Smoluchowski, M. V. (1918) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92, 129–68Google Scholar
Snider, J. R. and Dawson, G. A. (1985) Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry's law data. J. Geophys. Res. 90, 3797–805CrossRefGoogle Scholar
Snyder, J. P. (1987) Map Projections – A Working Manual. U.S. Geological Survey professional paper 1395, U.S. Government Printing Office, WashingtonGoogle Scholar
Sokolik, I., Andronova, A., and Johnson, C. (1993) Complex refractive index of atmospheric dust aerosols. Atmos. Environ. 27A, 2495–502CrossRefGoogle Scholar
Solomon, S., Garcia, R. R., Rowland, F. S., and Wuebbles, D. J. (1986) On the depletion of Antarctic ozone. Nature 321, 755–7CrossRefGoogle Scholar
Sommer, L. (1989) Analytical Absorption Spectrophotometry in the Visible and Ultraviolet. Amsterdam, ElsevierGoogle Scholar
Spencer, J. W. (1971) Fourier series representation of the position of the Sun. Search 2, 172Google Scholar
Stam, D. M., Haan, J. F., Hovenier, J. W., and Stammes, P. (2000) A fast method for simulating observations of polarized light emerging from the atmosphere applied to the oxygen-A band. J. Quant. Spectrosc. Radiat. Transfer 64, 131–49CrossRefGoogle Scholar
Staniforth, A. and Cote, J. (1991) Semi-Lagrangian integration schemes for atmospheric models – a review. Mon. Wea. Rev. 119, 2206–232.0.CO;2>CrossRefGoogle Scholar
Steiner, D., Burtchnew, H., and Grass, H. (1992) Structure and disposition of particles from a spark ignition engine. Atmos. Environ. 26, 997–1003CrossRefGoogle Scholar
Stelson A. W., Bassett M. E., and Seinfeld J. H. (1984) Thermodynamic equilibrium properties of aqueous solutions of nitrate, sulfate and ammonium. In Chemistry of Particles, Fogs and Rain. Durham, J. L., ed., Ann Arbor, MI, Ann Arbor Publication, 1–52Google Scholar
Stephens, E. R., Scott, W. E., Hanst, P. L., and Doerr, R. C. (1956) Recent developments in the study of the organic chemistry of the atmosphere. J. Air Pollut. Contr. Assoc. 6, 159–65CrossRefGoogle Scholar
Stockwell, W. R. (1986) A homogeneous gas-phase mechanism for use in a regional acid deposition model. Atmos. Environ. 20, 1615–32CrossRefGoogle Scholar
Stockwell, W. R. (1995) On the HO2 + HO2 reaction: Its misapplication in atmospheric chemistry models. J. Geophys. Res. 100, 11, 695–8CrossRefGoogle Scholar
Stoer, J. and Bulirsch, R. (1980) Introduction to Numerical Analysis. New York, Springer-VerlagCrossRefGoogle Scholar
Stokes, R. H. and Robinson, R. A. (1966) Interactions in aqueous nonelectrolyte solutions.. Solute–solvent equilibria. J. Phys. Chem. 70, 2126–30CrossRefGoogle Scholar
Stommel, H. (1947) Entrainment of air into a cumulus cloud. Part I. J. Appl. Meteor. 4, 91–42.0.CO;2>CrossRefGoogle Scholar
Streets, D. G. and Waldhoff, S. T. (1998) Biofuel use in Asia and acidifying emissions, Energy 23, 1029–42CrossRefGoogle Scholar
Streets, D. G. and Waldhoff, S. T. (1999) Greenhouse-gas emissions from biofuel combustion in Asia. Energy 24, 841–55CrossRefGoogle Scholar
Strom, J., Okada, K., and Heintzenber, J. (1992) On the state of mixing of particles due to Brownian coagulation. J. Aerosol Sci. 23 467–80CrossRefGoogle Scholar
Stuart A. L. (2002) Volatile chemical partitioning during cloud hydrometeor freezing and its effects on tropospheric chemical distributions. Ph. D. Thesis, Stanford University
Stull, R. B. (1988) An Introduction to Boundary Layer Meteorology. Dordrecht, Kluwer Academic PublishersCrossRefGoogle Scholar
Stumm, W. and Morgan, J. J. (1981) Aquatic Chemistry. New York, Wiley Interscience, 780ppGoogle Scholar
Suck, S. H. and Brock, J. R. (1979) Evolution of atmospheric aerosol particle size distributions via Brownian coagulation: Numerical simulation. J. Aerosol Sci. 10, 581–90CrossRefGoogle Scholar
Sukhatme, S. P. and Saikhedkar, N. (1969) Heat capacities of glycerol-water mixtures and aqueous solutions of ammonium sulfate, ammonium nitrate and strontium nitrate. Ind. J. Technol. 7, 1–4Google Scholar
Sun, Q. and Wexler, A. S. (1998) Modeling urban and regional aerosols – condensation and evaporation near acid neutrality. Atmos. Environ. 32, 3527–31CrossRefGoogle Scholar
Tabazadeh, A. and Turco, R. P. (1993a) Stratospheric chlorine injection by volcanic eruptions: HCl scavenging and implications for ozone. Science 260, 1082–6CrossRefGoogle Scholar
Tabazadeh, A. and Turco, R. P. (1993b) A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles. J. Geophys. Res. 98, 12, 727–40CrossRefGoogle Scholar
Tabazadeh, A., Turco, R. P., Drdla, K., and Jacobson, M. Z. (1994) A study of Type I polar stratospheric cloud formation. Geophys. Res. Lett. 21, 1619–22CrossRefGoogle Scholar
Tabazadeh, A., Djikaev, Y. S., and Reiss, H. (2002) Surface crystallization of supercooled water in clouds. Proc. Nat. Acad. Sci. 99 15, 873–8CrossRefGoogle ScholarPubMed
Tang, I. N. (1996) Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J. Geophys. Res. 101, 19, 245–50CrossRefGoogle Scholar
Tang, I. N. (1997) Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance. J. Geophys. Res. 102, 1883–93CrossRefGoogle Scholar
Tang, I. N. and Munkelwitz, H. R. (1993) Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmos. Environ. 27A, 467–73CrossRefGoogle Scholar
Tang, I. N. and Munkelwitz, H. R. (1994) Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res. 99, 18, 801–8CrossRefGoogle Scholar
Tang, I. N., Wong, W. T., and Munkelwitz, H. R. (1981) The relative importance of atmospheric sulfates and nitrates in visibility reduction. Atmos. Environ. 15, 2463–71CrossRefGoogle Scholar
Tanguay, M., Robert, A., and Laprise, R. (1990) A semiimplicit semiLagrangian fully-compressible regional forecast model. Mon. Wea. Rev. 118, 1970–802.0.CO;2>CrossRefGoogle Scholar
Tao, Y. and McMurry, P. H. (1989) Vapor pressures and surface free energies of C14-C19 monocarboxylic acids and C5-dicarboxylic and C6-dicarboxylic acids. Environ. Sci. Technol. 25, 1788–93Google Scholar
Tapp, M. C. and White, P. W. (1976) A nonhydrostatic mesoscale model. Quart. J. Roy. Meteor. Soc. 102, 277–96CrossRefGoogle Scholar
Tegen, I., Lacis, A. A., and Fung, I. (1996) The influence on climate forcing of mineral aerosols from disturbed soils. Nature 380, 419–22CrossRefGoogle Scholar
Terry, D. A., McGraw, R., and Rangel, R. H. (2001) Method of moments solutions for a laminar flow aerosol reactor model. Aerosol Sci. Technol. 34, 353–62CrossRefGoogle Scholar
Tesche, T. W. (1988) Accuracy of ozone air quality models. J. Environ. Eng. 114, 739–52CrossRefGoogle Scholar
Thekaekara, M. P. (1974) Extraterrestrial solar spectrum, 3000–6100 Å at 1- Å intervals. Appl. Opt. 13, 518–22CrossRefGoogle ScholarPubMed
Thompson, N., Barrie, N., and Ayles, M. (1981) The meteorological office rainfall and evaporation calculation system: MORECS. Hydrol. Memo. 45, 1–69Google Scholar
Thuburn, J. (1996) Multidimensional flux-limited advection schemes. J. Comp. Phys. 123, 74–83CrossRefGoogle Scholar
Thuburn, J. (1997) TVD schemes, positive schemes, and the universal limiter. Mon. Wea. Rev. 125, 1990–32.0.CO;2>CrossRefGoogle Scholar
Tiedtke, M. (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev. 117, 1779–8002.0.CO;2>CrossRefGoogle Scholar
Tjernstrom, M. (1993) Turbulence length scales in stably stratified free shear flow analyzed from slant aircraft profiles. J. Appl. Meteor. 32, 948–632.0.CO;2>CrossRefGoogle Scholar
Toon, O. B. and Ackerman, T. P. (1981) Algorithms for the calculation of scattering by stratified spheres. Appl. Opt. 20, 3657–60CrossRefGoogle ScholarPubMed
Toon, O. B., Hamill, P., Turco, R. P., and Pinto, J. (1986) Condensation of HNO3 and HCl in the winter polar stratospheres. Geophys. Res. Lett. Nov. Supp. 13, 1284–7CrossRefGoogle Scholar
Toon, O. B., Turco, R. P., Westphal, D., Malone, R., and Liu, M. S. (1988) A multidimensional model for aerosols: Description of computational analogs. J. Atmos. Sci. 45, 2123–432.0.CO;2>CrossRefGoogle Scholar
Toon, O. B., McKay, C. P., and Ackerman, T. P. (1989a) Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res. 94, 16, 287–301CrossRefGoogle Scholar
Toon, O. B., Turco, R. P., Jordan, J., Goodman, J., and Ferry, G. (1989b) Physical processes in polar stratospheric ice clouds. J. Geophys. Res. 94, 11, 359–80CrossRefGoogle Scholar
Trautmann, T. and Wanner, C. (1999) A fast and efficient modified sectional method for simulating multicomponent collisional kinetics. Atmos. Environ. 33, 1631–40CrossRefGoogle Scholar
Tremback, C. J., Powell, J., Cotton, W. R., and Pielke, R. A. (1987) The forward-in-time upstream advection scheme: Extension to higher orders. Mon. Wea. Rev. 115, 540–552.0.CO;2>CrossRefGoogle Scholar
Troe, J. (1979) Predictive possibilities of unimolecular rate theory. J. Phys. Chem. 83, 114–26CrossRefGoogle Scholar
Tsang, T. H. and Brock, J. R. (1982) Aerosol coagulation in the plume from a cross-wind line source. Atmos. Environ. 16, 2229–35CrossRefGoogle Scholar
Tsang, T. H. and Brock, J. R. (1986) Simulation of condensation aerosol growth by condensation and evaporation. Aerosol Sci. Technol. 5, 385–8CrossRefGoogle Scholar
Tsang, T. H. and Huang, L. K. (1990) On a Petrov–Galerkin finite element method for evaporation of polydisperse aerosols. Aerosol Sci. Technol. 12, 578–97CrossRefGoogle Scholar
Tsang, T. H. and Korgaonkar, N. (1987) Effect of evaporation on the extinction coefficient of an aerosol cloud. Aerosol Sci. Technol. 7, 317–28CrossRefGoogle Scholar
Turco, R. P. and Whitten, R. C. (1974) A comparison of several computational techniques for solving some common aeronomic problems. J. Geophys. Res. 79, 3179–85CrossRefGoogle Scholar
Turco R. P., Hamill P., Toon O. B., Whitten R. C., and Kiang C. S. (1979) The NASA-Ames Research Center Stratospheric Aerosol Model: I. Physical Processes and Computational Analogs. NASA Technical Publication (TP) 1362, ⅲ–94
Turco, R. P., Toon, O. B., Whitten, R. C., Keesee, R. G., and Hollenbach, D. (1982) Noctilucent clouds: Simulation studies of their genesis, properties and global influence. Planet. Space Sci. 30, 1147–81CrossRefGoogle Scholar
Turco, R. P., Toon, O. B., and Hamill, P. (1989) Heterogeneous physiochemistry of the polar ozone hole. J. Geophys. Res. 94, 16, 493–510CrossRefGoogle Scholar
Twohy, C. H., Clarke, A. D., Warren, S. G., Radke, L. F., and Charlson, R. J. (1989) Light-absorbing material extracted from cloud droplets and its effect on cloud albedo. J. Geophys. Res. 94, 8623–31CrossRefGoogle Scholar
Tyndall, G. S. and Ravishankara, A. R. (1991) Atmospheric oxidation of reduced sulfur species. Int. J. Chem. Kinet. 23, 483–527CrossRefGoogle Scholar
Tzivion, S., Feingold, G., and Levin, Z. (1987) An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci. 44, 3139–492.0.CO;2>CrossRefGoogle Scholar
U.S. Department of the Army (1958) Universal Transverse Mercator Grid. Tables for Transformation of Coordinates from Grid to Geographic; Clarke 1866 Spheroid. U.S. Government Printing Office, Washington, DC
U.S. Environmental Protection Agency (USEPA) (1978) Air Quality Criteria for Ozone and Other Photochemical Oxidants. Report No. EPA-600/8-78-004
Vali, G. (1971) Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci. 28, 402–92.0.CO;2>CrossRefGoogle Scholar
Hulst, H. C. (1957) Light Scattering by Small Particles. New York, John Wiley and Sons, Inc.Google Scholar
Vanderzee, C. E., Waugh, D. H., and Haas, N. C. (1980) Enthalpies of dilution and relative apparent molar enthalpies of aqueous ammonium nitrate. The case of a weakly hydrolysed (dissociated) salt. J Chem. Thermodynam. 12, 21–5CrossRefGoogle Scholar
Dingenen, R. and Raes, F. (1993) Ternary nucleation of methane sulphonic acid, sulphuric acid and water vapour. J. Aerosol Sci. 24, 1–17CrossRefGoogle Scholar
Doren, J. M., Watson, L. R., Davidovits, P., Worsnop, D. R., Zahniser, S., and Kolb, C. E. (1990) Temperature dependence of the uptake coefficients of HNO3, HCl, and N2O5 by water droplets. J. Phys. Chem. 94, 3256–69Google Scholar
Genuchten, M. T. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Ann. Geophys. 3, 615–28Google Scholar
Weele, M. and Duynkerke, P. G. (1993) Effects of clouds on the photodissociation of NO2: Observation and modelling. J. Atmos. Chem. 16, 231–55CrossRefGoogle Scholar
Zandt, T. E. and Fritts, D. C. (1989) A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability. Pure Appl. Geophys. Pageoph. 130, 399–420Google Scholar
Varoglu, E. and Finn, W. D. L. (1980) Finite elements incorporating characteristics for one-dimensional diffusion-convection equation. J. Comp. Phys. 34, 371–89CrossRefGoogle Scholar
Vehkamaki, H., Kulmala, M., Napari, I., et al. (2002) An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions. J. Geophys. Res. 107 (D22), 4622, doi:10.1029/2002JD002184CrossRefGoogle Scholar
Venkataraman, C. and Friedlander, S. K. (1994) Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 2. Ambient measurements and effects of atmospheric processes. Environ. Sci. Technol. 28, 563–72CrossRefGoogle ScholarPubMed
Venkataraman, C., Lyons, J. M., and Friedlander, S. K. (1994) Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 1. Sampling, measurement methods, and source characterization. Environ. Sci. Technol. 28, 555–62CrossRefGoogle ScholarPubMed
Verwer, J. G. (1994) Gauss–Seidel iteration for stiff ODEs from chemical kinetics. SIAM J. Sci. Comput. 15, 1243–50CrossRefGoogle Scholar
Villars, D. S. (1959) A method of successive approximations for computing combustion equilibria on a high speed digital computer. J. Phys. Chem. 63, 521–5CrossRefGoogle Scholar
Visser, J. (1972) On Hamaker constants: A comparison between Hamaker constants and Lifshitz–van der Waals constants. Adv. Colloid Interface Sci. 3, 331–63CrossRefGoogle Scholar
Waggoner, A. P., Weiss, R. E., Ahlquist, N. C., Covert, D. S., Will, S., and Charlson, R. J. (1981) Optical characteristics of atmospheric aerosols. Atmos. Environ. 15, 1891–909CrossRefGoogle Scholar
Wagman, D. D., Evans, W. H., Parker, V. B., et al. (1982) The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11, Suppl. 2Google Scholar
Walcek, C. (2000) Minor flux adjustment near mixing ratio extremes for simplified yet highly accurate monotonic calculation of tracer advection. J. Geophys. Res. 105, 9335–48CrossRefGoogle Scholar
Walcek, C. and Aleksic, N. M. (1998) A simple but accurate mass conservative, peak-preserving, mixing ratio bounded advection algorithm with Fortran code. Atmos. Environ. 32, 3863–80CrossRefGoogle Scholar
Walcek, C. J., Brost, R. A., and Chang, J. S. (1986) SO2, sulfate and HNO3 deposition velocities computed using regional landuse and meteorological data. Atmos. Environ. 20, 949–64CrossRefGoogle Scholar
Walcek, C. J., Yuan, H.-H., and Stockwell, W. R. (1997) The influence of aqueous-phase chemical reactions on ozone formation in polluted and nonpolluted clouds. Atmos. Environ. 31, 1221–37CrossRefGoogle Scholar
Walmsley, J. L. and Wesely, M. L. (1996) Modification of coded parameterizations of surface resistances to gaseous dry deposition. Atmos. Environ. 30A, 1181–8CrossRefGoogle Scholar
Wang, C. and Prinn, R. G. (2000) On the roles of deep convective clouds in tropospheric chemistry. J. Geophys. Res. 105, 22, 269–97CrossRefGoogle Scholar
Wang, P. K., Grover, S. N., and Pruppacher, H. R. (1978) On the effect of electric charges on the scavenging of aerosol particles by clouds and small raindrops. J. Atmos. Sci. 35, 1735–432.0.CO;2>CrossRefGoogle Scholar
Wanninkhof, R. (1992) Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373–82CrossRefGoogle Scholar
Washington, W. M. and Parkinson, C. L. (1986) An Introduction to Three-Dimensional Climate Modeling. Mill Valley, CA, University Science BooksGoogle Scholar
Watson, R. T. (1977) Rate constants for reactions of ClOx of atmospheric interest. J. Phys. Chem. Ref. Data 6, 871–917CrossRefGoogle Scholar
Weeks, J. L. and Rabani, J. (1966) The pulse radiolysis of deaerated aqueous carbonate solutions. J. Phys. Chem. 70, 2100–6CrossRefGoogle Scholar
Weingartner, E., Burtscher, H., and Baltensperger, U. (1997) Hygroscopic properties of carbon and diesel soot particles. Atmos. Environ. 31, 2311–27CrossRefGoogle Scholar
Weisman, M. L., Skamarock, W. C., and Klemp, J. B. (1997) The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev. 125, 527–482.0.CO;2>CrossRefGoogle Scholar
Welch, R. M., Cox, S. K., and Davis, J. M. (1980) Solar Radiation and Clouds, Meteorological Monograph 17. American Meteorological SocietyCrossRefGoogle Scholar
Wengle, H. and Seinfeld, J. H. (1978) Pseudospectral solution of atmospheric diffusion problems. J. Comp. Phys. 26, 87–106CrossRefGoogle Scholar
Wentzel, M., Gorzawski, H., Naumann, K.-H., Saathoff, H., and Weinbruch, S. (2003) Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J. Aerosol Sci. 34, 1347–70CrossRefGoogle Scholar
Wesely, M. L. (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 23, 1293–304CrossRefGoogle Scholar
Wesely, M. L. and Hicks, B. B. (1977) Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation. J. Air Pollut. Control Ass. 27, 1110–6CrossRefGoogle Scholar
West, R., Crisp, D., and Chen, L. (1990). Mapping transformation for broadband atmospheric radiation calculations. J. Quant. Spectrosc. Radiat. Transfer 43, 191–9CrossRefGoogle Scholar
Wetzel, P. J. and Chang, J. (1987) Concerning the relationship between evapotranspiration and soil moisture. J. Climate Appl. Meteor. 26, 18–272.0.CO;2>CrossRefGoogle Scholar
Wexler, A. S. and Clegg, S. L. (2002) Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42−, NO3−, Cl−, Br−, and H2O. J. Geophys. Res. 107 (D14) 10.1029/2001JD000451CrossRefGoogle Scholar
Wexler, A. S. and Seinfeld, J. H. (1990) The distribution of ammonium salts among a size and composition dispersed aerosol. Atmos. Environ. 24A, 1231–46CrossRefGoogle Scholar
Wexler, A. S. and Seinfeld, J. H. (1991) Second-generation inorganic aerosol model. Atmos. Environ. 25A, 2731–48CrossRefGoogle Scholar
Whitby E. R. (1985) The Model Aerosol Dynamics Model. Part I. Report to the U.S. Environmental Protection Agency. Department of Mechanical Engineering, University of Minnesota, Minneapolis
Whitby, K. T. (1978) The physical characteristics of sulfur aerosols. Atmos. Environ. 12, 135–59CrossRefGoogle Scholar
White, M. (2000) Leonardo: The First Scientist. London, Abacus, 370ppGoogle Scholar
Whitten, G. Z., Hogo, H., and Killus, J. P. (1980) The carbon bond mechanism: A condensed kinetic mechanism for photochemical smog. Environ. Sci. Technol. 14, 690–700CrossRefGoogle ScholarPubMed
Wicker, L. J. and Skamarock, W. C. (1998) A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev. 126, 1992–92.0.CO;2>CrossRefGoogle Scholar
Wicker, L. J. and Skamarock, W. C. (2002) Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev. 130, 2088–972.0.CO;2>CrossRefGoogle Scholar
Wilke, C. R. and Chang, P. (1955) Correlation of diffusion coefficients in dilute solutions. Am. Inst. Chem. Eng. J. 1, 264–70CrossRefGoogle Scholar
Wine, P. H., Tang, Y., Thorn, R. P., Wells, J. R., and Davis, D. D. (1989) Kinetics of aqueous-phase reactions of the SO4− radical with potential importance in cloud chemistry. J. Geophys. Res. 94, 1085–94CrossRefGoogle Scholar
Wiscombe, W. (1977) The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci. 34, 1408–222.0.CO;2>CrossRefGoogle Scholar
Wolf, M. E. and Hidy, G. M. (1997) Aerosols and climate: Anthropogenic emissions and trends for 50 years. J. Geophys. Res. 102, 11, 113–21CrossRefGoogle Scholar
Woodcock, A. H. (1953) Salt nuclei in marine air as a function of altitude and wind force. J. Meteorol. 10, 362–712.0.CO;2>CrossRefGoogle Scholar
Woods, T. N., Prinz, D. K., Rottman, G. J., et al. (1996) Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements. J. Geophys. Res. 101, 9541–69CrossRefGoogle Scholar
World Meteorological Organization (WMO) (1975) Manual on the Observation of Clouds and Other Meteors. World Meteorological Organization, Geneva
World Meteorological Organization (WMO) (1995) Scientific Assessment of Ozone Depletion: 1994. Report 25, Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva
World Meteorological Organization (WMO) (1998) Scientific Assessment of Ozone Depletion: 1998. Report 44, WMO Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva
Worsnop, D. R., Fox, L. E., Zahniser, M. S., and Wofsy, S. C. (1993). Vapor pressures of solid hydrates of nitric acid: Implications for polar stratospheric clouds. Science 259, 71–4CrossRefGoogle ScholarPubMed
Wu, J. (1993) Production of spume drops by the wind tearing of wave crests: The search for quantification. J. Geophys. Res. 98, 18, 221–7CrossRefGoogle Scholar
Wu, Y.-C. and Hamer, W. J. (1980) Revised values of the osmotic coefficients and mean activity coefficients of sodium nitrate in water at 25 °C. J. Phys. Chem. Ref. Data 9, 513–8CrossRefGoogle Scholar
Xiong, C. and Friedlander, S. K. (2001) Morphological properties of atmospheric aerosol aggregates. Proc. Natl. Acad. Sci. 9, 11, 851–6Google Scholar
Yabe, T., Tanaka, R., Nakamura, T., and Xiao, F. (2001) An exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension. Mon. Wea. Rev. 129, 332–442.0.CO;2>CrossRefGoogle Scholar
Yamamoto, G., Tanaka, M., and Asano, S. (1970) Radiative transfer in water clouds in the infrared region. J. Atmos. Sci. 27, 282–922.0.CO;2>CrossRefGoogle Scholar
Yamartino, R. J. (1993) Nonnegative conserved scalar transport using grid-cell-centered spectrally constrained Blackman cubics for applications on a variable-thickness mesh. Mon. Wea. Rev. 121, 753–632.0.CO;2>CrossRefGoogle Scholar
Yanenko, N. A. (1971) The Method of Fractional Steps. Berlin, Springer-Verlag, 160ppCrossRefGoogle Scholar
Yin, F., Grosjean, D., and Seinfeld, J. H. (1990) Photooxidation of dimethyl sulfide and dimethyl disulfide. I: Mechanism development. J. Atmos. Chem. 11, 309–64CrossRefGoogle Scholar
Young, A. T. (1980) Revised depolarization corrections for atmospheric extinction. Appl. Opt. 19, 3427–8CrossRefGoogle ScholarPubMed
Young, T. R. and Boris, J. P. (1977) A numerical technique for solving stiff ordinary differential equations associated with the chemical kinetics of reactive-flow problems. J. Phys. Chem. 81, 2424–7CrossRefGoogle Scholar
Zawadski, I., Torlaschi, E., and Sauvageau, R. (1981) The relationship between mesoscale thermodynamic variables and convective precipitation. J. Atmos. Sci. 38, 1535–402.0.CO;2>CrossRefGoogle Scholar
Zaytsev, I. D. and Aseyev, G. G., eds. (1992) Properties of Aqueous Solutions of Electrolytes (translated by M. A. Lazarev and V. R. Sorochenko). Boca Raton, FL, CRC PressGoogle Scholar
Zeldovich, Y. B. (1942) Theory of new-phase formation: cavitation. J. Exp. Theor. Phys. (USSR) 12, 525–38Google Scholar
Zhang, D. and Anthes, R. A. (1982) A high-resolution model of the planetary boundary layer – sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor. 21, 1594–6092.0.CO;2>CrossRefGoogle Scholar
Zhang, Y., Bischof, C. H., Easter, R. C., and Wu, P.-T. (1998) Sensitivity analysis of multi-phase chemical mechanism using automatic differentiation. J. Geophys. Res. 103, 18, 953–79CrossRefGoogle Scholar
Zhang, Y., Seigneur, C., Seinfeld, J. H., Jacobson, M. Z., and Binkowski, F. (1999) Simulation of aerosol dynamics: A comparative review of algorithms used in air quality models. Aerosol Sci. Technol. 31, 487–514CrossRefGoogle Scholar
Zhang, Y., Seigneur, C., Seinfeld, J. H., Jacobson, M., Clegg, S. L., and Binkowski, F. (2000) A comparative review of inorganic aerosol thermodynamic equilibrium modules: Similarities, differences, and their likely causes. Atmos. Environ. 34, 117–37CrossRefGoogle Scholar
Zhang, Y., Pun., B., Wu, S.-Y., et al. (2004) Development and application of the model for aerosol dynamics, reaction, ionization and dissolution (MADRID). J. Geophys. Res. 109, D01202, doi: 10.1029/2003JD 003501CrossRefGoogle Scholar
Zhao, J. and Turco, R. P. (1995) Nucleation simulations in the wake of a jet aircraft in stratospheric flight. J. Aerosol Sci. 26, 779–95CrossRefGoogle Scholar
Abdella, K. and McFarlane, N. (1997) A new second-order turbulence closure scheme for the planetary boundary layer. J. Atmos. Sci. 54, 1850–672.0.CO;2>CrossRefGoogle Scholar
ACEA (1999) ACEA Programme on Emissions of Fine Particles from Passenger Cars. Brussels, ACEA
Adamson, A. W. (1990) Physical Chemistry of Surfaces, 5th edn. New York, John Wiley and Sons, Inc.Google Scholar
Alam, M. K. (1987) The effect of van der Waals and viscous forces on aerosol coagulation. Aerosol Sci. Technol. 6, 41–52CrossRefGoogle Scholar
Alfaro, S. C. and Gomes, L. (2001) Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J. Geophys. Res. 106, 18075–84CrossRefGoogle Scholar
Allen P. and Wagner K. (1992) 1987 California Air Resources Board emissions inventory, magnetic tapes ARA806, ARA807
Al Nakshabandi, G. and Konhke, H. (1965) Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties. Agric. Meteor. 2, 271–9CrossRefGoogle Scholar
Ambartzumiam, V. (1936) The effect of the absorption lines on the radiative equilibrium of the outer layers of the stars. Publ. Obs. Astron. Univ. Leningrad 6, 7–18Google Scholar
Anandakumar, K. (1999) A study of the partition of net radiation into heat fluxes on a dry asphalt surface. Atmos. Environ. 33, 3911–18CrossRefGoogle Scholar
Anbar, M. and Neta, P. (1967) A compilation of specific bimolecular rate constants for the reactions of hydrated electrons, hydrogen atoms, and hydroxyl radicals with inorganic and organic compounds in aqueous solution. Int. J. Appl. Radiat. Isot. 18, 493–523CrossRefGoogle Scholar
Andre, J. C., Moor, G., Lacarrere, P., and Du Vachat, R. (1978) Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer. J. Atmos. Sci. 35, 1861–832.0.CO;2>CrossRefGoogle Scholar
Andreae, M. O. and Merlet, P. (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955–66CrossRefGoogle Scholar
Andreas, E. L. (1992) Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res. 97, 11, 429–41CrossRefGoogle Scholar
Andrén, A. (1990) Evaluation of a turbulence closure scheme suitable for air pollution applications. J. Appl. Math. Phys. 29, 224–39Google Scholar
Andres, R. J. and Kasgnoc, A. D. (1998) A time-averaged inventory of subaerial volcanic sulfur emissions. J. Geophys. Res. 103, 25251–61CrossRefGoogle Scholar
Angell, C. A., Guni, M. O., and Sichina, W. J. (1982) Heat capacity of water at extremes of supercooling and superheating. J. Phys. Chem. 86, 998–1002CrossRefGoogle Scholar
Anthes, R. A. (1977) A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev. 105, 270–862.0.CO;2>CrossRefGoogle Scholar
Anthes, A., Kuo, Y.-H., Hsie, E.-Y., Low-Nam, S., and Bettge, T. W. (1989) Estimation of skill and uncertainty in regional numerical models. Q. J. Roy. Meteor. Soc. 115, 763–806CrossRefGoogle Scholar
Apsley, D. D. and Castro, I. P. (1997) A limited-length-scale k-ε model for the neutral and stably-stratified atmospheric boundary layer. Boundary-Layer Meteor. 83, 75–98CrossRefGoogle Scholar
Arakawa, A. (1984) Boundary conditions in limited-area models. Course notes, Department of Atmospheric Sciences, University of California, Los AngelesGoogle Scholar
Arakawa, A. (1997) Adjustment mechanisms in atmospheric models. J. Meteor. Soc. Japan 75, 155–79CrossRefGoogle Scholar
Arakawa, A. and Konor, C. S. (1995) Vertical differencing of the primitive equations based on the Charney–Phillips grid in hybrid σ–p vertical coordinates. Mon. Wea. Rev. 124, 511–282.0.CO;2>CrossRefGoogle Scholar
Arakawa, A. and Lamb, V. R. (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys. 17, 174–265Google Scholar
Arakawa, A. and Schubert, W. H. (1974) Interaction of a cumulus cloud ensemble with large scale environment, Part I. J. Atmos. Sci. 31, 674–7012.0.CO;2>CrossRefGoogle Scholar
Arakawa, A. and Suarez., M. J. (1983) Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev. 111, 34–452.0.CO;2>CrossRefGoogle Scholar
Archer, C. L. and Jacobson, M. Z. (2003) Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. J. Geophys. Res. 108 (D9), 4289, doi:10.1029/2002JD002076CrossRefGoogle Scholar
Arking, A. A. and Grossman, K. (1972) The influence of line shape and band structure on temperatures in planetary atmospheres. J. Atmos. Sci. 29, 937–492.0.CO;2>CrossRefGoogle Scholar
Arstila, H., Korhonen, P., and Kulmala, M. (1999) Ternary nucleation: Kinetics and application to water–ammonia–hydrochloric acid system. J. Aerosol Sci. 30, 131–8CrossRefGoogle Scholar
Artelt, C., Schmid, H.-J., and Peukert, W. (2003) On the relevance of accounting for the evolution of the fractal dimension in aerosol process simulations. J. Aerosol Sci. 34, 511–34CrossRefGoogle Scholar
Arya, S. P. (1988) Introduction to Micrometeorology. San Diego, Academic Press, 307ppGoogle Scholar
Asphalt Roofing Manufacturers Association (ARMA) (1999) Roofing Basics, http://www. asphaltroofing.org/basics.html
Atkinson, R., Lloyd, A. C., and Winges, L. (1982) An updated chemical mechanism for hydrocarbon/NOx/SO2 photooxidations suitable for inclusion in atmospheric simulation models. Atmos. Environ. 16, 1341–55CrossRefGoogle Scholar
Atkinson, R., Baulch, D. L., Cox, R. A., et al. (1997) Evaluated kinetic, photochemical, and heterogeneous data for atmospheric chemistry. Supplement V. J. Phys. Chem. Ref. Data 26, 521–1011CrossRefGoogle Scholar
Austin, J. (1991) On the explicit versus family solution of the fully diurnal photochemical equations of the stratosphere. J. Geophys. Res. 96, 12, 941–74CrossRefGoogle Scholar
Avissar, R. and Mahrer, Y. (1988) Mapping frost-sensitive areas with a three-dimensional local-scale numerical model. Part I: Physical and numerical aspects. J. Appl. Meteor. 27, 400–132.0.CO;2>CrossRefGoogle Scholar
Bader, G. and Deuflhard, P. (1983) A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numer. Math. 41, 373–98CrossRefGoogle Scholar
Bagnold, R. A. (1941) The Physics of Blown Sand and Desert Dunes. New York, Methuen, 265ppGoogle Scholar
Baldocchi, D. D., Hicks, B. B., and Camara, P. (1987) A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos. Environ. 21, 91–101CrossRefGoogle Scholar
Bannon, P. R. (1966) On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci. 53, 3618–282.0.CO;2>CrossRefGoogle Scholar
Bassett, M. E. and Seinfeld, J. H. (1983) Atmospheric equilibrium model of sulfate and nitrate aerosol. Atmos. Environ. 17, 2237–52CrossRefGoogle Scholar
Bassett, M. E. and Seinfeld, J. H. (1984) Atmospheric equilibrium model of sulfate and nitrate aerosol-II. Particle size analysis. Atmos. Environ. 18, 1163–70CrossRefGoogle Scholar
Bates, T. S., Kiene, R. P., Wolfe, G. V., et al. (1994) The cycling of sulfur in surface seawater of the Northeast Pacific. J. Geophys. Res. 99, 7835–43CrossRefGoogle Scholar
Beard, K. V. (1976) Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci. 33, 851–642.0.CO;2>CrossRefGoogle Scholar
Beard, K. V. and Grover, S. N. (1974) Numerical collision efficiencies for small raindrops colliding with micron size particles. J. Atmos. Sci. 31, 543–502.0.CO;2>CrossRefGoogle Scholar
Beard, K. V. and Ochs, H. T. III (1984) Collection and coalescence efficiencies for accretion. J. Geophys. Res. 89, 7165–9CrossRefGoogle Scholar
Beard, K. V. and Pruppacher, H. R. (1971) A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci. 28, 1455–642.0.CO;2>CrossRefGoogle Scholar
Behar, D., Czapski, G., and Duchovny, I. (1970) Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions. J. Phys. Chem. 74, 2206–10CrossRefGoogle Scholar
Bermejo, R. and Conde, J. (2002) A conservative quasi-monotone semi-Lagrangian scheme. Mon. Wea. Rev. 130, 423–302.0.CO;2>CrossRefGoogle Scholar
Berresheim H., Wine P. H., and Davis D. D. (1995) Sulfur in the atmosphere. In Composition, Chemistry, and Climate of the Atmosphere. Singh, H. B., ed., New York, Van Nostrand Reinhold, 251–307Google Scholar
Betterton, E. A. and Hoffmann, M. R. (1988) Henry's law constants of some environmentally important aldehydes. Environ. Sci. Technol. 22, 1415–18CrossRefGoogle ScholarPubMed
Betts, A. K. (1986) A new convective adjustment scheme. Part I: Observational and theoretical basis. Q. J. Roy. Meteor. Soc. 112, 677–91Google Scholar
Betts, A. K. and Miller, M. J. (1986) A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX, and arctic air-mass data sets. Q. J. Roy. Meteor. Soc. 112, 693–709Google Scholar
Bhumralkar, C. M. (1975) Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J. Appl. Meteor. 14, 67–1002.0.CO;2>CrossRefGoogle Scholar
Bielski, B. H. J. (1978) Reevaluation of the spectral and kinetic properties of HO2 and O2− free radicals. Photochem. Photobiol. 28, 645–9CrossRefGoogle Scholar
Bigg, E. K. (1953) The formation of atmospheric ice crystals by the freezing of droplets. Q. J. Roy. Meteor. Soc. 79, 510–19CrossRefGoogle Scholar
Binkowski, F. S. and Roselle, S. J. (2003) Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. J. Geophys. Res. 108 (D6), 4183, doi:10.1029/2001JD001409CrossRefGoogle Scholar
Binkowski, F. S. and Shankar, U. (1995) The regional particulate matter model 1. Model description and preliminary results. J. Geophys. Res. 100, 26191–209CrossRefGoogle Scholar
Blackadar A. K. (1976) Modeling the nocturnal boundary layer. Proceedings of the Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality, Boston, American Meteorological Society, 46–9
Blackadar A. K. (1978) Modeling pollutant transfer during daytime convection. Proceedings of the Fourth Symposium on Atmospheric Turbulence, Diffusion, and Air Quality, Reno, American Meteorological Society, 443–7
Blumthaler, M. and Ambach, W. (1988) Solar UVB-albedo of various surfaces. Photochem. Photobiol. 48, 85–8CrossRefGoogle ScholarPubMed
Boccippio, D. J., CumminsK. L., Christian H. J. K. L., Christian H. J., and Goodman, S. J. (2001) Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev. 129, 108–222.0.CO;2>CrossRefGoogle Scholar
Bohren, C. F. (1986) Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmos. Sci. 43, 468–752.0.CO;2>CrossRefGoogle Scholar
Bohren C. F. and Huffman D. R. (1983) Absorption and Scattering of Light by Small Particles. New York, John Wiley and Sons, 530pp
Bojkov, R. D. and Fioletov, V. E. (1995) Estimating the global ozone characteristics during the last 30 years. J. Geophys. Res. 100, 16, 537–51CrossRefGoogle Scholar
Bolsaitis, P. and Elliott, J. F. (1990) Thermodynamic activities and equilibrium partial pressures for aqueous sulfuric acid solutions. J. Chem. Eng. Data 35, 69–85CrossRefGoogle Scholar
Bolton, D. (1980) The computation of equivalent potential temperature. Mon. Wea. Rev. 108, 1046–532.0.CO;2>CrossRefGoogle Scholar
Bond, D. W., Steiger, S., Zhang, R., Tie, X., and Orville, R. E. (2002) The importance of NOx production by lightning in the tropics. Atmos. Environ. 36, 1509–19CrossRefGoogle Scholar
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and Klimont, Z. (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 109, (D1) 4203, doi: 10.1029/2003JD003697CrossRefGoogle Scholar
Bonsang, B., Martin, D., Lambert, G., Kanakidou, M., Roulley, J. C., and Sennequier, G. (1991) Vertical distribution of nonmethane hydrocarbons in the remote marine boundary layer. J. Geophys. Res. 96, 7313–24CrossRefGoogle Scholar
Bothe, E. and Schulte-Frohlinde, D. (1980) Reaction of dihydroxymethyl radical with molecular oxygen in aqueous solution. Z. Naturforsch. B, Anorg. Chem. Org. Chem. 35, 1035–9Google Scholar
Bott, A. (1989) A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev. 117, 1006–152.0.CO;2>CrossRefGoogle Scholar
Bott, A. (2000) A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci. 57, 284–942.0.CO;2>CrossRefGoogle Scholar
Bott, A. and Carmichael, G. R. (1993) Multiphase chemistry in a microphysical radiation fog model – a numerical study. Atmos. Environ. 27A, 503–22CrossRefGoogle Scholar
Boubel, R. W., Fox, D. L., Turner, D. B., and Stern, A. C. S. (1994) Fundamentals of Air Pollution. San Diego, Academic Press, Inc.Google Scholar
Boyce, S. D. and Hoffmann, M. R. (1984) Kinetics and mechanism of the formation of hydroxymethanesulfonic acid at low pH. J. Phys. Chem. 88, 4740–6CrossRefGoogle Scholar
Brewer, P. G. (1997) Ocean chemistry of the fossil fuel CO2 signal: The haline signal of “business as usual.”Geophys. Res. Lett. 24, 1367–9CrossRefGoogle Scholar
Briere, S. (1987) Energetics of daytime sea breeze circulation as determined from a two-dimensional and third-order closure mode. J. Atmos. Sci. 44, 1455–742.0.CO;2>CrossRefGoogle Scholar
Brock, J. R., Zehavi, D., and Kuhn, P. (1986) Condensation aerosol formations and growth in a laminar coaxial jet: Experimental. J. Aerosol Sci. 17, 11–22CrossRefGoogle Scholar
Bromley, L. A. (1973) Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313–20CrossRefGoogle Scholar
Brownawell M. (2004) http://isa.dknet.dk/~innova/gemarkus.htm
Bruggeman, D. A. G. (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. (Leipzig) 24, 639–79Google Scholar
Brutsaert, W. (1991) Evaporation in the Atmosphere. Dordrecht, Kluwer Academic Publishers, 299ppGoogle Scholar
Burtscher, H. and Schmidt-Ott, A. (1982) Enormous enhancement of van der Waals forces between small silver particles. Phys. Rev. Lett. 48, 1734–7CrossRefGoogle Scholar
Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F. (1971) Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181–92.0.CO;2>CrossRefGoogle Scholar
Butler, J. N. (1982) Carbon Dioxide Equilibria and Their Applications. Reading MA, Addison-Wesley Publishing Co., 259ppGoogle Scholar
Calder, K. L. (1949) Eddy diffusion and evaporation in flow over aerodynamically smooth and rough surfaces: A treatment based on laboratory laws of turbulent flow with special reference to conditions in the lower atmosphere. Q.J. Mech. Appl. Math. 2, 153–76CrossRefGoogle Scholar
Caldeira, K. and Wickett, M. E. (2003) Anthropogenic carbon and ocean pH. Nature 425, 265CrossRefGoogle ScholarPubMed
California Air Resources Board (CARB) (1988) Method Used to Develop a Size-Segregated Particulate Matter Inventory.Technical Support Division, Emission Inventory Branch, California Air Resources Board, Sacramento, CA
Campbell, F. W. and Maffel, L. (1974) Contrast and spatial frequency. Sci. Am. 231, 106–14CrossRefGoogle ScholarPubMed
Capaldo, K. P., Pilinis, C., and Pandis, S. N. (2000) A computationally efficient hybrid approach for dynamic gas/aerosol transfer in air quality models. Atmos. Environ. 34, 3617–27CrossRefGoogle Scholar
Carmichael, G. R., Peters, L. K., and Kitada, T. (1986) A second generation model for regional-scale transport/chemistry/deposition. Atmos. Environ. 20, 173–88CrossRefGoogle Scholar
Carpenter, R. L., Droegemeier, K. K., Woodward, P. R., and Hane, C. E. (1990) Application of the piecewise parabolic method (PPM) to meteorological modeling. Mon. Wea. Rev. 118, 586–6122.0.CO;2>CrossRefGoogle Scholar
Carter, W. P. L. (1990) A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmos. Environ. 24A, 481–518CrossRefGoogle Scholar
Carter, W. P. L. (1991) Development of Ozone Reactivity Scales for Volatile Organic Compounds. EPA-600/3-91-050. U.S. Environmental Protection Agency, Research Triangle Park, NCGoogle Scholar
Carter, W. P. L. (2000) Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment. Final Report to the California Air Resources Board Under Contracts 92–329 and 95–308, California Air Resources Board, Sacramento, CA.Google Scholar
Cass, G. R. (1979) On the relationship between sulfate air quality and visibility with examples in Los Angeles. Atmos. Environ. 13, 1069–84CrossRefGoogle Scholar
Castro, T., Madronich, S., Rivale, S., Muhlia, A., and Mar, B. (2001) The influence of aerosols on photochemical smog in Mexico City. Atmos. Environ. 35, 1765–72CrossRefGoogle Scholar
Celia, M. A. and Gray, W. G. (1992) Numerical Methods for Differential Equations. Englewood Cliffs, Prentice-HallGoogle Scholar
Chameides, W. L. (1984) The photochemistry of a remote marine stratiform cloud. J. Geophys. Res. 89, 4739–55CrossRefGoogle Scholar
Chameides, W. L. and Stelson, A. W. (1992) Aqueous-phase chemical processes in deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt. J. Geophys. Res. 97, 20, 565–80CrossRefGoogle Scholar
Chang, E., Nolan, K., Said, M., Chico, T., Chan, S., and Pang, E. (1991) 1987 Emissions Inventory for the South Coast Air Basin: Average Annual Day.South Coast Air Quality Management District (SCAQMD), Los AngelesGoogle Scholar
Chang, S., Brodzinsky G. R., Gundel L. A., and Novakov T. (1982) Chemical and catalytic properties of elemental carbon. In Particulate Carbon: Atmospheric Life Cycle, Wolff, G. T. and Klimsch, R. L., eds., New York, Plenum Press, 158–81CrossRefGoogle Scholar
Chang, W., Heikes, B. G., and Lee, M. (2004) Ozone deposition to the sea surface: chemical enhancement and wind speed dependence. Atmos. Environ. 38, 1053–9CrossRefGoogle Scholar
Chapman, S. (1930) A theory of upper-atmospheric ozone. Mem. Roy. Meteor. Soc. 3, 104–25Google Scholar
Chapman, S. and Cowling, T. G. (1970) The Mathematical Theory of Nonuniform Gases. Cambridge, Cambridge University PressGoogle Scholar
Charney, J. G. (1949) On a physical basis for numerical prediction of large-scale motions in the atmosphere. J. Meteor. 6, 371–852.0.CO;2>CrossRefGoogle Scholar
Charney J. G. (1951) Dynamical forecasting by numerical process. In Compendium of Meteorology, Malone, T. F., ed., Boston, American Meteorological Society, 470–82Google Scholar
Charney, J. G. and Phillips, N. A. (1953) Numerical integration of the quasigeostrophic equations for barotropic and simple baroclinic flows. J. Meteor. 10, 71–992.0.CO;2>CrossRefGoogle Scholar
Charnock, H. (1955) Wind stress on a water surface. Q. J. Roy. Meteor. Soc. 81, 639–40CrossRefGoogle Scholar
Chatfield, R. B., Gardner, E. P., and Calvert, J. G. (1987) Sources and sinks of acetone in the troposphere: Behavior of reactive hydrocarbons and a stable product. J. Geophys. Res. 92, 4208–16CrossRefGoogle Scholar
Chen, C. (1991) A nested grid, nonhydrostatic, elastic model using a terrain-following coordinate transformation: The radiative-nesting boundary conditions. Mon. Wea. Rev. 119, 2852–692.0.CO;2>CrossRefGoogle Scholar
Chen, S., Cope, V. W., and Hoffman, M. Z. (1973) Behavior of CO3− radicals generated in the flash photolysis of carbonatoamines complexes of cobalt(III) in aqueous solution. J. Phys. Chem. 77, 1111–6CrossRefGoogle Scholar
Cheng, M.-D. and Arakawa, A. (1997) Inclusion of rainwater budget and convective downdrafts in the Arakawa-Schubert cumulus parameterization. J. Atmos. Sci. 54, 1359–782.0.CO;2>CrossRefGoogle Scholar
Cheng, Y., Canuto, V. M., and Howard, A. M. (2002) An improved model for the turbulent PBL. J. Atmos. Sci. 59, 1550–652.0.CO;2>CrossRefGoogle Scholar
Chock, D. P. (1991) A comparison of numerical methods for solving the advection equation – III. Atmos. Environ. 25A, 853–71CrossRefGoogle Scholar
Chock, D. P. and Winkler, S. L. (1994) A comparison of advection algorithms coupled with chemistry. Atmos. Environ. 28, 2659–75CrossRefGoogle Scholar
Chock, D. P. and Winkler, S. L. (2000) A trajectory-grid approach for solving the condensation and evaporation equations of aerosols. Atmos. Environ. 34, 2957–73CrossRefGoogle Scholar
Chock, D. P., Sun, P., and Winkler, S. L. (1996) Trajectory-grid: An accurate sign-preserving advection–diffusion approach for air quality modeling. Atmos. Environ. 30, 857–68CrossRefGoogle Scholar
Christensen, H., Sehested, K., and Corfitzen, H. (1982) Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. J. Phys. Chem. 86, 1588–90CrossRefGoogle Scholar
Chylek, P. (1977) A note on extinction and scattering efficiencies. J. Appl. Meteor. 16, 321–22.0.CO;2>CrossRefGoogle Scholar
Chylek, P., Srivastava, V., Pinnick, R. G., and Wang, R. T. (1988) Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations. Appl. Opt. 27, 2396–404CrossRefGoogle Scholar
Chylek, P., Videen, G., Ngo, D., Pinnick, R. G., and Klett, J. D. (1995) Effect of black carbon on the optical properties and climate forcing of sulfate aerosols. J. Geophys. Res. 100, 16,325–32CrossRefGoogle Scholar
Clapp, R. B. and Hornberger, G. M. (1978) Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601–4CrossRefGoogle Scholar
Cleaver, B., Rhodes, E., and Ubbelohde, A. R. (1963) Studies of phase transformations in nitrates and nitrites I. Changes in ultra-violet absorption spectra on melting. Proc. Roy. Soc. London 276, 437–53CrossRefGoogle Scholar
Clegg, S. L. and Brimblecombe, P. (1995) Application of a multicomponent thermodynamic model to activities and thermal properties of 0–40 mol kg−1 aqueous sulphuric acid from < 200 K to 328 K. J. Chem. Eng. Data 40, 43–64CrossRefGoogle Scholar
Clegg, S. L. and Seinfeld, J. H. (2004) Improvement of the Zdanovskii–Stokes–Robinson model for mixtures containing solutes of different charge types. J. Phys. Chem. 108, 1008–17CrossRefGoogle Scholar
Clegg, S. L., Brimblecombe, P., Liang, Z., and Chan, C. K. (1997) Thermodynamic properties of aqueous aerosols to high supersaturation: II – A model of the system Na+–Cl−–NO3−–SO42−–H2O at 298.15 K. Aerosol. Sci. Technol. 27, 345–66CrossRefGoogle Scholar
Clegg, S. L., Seinfeld, J. H., and Edney, E. O. (2003) Thermodynamic modeling of aqueous aerosols containing electrolytes and dissolved organic compounds. II. An extended Zdanovskii–Stokes–Robinson approach. J. Aerosol Sci. 34, 667–90CrossRefGoogle Scholar
Clyne, M. A. A., Monkhouse, P. B., and Townsend, L. W. (1976) Reactions of O(3P) atoms with halogens: The rate constants for the elementary reactions O(3P) + BrCl, O(3P) + Br2 and O(3P) + Cl2. Int. J. Chem. Kinet. 8, 425–49CrossRefGoogle Scholar
Coffman, D. J. and Hegg, D. A. (1995) A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer. J. Geophys. Res. 100, 7147–60CrossRefGoogle Scholar
Cohen, M. D., Flagan, R. C., and Seinfeld, J. H. (1987a) Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions. J. Phys. Chem. 91, 4563–74CrossRefGoogle Scholar
Cohen, M. D., Flagan, R. C., and Seinfeld, J. H. (1987b) Studies of concentrated electrolyte solutions using the electrodynamic balance. 2. Water activities for mixed-electrolyte solutions. J. Phys. Chem. 91, 4575–82CrossRefGoogle Scholar
Coleman, G. N. (1999) Similarity statistics from a direct numerical simulation of the neutrally stratified planetary boundary layer. J. Atmos. Sci. 56, 891–92.0.CO;2>CrossRefGoogle Scholar
Collela, P. and Woodward, P. R. (1984) The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comp. Phys. 54, 174–201CrossRefGoogle Scholar
Comes, F. J., Forberich, O., and Walter, J. (1997) OH field measurements: A critical input into model calculations on atmospheric chemistry. J. Atmos. Sci. 54, 1886–942.0.CO;2>CrossRefGoogle Scholar
Conklin, M. H. and Hoffmann, M. R. (1988) Metal ion-S(IV) chemistry III. Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes. Environ. Sci. Technol. 22, 891–8CrossRefGoogle Scholar
Cooke, W. F. and Wilson, J. J. N. (1996) A global black carbon aerosol model. J. Geophys. Res. 101, 19, 395–409CrossRefGoogle Scholar
Cooke, W. F., Liousse, C., Cachier, H., and Feichter, J. (1999) Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res. 104, 22, 137–62CrossRefGoogle Scholar
Cotton, W. R. and Anthes, R. A. (1989) Storm and Cloud Dynamics. San Diego, Academic Press, Inc.Google Scholar
Courant, R., Friedrichs, K., and Lewy, H. (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74CrossRefGoogle Scholar
Crank, J. (1975) The Mathematics of Diffusion, 2nd edn. Oxford, Clarendon PressGoogle Scholar
Crank, J. and Nicolson, P. (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Camb. Philos. Soc. 43, 50–67CrossRefGoogle Scholar
Crutzen, P. J. (1971) Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere. J. Geophys. Res. 76, 7311–27CrossRefGoogle Scholar
Cuenca, R. H., Ek, M., and Mahrt, L. (1996) Impact of soil water property parameterization on atmospheric boundary layer simulation. J. Geophys. Res. 101, 7269–77CrossRefGoogle Scholar
Cunningham, E. (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc. Roy. Soc. London A83, 357–65CrossRefGoogle Scholar
Curtiss, C. F. and Hirschfelder, J. O. (1952) Integration of stiff equations. Proc. Nat. Acad. Sci. USA 38, 235–43CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Ackerman, T. P., and Helmle, L. C. (1982) The delta-four-stream approximation for radiative transfer. J. Atmos. Sci. 39, 917–252.0.CO;2>CrossRefGoogle Scholar
Dabdub, D. and Seinfeld, J. H. (1994) Numerical advective schemes used in air quality models – sequential and parallel implementation. Atmos. Environ. 28, 3369–85CrossRefGoogle Scholar
Dabdub, D. and Seinfeld, J. H. (1995) Extrapolation techniques used in the solution of stiff ODEs associated with chemical kinetics of air quality models. Atmos. Environ. 29, 403–10CrossRefGoogle Scholar
Danielsen, E. F., Bleck, R., and Morris, D. A. (1972) Hail growth by stochastic collection in a cumulus model. J. Atmos. Sci. 29, 135–552.0.CO;2>CrossRefGoogle Scholar
Davies, H. C. (1976) A lateral boundary formulation for multi-level prediction models. Q. J. Roy. Meteor. Soc. 102, 405–18Google Scholar
Davis, E. J. (1983) Transport phenomena with single aerosol particles. Aerosol Sci. Technol. 2, 121–44CrossRefGoogle Scholar
Dean, J. A. (1992) Lange's Handbook of Chemistry. New York, McGraw-Hill, Inc.Google Scholar
Deardorff, J. W. (1972) Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci. 29, 91–1152.0.CO;2>CrossRefGoogle Scholar
Deardorff, J. W. (1977) A parameterization of ground surface moisture content for use in atmospheric prediction models. J. Appl. Meteor. 16, 1182–52.0.CO;2>CrossRefGoogle Scholar
Deardorff, J. W. (1978) Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res. 83, 1889–903CrossRefGoogle Scholar
Arellano, J. V., Duynkerke, P., and Weele, M. (1994) Tethered-balloon measurements of actinic flux in a cloud-capped marine boundary layer. J. Geophys. Res. 99, 3699–705CrossRefGoogle Scholar
Leeuw, G., Neele, F. P., Hill, M., Smith, M. H., and Vignati, E. (2000) Production of sea spray aerosol in the surf zone. J. Geophys. Res. 105, 29397–409CrossRefGoogle Scholar
Deirmendjian, D. (1969) Electromagnetic Scattering on Spherical Polydispersions. New York, ElsevierGoogle Scholar
DeMore, W. B., Sanders, S. P., Golden, D. M., et al. (1997) Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation number 12, JPL Publ. 97–4, Jet Propulsion Laboratory, Pasadena, CAGoogle Scholar
Dickerson, R. R., Kondragunta, S., Stenchikov, G., Civerolo, K. L., Doddridge, B. G., and Holben, B. N. (1997) The impact of aerosols on solar UV radiation and photochemical smog. Science 278, 827–30CrossRefGoogle ScholarPubMed
Dickinson R. E. (1984) Modeling evapotranspiration for three-dimensional global climate models. In Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., Vol. 29, J. E. Hanson and T. Takahashi, eds., Washington, DC, American Geophysical Union, 58–72
Ding, P. and Randall, D. A. (1998) A cumulus parameterization with multiple cloud-base levels. J. Geophys. Res. 103, 11,341–53CrossRefGoogle Scholar
Donea, J. (1984) A Taylor–Galerkin method for convective transport problems. Int. J. Numer. Methods Engng. 20, 101–19CrossRefGoogle Scholar
Dorsch, R. G. and Hacker, P. (1951) Experimental Values of Surface Tension of Supercooled Water.National Advisory Committee for Aeronautics (NACA), Tech. Note 2510Google Scholar
Duce, R. A. (1969) On the source of gaseous chlorine in the marine atmosphere. J. Geophys. Res. 70, 1775–9CrossRefGoogle Scholar
Dudhia, J. (1993) A nonhydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev. 121, 1493–5132.0.CO;2>CrossRefGoogle Scholar
Durran, D. R. (1999) Numerical Methods for Wave Equations in Geophysical Fluid Dynamics.New York, Springer-VerlagCrossRefGoogle Scholar
Dyer, A. J. (1974) A review of flux-profile relationships. Boundary-Layer Meteor. 7, 363–72CrossRefGoogle Scholar
Dyer, A. J. and Bradley, E. F. (1982) An alternative analysis of flux-gradient relationships at the 1976 ITCE. Boundary-Layer Meteor. 22, 3–19CrossRefGoogle Scholar
Easter, R. C. (1993) Two modified versions of Bott's positive-definite numerical advection scheme. Mon. Wea. Rev. 121, 297–3042.0.CO;2>CrossRefGoogle Scholar
Eddington, S. A. (1916) On the radiative equilibrium of the stars. Mon. Not. Roy. Astron. Soc. 77, 16–35CrossRefGoogle Scholar
Edlen, B. (1966) The refractive index of air. Meteorology 2, 71–80Google Scholar
Eliasen, E., Machenhauer, B., and Rasmussen, E. (1970) On a Numerical Method for Integration of the Hydrodynamical Equations with a Spectral Representation of the Horizontal Fields. Report No. 2, Institut for Teoretisk Meteorologi, University of Copenhagen, 35ppGoogle Scholar
Elliott, D. L., Holladay, C. G., Barchet, W. R., Foote, H. P., and Sandusky, W. F. (1986) Wind Energy Resource Atlas of the United States.DOE/CH 10093–4 Natl. Renew. Energy Lab., Golden, CO.Google Scholar
Elliott, S., Turco, R. P., and Jacobson, M. Z. (1993) Tests on combined projection/forward differencing integration for stiff photochemical family systems at long time step. Computers Chem. 17, 91–102CrossRefGoogle Scholar
Emanuel, K. A. (1991) A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 38, 1541–572.0.CO;2>CrossRefGoogle Scholar
Enger, L. (1986) A higher order closure model applied to dispersion in a convective PGL. Atmos. Environ. 20, 879–94CrossRefGoogle Scholar
Eriksson, E. (1960) The yearly circulation of chloride and sulfur in nature; meteorological, geochemical and pedological implications. Part II. Tellus 12, 63–109CrossRefGoogle Scholar
Erisman, J. W., Pul, W. A. J., and Wyers, P. (1994) Parameterization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos. Environ. 28, 2595–607CrossRefGoogle Scholar
Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J. (1999) Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 401, 257–9CrossRefGoogle Scholar
Fang, M., Zheng, M., Wang, F., To, K. L., Jaafar, A. B., and Tong, S. L. (1999) The solvent-extractable organic compounds in the Indonesia biomass burning aerosols – characterization studies. Atmos. Environ. 33, 783–95CrossRefGoogle Scholar
Farhataziz, and Ross, A. B. (1977) Selected Specific Rates of Transients From Water in Aqueous Solutions, III. Hydroxyl Radical and Perhydroxyl Radical and Their Radical Ions, Rep. NSRDBS-NBS 59, U.S. Department of Commerce, Washington, DC.Google Scholar
Farman, J. C., Gardiner, B. G., and Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–10CrossRefGoogle Scholar
Fassi-Fihri, A., Suhre, K., and Rosset, R. (1997) Internal and external mixing in atmospheric aerosols by coagulation: Impact on the optical and hygroscopic properties of the sulphate–soot system. Atmos. Environ. 31, 1392–402CrossRefGoogle Scholar
Ferek, R. J., Reid, J. S., Hobbs, P. V., Blake, D. R., and Liousse, C. (1998) Emission factors of hydrocarbons, halocarbons, trace gases, and particles from biomass burning in Brazil. J. Geophys. Res. 103, 32, 107–18CrossRefGoogle Scholar
Fernandez-Diaz, J. M., Gonzalez-Pola, Muniz C., Rodriguez, Brana M. A., Arganza, Garcia B., and Garcia, Nieto P. J. (2000) A modified semi-implicit method to obtain the evolution of an aerosol by coagulation. Atmos. Environ. 34, 4301–14CrossRefGoogle Scholar
Filippov, V. K., Charykova, M. V., and Trofimov, Y. M. (1985) Thermodynamics of the system NH4H2PO4-(NH4)2SO4-H2O at 25 °C. J. Appl. Chem. USSR 58, 1807–11Google Scholar
Finlayson-Pitts, B. and Pitts, J. N. Jr. (2000) Chemistry of the Upper and Lower Atmosphere, San Diego, Academic PressGoogle Scholar
Fleming, E. L., Chandra, S., Schoeberl, M. R., and Barnett, J. J. (1988) Monthly Mean Global Climatology of Temperature, Wind, Geopotential Height, and Pressure for 1–120 km.Tech. Memo. 100697, NASA, 85ppGoogle Scholar
Fletcher, N. H. (1958) Size effect in heterogeneous nucleation. J. Chem. Phys. 29, 572–76CrossRefGoogle Scholar
Flossmann, A. I., Hall, W. D., and Pruppacher, H. R. (1985) A theoretical study of the wet removal of atmospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. J. Atmos. Sci. 42, 582–6062.0.CO;2>CrossRefGoogle Scholar
Flubacher, P., Leadbetter, A. J., and Morrison, J. A. (1960) Heat capacity of ice at low temperatures. J. Chem. Phys. 33, 1751–5CrossRefGoogle Scholar
Foster, V. G. (1992) Determination of the refractive index dispersion of liquid nitrobenzene in the visible and ultraviolet. J. Phys. D 25, 525–9CrossRefGoogle Scholar
Fowler, L. D., Randall, D. A., and Rutledge, S. (1996) Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate 9, 489–5292.0.CO;2>CrossRefGoogle Scholar
Frank, W. M. and Cohen, C. (1987) Simulation of tropical convective systems. Part I: A cumulus parameterization. J. Atmos. Sci. 44, 3787–992.0.CO;2>CrossRefGoogle Scholar
Freedman, F. R. and Jacobson, M. Z. (2002) Transport-dissipation analytical solutions to the E-ε turbulence model and their role in predictions of the neutral ABL. Boundary-Layer Meteor. 102, 117–38CrossRefGoogle Scholar
Freedman, F. R. and Jacobson, M. Z. (2003) Modification of the standard ε-equation for the stable ABL through enforced consistency with Monin–Obukhov similarity theory. Boundary-Layer Meteor. 106, 383–410CrossRefGoogle Scholar
Fridlind, A. M. and Jacobson, M. Z. (2000) A study of gas–aerosol equilibrium and aerosol pH in the remote marine boundary layer during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 105, 17325–40CrossRefGoogle Scholar
Fridlind, A. M. and Jacobson, M. Z. (2003) Point and column aerosol radiative closure during ACE 1: Effects of particle shape and size. J. Geophys. Res. 108 (D3) doi:10.1029/2001JD001553CrossRefGoogle Scholar
Friedlander, S. K. (1977) Smoke, Dust, and Haze. Fundamentals of Aerosol Behavior. New York, John Wiley & Sons, Inc.Google Scholar
Friedlander, S. K. (1983) Dynamics of aerosol formation by chemical reaction. Ann. N. Y. Acad. Sci. 404, 354–64CrossRefGoogle Scholar
Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B. (1996) Ice core record of 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237–8CrossRefGoogle Scholar
Fritsch, J. M. and Chappel, C. F. (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci. 37, 1722–332.0.CO;2>CrossRefGoogle Scholar
Fu, Q. and Liou, K. N. (1992) On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci. 49, 2139–562.0.CO;2>CrossRefGoogle Scholar
Fu, Q. and Liou, K. N. (1993) Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci. 50, 2008–252.0.CO;2>CrossRefGoogle Scholar
Fu, Q., Liou, K. N., Cribb, M. C., Charlock, T. P., and Grossman, A. (1997) Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci 54, 2799–8122.0.CO;2>CrossRefGoogle Scholar
Fuchs, N. A. (1964) The Mechanics of Aerosols (translated by R. E. Daisley and M. Fuchs). New York, Pergamon PressGoogle Scholar
Fuchs N. A. and Sutugin A. G. (1971). Highly dispersed aerosols. In Topics in Current Aerosol Research, Vol. 2, Hidy, G. M. and Brock, J. R., eds., New York, Pergamon Press, 1–60Google Scholar
Fuller, K. A. (1995) Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities. J. Opt. Soc. Am. A 12, 893–904CrossRefGoogle Scholar
Fuller, K. A., Malm, W. C., and Kreidenweis, S. M. (1999) Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res. 104, 15, 941–54CrossRefGoogle Scholar
Galbally, I. E. and Roy, C. R. (1980) Destruction of ozone at the earth's surface. Q. J. Roy. Meteor. Soc. 106, 599–620CrossRefGoogle Scholar
Ganzeveld, L. and Lelieveld, J. (1995) Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases. J. Geophys. Res. 100, 20, 999–1, 012CrossRefGoogle Scholar
Garcia, R. R., Stordal, F., Solomon, S., and Kiehl, J. T. (1992) A new numerical model of the middle atmosphere 1. Dynamics and transport of tropospheric source gases. J. Geophys. Res. 97, 12, 967–91CrossRefGoogle Scholar
Garratt, J. R. (1992) The Atmospheric Boundary Layer. Cambridge, Cambridge University PressGoogle Scholar
Garratt, J. R. and Hicks, B. B. (1973) Momentum, heat and water vapour transfer to and from natural and artificial surfaces. Q. J. Roy. Meteor. Soc. 99, 680–7CrossRefGoogle Scholar
Gaydos, T. M., Koo, B., Pandis, S. N., and Chock, D. P. (2003) Atmos. Environ. 37, 3303–16CrossRef
Gazdag, J. (1973) Numerical convective schemes based on accurate computation of space derivatives. J. Comp. Phys. 13, 100–13CrossRefGoogle Scholar
Gear, C. W. (1971) Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, NJ, Prentice-HallGoogle Scholar
Gelbard, F. (1990) Modeling multicomponent aerosol particle growth by vapor condensation. Aerosol Sci. Technol. 12, 399–412CrossRefGoogle Scholar
Gelbard, F. and Seinfeld, J. H. (1980) Simulation of multicomponent aerosol dynamics. J. Colloid Interface Sci. 78, 485–501CrossRefGoogle Scholar
Gelbard, F., Fitzgerald, J. W., and Hoppel, W. A. (1998) A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer. 3. Numerical methods and comparisons with exact solutions. J. Geophys. Res. 103, 16, 119–132CrossRefGoogle Scholar
Gerber, H., Takano, Y., Garrett, T. J., and Hobbs, P. V. (2000) Nephelometer measurements of the asymmetry parameter, volume extinction coefficient, and backscatter ratio in Arctic clouds. J. Atmos. Sci. 57, 3021–332.0.CO;2>CrossRefGoogle Scholar
Gery, M. W., Whitten, G. Z., and Killus, J. P. (1988) Development and Testing of the CBM-IV for Urban and Regional Modeling. Report EPA-600/3-88-012. U.S. Environmental Protection Agency, Research Triangle Park, NCGoogle Scholar
Gery, M. W., Whitten, G. Z., Killus, J. P., and Dodge, M. C. (1989) A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. 94, 12, 925–56CrossRefGoogle Scholar
Ghio A. J. and Samet J. M. (1999) Metals and air pollution particles. In Air Pollution and Health, Holgate, S. T., Samet, J. M., Koren, H. S., and Maynard, R. L., eds., San Diego, Academic Press, 635–51Google Scholar
Giauque, W. F. and Stout, J. W. (1936) The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15 to 273 K. J. Am. Chem. Soc. 58, 1144–50CrossRefGoogle Scholar
Gillette, D. A. (1974) On the production of soil wind erosion aerosols having the potential for long range transport. Atmos. Res. 8, 735–44Google Scholar
Gillette D. A., Patterson Jr. E. M., Prospero J. M., and Jackson M. L. (1993) Soil aerosols. In Aerosol Effects on Climate, Jennings, S. G., ed., Tucson, University of Arizona Press, 73–109Google Scholar
Giorgi, F., Marinucci, M. R., Bates, G. T., and Canio, G. (1993) Development of a second-generation climate model (RegCM2) Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev. 121, 2814–322.0.CO;2>CrossRefGoogle Scholar
Gittens, G. J. (1969) Variation of surface tension of water with temperature. J. Colloid Interface Sci. 30, 406–12CrossRefGoogle Scholar
Goldberg, R. N. (1981) Evaluated activity and osmotic coefficients for aqueous solutions: Thirty-six uni-bivalent electrolytes. J. Phys. Chem. Ref. Data 10, 671–764CrossRefGoogle Scholar
Golding, B. W. (1992) An efficient nonhydrostatic forecast model. Meteor. Atmos. Phys. 50, 89–103CrossRefGoogle Scholar
Gong, W. and Cho, H.-R. (1993) A numerical scheme for the integration of the gas-phase chemical rate equations in three-dimensional atmospheric models. Atmos. Environ. 27A, 2147–60CrossRefGoogle Scholar
Goodin, W. R., McRae, G. J., and Seinfeld, J. H. (1979) A comparison of interpolations methods for sparse data: Application to wind and concentration fields. J. Appl. Meteor. 18, 761–712.0.CO;2>CrossRefGoogle Scholar
Goody, R. M., West, R., Chen, L., and Crisp, D. (1989) The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transfer 42, 539–50CrossRefGoogle Scholar
Graedel, T. E. and Goldberg, K. I. (1983) Kinetic studies of raindrop chemistry, 1. Inorganic and organic processes. J. Geophys. Res. 88, 10, 865–82CrossRefGoogle Scholar
Graedel, T. E. and Weschler, C. J. (1981) Chemistry within aqueous atmospheric aerosols and raindrops. Rev. Geophys. 19, 505–39CrossRefGoogle Scholar
Greeley, R. and Iversen, J. D. (1985) Wind as a Geological Process on Earth, Mars, Venus, and Titan. New York, Cambridge University Press, 333ppCrossRefGoogle Scholar
Greenberg, R. R., Zoller, W. H., and Gordon, G. E. (1978) Composition and size distributions of articles released in refuse incineration. Environ. Sci. Technol. 12, 566–73CrossRefGoogle Scholar
Grell, G. A. (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev. 121, 764–872.0.CO;2>CrossRefGoogle Scholar
Griffin, R. J., Dabdub, D., and Seinfeld, J. H. (2002) Secondary organic aerosol 1. Atmospheric chemical mechanism for production of molecular constituents. J. Geophys. Res. 107 (D17), 4332, doi:10.1029/2001JD000541CrossRefGoogle Scholar
Groblicki, P. J., Wolff, G. T., and Countess, R. J. (1981) Visibility-reducing species in the Denver “brown cloud” – I. Relationships between extinction and chemical composition. Atmos. Environ. 15, 2473–84CrossRefGoogle Scholar
Guelle, W., Schulz, M., Balkanski, Y., and Dentener, F. (2001) Influence of source formulation on modeling the atmospheric global distribution of sea salt aerosol. J. Geophys. Res. 106, 27509–24CrossRefGoogle Scholar
Hack J. J. (1992) Climate system simulation: Basic numerical and computational concepts. In Climate System Modeling, Trenberth, K. E., ed., Cambridge, Cambridge University Press, 283–318Google Scholar
Hack, J. J. (1994) Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2). J. Geophys. Res. 99, 5551–68CrossRefGoogle Scholar
Hagesawa, K. and Neta, P. (1978) Rate constants and mechanisms of reaction for Cl2− radicals. J. Phys. Chem. 82, 854–7Google Scholar
Hairer, E. and Wanner, G. (1991) Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Berlin, Springer-VerlagGoogle Scholar
Hale, G. M. and Querry, M. R. (1973) Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 12, 555–63CrossRefGoogle Scholar
Hamer, W. J. and Wu, Y.-C. (1972) Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–99CrossRefGoogle Scholar
Hamill, P., Turco, R. P., Kiang, C. S., Toon, O. B., and Whitten, R. C. (1982) An analysis of various nucleation mechanisms for sulfate particles in the stratosphere. J. Aerosol Sci. 13, 561–85CrossRefGoogle Scholar
Hansen, J. E. (1969) Radiative transfer by doubling very thin layers. Astrophys. J. 155, 565–73CrossRefGoogle Scholar
Harned, H. S. and Owen, B. B. (1958) The Physical Chemistry of Electrolyte Solutions. New York, Reinhold, Chapter 8Google Scholar
Harrington, J. Y., Meyers, M. P., Walko, R. L., and Cotton, W. R. (1995) Parameterization of ice crystal conversion process due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci. 52, 4344–662.0.CO;2>CrossRefGoogle Scholar
Harris, S. J. and Maricq, M. M. (2001) Signature size distributions for diesel and gasoline engine exhaust particulate matter. J. Aerosol Sci. 32, 749–64CrossRefGoogle Scholar
Hartmann, D. L. (1994) Global Physical Climatology. San Diego, Academic Press, Inc.Google Scholar
Harvey, R. B., Stedman, D. H., and Chameides, W. (1977) Determination of the absolute rate of solar photolysis of NO2. J. Air Pol. Control Assn. 27, 663–6CrossRefGoogle Scholar
Harvie, C. E., Moller, N., and Weare, J. H. (1984) The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25 °C. Geochim. Cosmochim. Acta 48, 723–51CrossRefGoogle Scholar
Henry, W. M. and Knapp, K. T. (1980) Compound forms of fossil fuel fly ash emissions. Environ. Sci. Technol. 14, 450–6CrossRefGoogle ScholarPubMed
Henyey, L. C. and Greenstein, J. L. (1941) Diffuse radiation in the galaxy. Astrophys. J. 93, 70–83CrossRefGoogle Scholar
Hering, S. V. and Friedlander, S. K. (1982) Origins of aerosol sulfur size distributions in the Los Angeles Basin. Atmos. Environ. 16, 2647–56CrossRefGoogle Scholar
Hering, S. V., Friedlander, S. K., Collins, J. C., and Richards, L. W. (1979) Design and evaluation of a new low pressure impactor 2. Environ. Sci. Technol. 13, 184–8CrossRefGoogle Scholar
Hertel, O., Berkowicz, R., and Christensen, J. (1993) Test of two numerical schemes for use in atmospheric transport-chemistry models. Atmos. Environ. 27A, 2591–611CrossRefGoogle Scholar
Hesstvedt, E., Hov, O., and Isaksen, I. S. A. (1978) Quasi-steady-state approximations in air pollution modeling: Comparison of two numerical schemes for oxidant prediction. Int. J. Chem. Kin. 10, 971–94CrossRefGoogle Scholar
Himmelblau, P. M. (1964) Diffusion of dissolved gases in liquids. Chem. Rev. 64, 527–50CrossRefGoogle Scholar
Hindmarsh A. C. (1983) ODEPACK, a systematized collection of ODE solvers. In Scientific Computing, Stepleman, R. S.et al., eds., Amsterdam, North-Holland, 55–74Google Scholar
Hinze, J. O. (1975) Turbulence: An Introduction to its Mechanism and Theory, 2nd edn. New York, McGraw-Hill, 790ppGoogle Scholar
Hitchcock, D. R., Spiller, L. L., and Wilson, W. E. (1980) Sulfuric acid aerosols and HCl release in coastal atmospheres: Evidence of rapid formation of sulfuric acid particulates. Atmos. Environ. 14, 165–82CrossRefGoogle Scholar
Hoffmann, M. R. and Calvert, J. G. (1985) Chemical Transformation Modules for Eulerian Acid Deposition Models, Vol. 2. The Aqueous-phase Chemistry. EPA/600/3–85/017. U.S. Environmental Protection Agency, Research Triangle Park, NCGoogle Scholar
Hogstrom, U. (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: A reevaluation. Boundary-Layer Meteor. 42, 55–78CrossRefGoogle Scholar
Holmes, H. F. and Mesmer, R. E. (1986) Thermodynamics of aqueous solutions of the alkali metal sulfates. J. Solution Chem. 15, 495–518CrossRefGoogle Scholar
Holton, J. R. (1992) An Introduction to Dynamical Meteorology. San Diego, Academic Press, Inc.Google Scholar
Hounslow, M. J., Ryall, R. L., and Marshall, V. R. (1988) A discretized population balance for nucleation, growth, and aggregation. AIChE J. 34, 1821–32CrossRefGoogle Scholar
Houze, R. A. Jr. (1993) Cloud Dynamics. San Diego, Academic Press, Inc.Google Scholar
Huang, H.–C. and Chang, J. S. (2001) On the performance of numerical solvers for a chemistry submodel in three-dimensional air quality models. 1. Box model simulations. J. Geophys. Res. 106, 20,175–88CrossRefGoogle Scholar
Hughes T. J. R. and Brooks A. N. (1979) A multidimensional upwind scheme with no crosswind diffusion. In Finite Element Methods for Convection Dominated Flows, Hughes, T. J. R., ed., AMD Vol. 34, ASME, New York, 19–35Google Scholar
Huie, R. E. and Neta, P. (1987) Rate constants for some oxidations of S(IV) by radicals in aqueous solutions. Atmos. Environ. 21, 1743–7CrossRefGoogle Scholar
Hulburt, H. M. and Katz, S. (1964) Some problems in particle technology: A statistical mechanical formulation. Chem. Eng. Sci. 19, 555–74CrossRefGoogle Scholar
Hynes, A. J., Wine, P. H., and Semmes, D. H. (1986) Kinetic mechanism of OH reactions with organic sulfides. J. Phys. Chem. 90, 4148–56CrossRefGoogle Scholar
Irvine, W. M. (1968) Multiple scattering by large particles. II. Optically thick layers. Astrophys. J. 152, 823–34CrossRefGoogle Scholar
Irvine, W. M. (1975) Multiple scattering in planetary atmospheres. Icarus 25, 175–204CrossRefGoogle Scholar
Ishizaka, Y. and Adhikari, M. (2003) Composition of cloud condensation nuclei. J. Geophys. Res. 108 (D4), 4138, doi:10.1029/2002JD002085CrossRefGoogle Scholar
Jackman, C. H., Fleming, E. L., Chandra, S., Considine, D. B., and Rosenfield, J. E. (1996) Past, present, and future modeled ozone trends with comparisons to observed trends. J. Geophys. Res. 101, 28,753–67CrossRefGoogle Scholar
Jacob, D. J. (1986) Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfonate. J. Geophys. Res. 91, 9807–26CrossRefGoogle Scholar
Jacob, D. J., Gottlieb, E. W., and Prather, M. J. (1989a) Chemistry of a polluted cloudy boundary layer. J. Geophys. Res. 94, 12, 975–13, 002CrossRefGoogle Scholar
Jacob, D. J., Sillman, S., Logan, J. A., and Wofsy, S. C. (1989b) Least independent variables method for simulation of tropospheric ozone. J. Geophys. Res. 94, 8497–509CrossRefGoogle Scholar
Jacobson M. Z. (1994) Developing, coupling, and applying a gas, aerosol, transport, and radiation model to study urban and regional air pollution. Ph. D. Thesis, Dept. of Atmospheric Sciences, University of California, Los Angeles
Jacobson, M. Z. (1995) Computation of global photochemistry with SMVGEAR II. Atmos. Environ. 29A, 2541–6CrossRefGoogle Scholar
Jacobson, M. Z. (1997a) Development and application of a new air pollution modeling system. Part II: Aerosol module structure and design. Atmos. Environ. 31A, 131–44CrossRefGoogle Scholar
Jacobson, M. Z. (1997b) Development and application of a new air pollution modeling system. Part III: Aerosol-phase simulations. Atmos. Environ. 31A, 587–608CrossRefGoogle Scholar
Jacobson, M. Z. (1997c) Numerical techniques to solve condensational and dissolutional growth equations when growth is coupled to reversible aqueous reactions. Aerosol Sci. Technol. 27, 491–8CrossRefGoogle Scholar
Jacobson, M. Z. (1998a) Vector and scalar improvement of SMVGEAR II through absolute error tolerance control. Atmos. Environ. 32, 791–6CrossRefGoogle Scholar
Jacobson, M. Z. (1998b) Studying the effects of aerosols on vertical photolysis rate coefficient and temperature profiles over an urban airshed. J. Geophys. Res. 103, 10, 593–604CrossRefGoogle Scholar
Jacobson, M. Z. (1999a) Effects of soil moisture on temperatures, winds, and pollutant concentrations in Los Angeles. J. Appl. Meteorol. 38, 607–162.0.CO;2>CrossRefGoogle Scholar
Jacobson, M. Z. (1999b) Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II. Atmos. Environ. 33, 3634–49CrossRefGoogle Scholar
Jacobson, M. Z. (1999c) Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption. J. Geophys. Res. 104, 3527–42CrossRefGoogle Scholar
Jacobson, M. Z. (2000) A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophys. Res. Lett. 27, 217–20CrossRefGoogle Scholar
Jacobson, M. Z. (2001a) GATOR-GCMM: A global- through urban-scale air pollution and weather forecast model 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow. J. Geophys. Res. 106, 5385–401CrossRefGoogle Scholar
Jacobson, M. Z. (2001b) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695–7CrossRefGoogle Scholar
Jacobson, M. Z. (2002) Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions. J. Geophys. Res. 107 (D19), 4366, doi:10.1029/2001JD002044CrossRefGoogle Scholar
Jacobson, M. Z. (2003) Development of mixed-phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal. J. Geophys. Res. 108 (D8), 4245, doi:10.1029/2002JD002691CrossRefGoogle Scholar
Jacobson, M. Z. (2005a) A refined method of parameterizing absorption coefficients among multiple gases simultaneously from line-by-line data. J. Atmos. Sci. 62, 506–17CrossRefGoogle Scholar
Jacobson, M. Z. (2005b) Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air–ocean exchange and ocean equilibrium chemistry. J. Geophys. Res., in reviewCrossRefGoogle Scholar
Jacobson, M. Z. (2005c) A solution to the problem of nonequilibrium acid/base gas-particle transfer at long time step. Aerosol Sci. Technol. 39, 92–103CrossRefGoogle Scholar
Jacobson, M. Z. and Seinfeld, J. H. (2004) Evolution of nanoparticle size and mixing state near the point of emission. Atmos. Environ. 38, 1839–50CrossRefGoogle Scholar
Jacobson, M. Z. and Turco, R. P. (1994) SMVGEAR: A sparse-matrix, vectorized Gear code for atmospheric models. Atmos. Environ. 28A, 273–84CrossRefGoogle Scholar
Jacobson, M. Z. (1995) Simulating condensational growth, evaporation, and coagulation of aerosols using a combined moving and stationary size grid. Aerosol Sci. Technol. 22, 73–92CrossRefGoogle Scholar
Jacobson, M. Z., Turco, R. P., Jensen, E. J., and Toon, O. B. (1994) Modeling coagulation among particles of different composition and size. Atmos. Environ. 28A, 1327–38CrossRefGoogle Scholar
Jacobson, M. Z., Tabazadeh, A., and Turco, R. P. (1996b) Simulating equilibrium within aerosols and non-equilibrium between gases and aerosols. J. Geophys. Res. 101, 9079–91CrossRefGoogle Scholar
Jaecker-Voirol, A. and Mirabel, P. (1989) Heteromolecular nucleation in the sulfuric acid-water system. Atmos. Environ. 23, 2033–57CrossRefGoogle Scholar
Jaenicke R. (1988) Aerosol physics and chemistry. In Numerical Data and Functional Relationships in Science and Technology. New Series Vol. 4, Meteorology Subvol. b, Physical and Chemical Properties of Air, Fischer, G., ed., Berlin, Springer-VerlagGoogle Scholar
Jarvis, P. G., James, G. B., and Landsberg, J. J. (1976) Coniferous forest. In Vegetation and the Atmosphere, Vol. 2. Monteight, J. L., ed., New York, Academic Press, 171–240Google Scholar
Jayne, J. T., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E. (1990) Uptake of SO2 by aqueous surfaces as a function of pH: The effect of chemical reaction at the interface. J. Phys. Chem. 94, 6041–8CrossRefGoogle Scholar
Jayson, G. G., Parsons, B. J., and Swallow, A. J. (1973) Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Trans. Faraday Soc. 69, 1597–607CrossRefGoogle Scholar
Jeans, J. (1954) The Dynamical Theory of Gases. New York, DoverGoogle Scholar
Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, J. (2003) Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys. 3, 181–93CrossRefGoogle Scholar
John W., Wall S. M., Ondo J. L., and Winklmayr W. (1989) Acidic Aerosol Size Distributions During SCAQS. Final Report for the California Air Resources Board under Contract No. A6-112-32
Joseph, J. H., Wiscombe, W. J., and Weinman, J. A. (1976) The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci. 33, 2452–92.0.CO;2>CrossRefGoogle Scholar
Joslin, R. D., Streett, C. L., and Chang, C.-L. (1993) Spatial direct numerical simulation of boundary-layer transition mechanisms–validation of PSE theory. Theor. Comput. Fluid Dyn. 4, 271–88CrossRefGoogle Scholar
Junge, C. E. (1961) Vertical profiles of condensation nuclei in the stratosphere. J. Meteor. 18, 501–92.0.CO;2>CrossRefGoogle Scholar
Kaimal, J. C. and Finnigan, J. J. (1994) Atmospheric Boundary Layer Flows: Their Structure and Measurement. New York, Oxford University PressGoogle Scholar
Kain, J. S. (2004) The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. 43, 170–812.0.CO;2>CrossRefGoogle Scholar
Kain, J. S. and Fritsch, J. M. (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 47, 2784–8022.0.CO;2>CrossRefGoogle Scholar
Kao, C.-Y. J. and Ogura, Y. (1987) Response of cumulus clouds to large-scale forcing using the Arakawa–Schubert cumulus parameterization. J. Atmos. Sci. 44, 2437–5482.0.CO;2>CrossRefGoogle Scholar
Kaps, P. and Rentrop, P. (1979) Generalized Runge–Kutta methods of order four with stepsize control for stiff ordinary differential equations. Numer. Math. 33, 55–88CrossRefGoogle Scholar
Kasahara, A. (1974) Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev. 102, 509–222.0.CO;2>CrossRefGoogle Scholar
Kasten, F. (1968) Falling speed of aerosol particles. J. Appl. Meteor. 7, 944–72.0.CO;2>CrossRefGoogle Scholar
Katrinak, K. A., Rez, P., Perkes, P. R., and Buseck, P. R. (1993) Fractal geometry of carbonaceous aggregates from an urban aerosol. Environ. Sci. Technol. 27, 539–47CrossRefGoogle Scholar
Kawata, Y. and Irvine, W. M. (1970) The Eddington approximation for planetary atmospheres. Astrophys. J. 160, 787–90CrossRefGoogle Scholar
Keeling C. D. and Whorf T. P. (2003) Atmospheric CO2 concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory, Hawaii. cdiac.esd.ornl.gov./ftp/maunaloa-co2/maunaloa.co2
Kerker, M. (1969) The Scattering of Light and Other Electromagnetic Radiation. New York, Academic PressGoogle Scholar
Ketefian G. (2005) Development, testing, and application of a 3-D nonhydrostatic potential-energy-conserving, compressible atmospheric model. Ph. D. Dissertation, Stanford University
Ketefian, G. and Jacobson, M. Z. (2005a) Development and application of a 2-D potential-enstrophy-, energy-, and mass-conserving mixed-layer ocean model with arbitrary boundaries, Mon. Wea. Rev., in submissionGoogle Scholar
Ketefian, G. and Jacobson, M. Z. (2005b) Development and application of an orthogonal-curvilinear-grid nonhydrostatic potential-enstrophy-, energy-, and mass-conserving atmospheric model with arbitrary boundaries, Mon. Wea. Rev., in submissionGoogle Scholar
Kettle, A. J. and Andreae, M. O. (2000) Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models. J. Geophys. Res. 105, 26, 793–808CrossRefGoogle Scholar
Kim, Y. P. and Seinfeld, J. H. (1995) Atmospheric gas-aerosol equilibrium: III. Thermodynamics of crustal elements Ca2+, K+, and Mg2+. Aerosol Sci. Technol. 22, 93–110CrossRefGoogle Scholar
Kim, J., Moin, P., and Moser, R. (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–66CrossRefGoogle Scholar
Kim, Y. P., Seinfeld, J. H., and Saxena, P. (1993a) Atmospheric gas–aerosol equilibrium I. Thermodynamic model. Aerosol Sci. Technol. 19, 157–81CrossRefGoogle Scholar
Kim, Y. P., Seinfeld, J. H., and Saxena, P. (1993b) Atmospheric gas–aerosol equilibrium II. Analysis of common approximations and activity coefficient calculation methods. Aerosol Sci. Technol. 19, 182–98CrossRefGoogle Scholar
Kittelson, D. B. (1998) Engine and nanoparticles: a review. J. Aerosol Sci. 6, 443–51Google Scholar
Klemp, J. B. and Wilhelmson, R. B. (1978) The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci. 3, 1070–962.0.CO;2>CrossRefGoogle Scholar
Klingen, H.-J. and Roth, P. (1989) Size analysis and fractal dimension of diesel particles based on REM measurements with an automatic imaging system. J. Aerosol Sci. 20, 861–4CrossRefGoogle Scholar
Knudsen, M. and Weber, S. (1911) Luftwiderstand gegen die langsame Bewegung kleiner Kugeln. Ann. Phys. 36, 981–94CrossRefGoogle Scholar
Köhler, H. (1936) The nucleus in the growth of hygroscopic droplets. Trans. Faraday Soc. 32, 1152–61CrossRefGoogle Scholar
Kondo, J., Saigusa, N., and Sato, T. (1990) A parameterization of evaporation from bare soil surfaces. J. Appl. Meteor. 29, 385–92.0.CO;2>CrossRefGoogle Scholar
Kondratyev, K.Ya. (1969) Radiation in the Atmosphere. San Diego, Academic Press, 912ppGoogle Scholar
Korhonen, H., Napari, I., Timmreck, C., et al. (2003) Heterogeneous nucleation as a potential sulphate-coating mechanism of atmospheric mineral dust particles and implications of coated dust on new particle formation. J. Geophys. Res. 108 (D17), 4546, doi:10.1029/2003JD003553CrossRefGoogle Scholar
Koschmieder, H. (1924) Theorie der horizontalen Sichtweite. Beitr. Phys. Freien Atm. 12, 33–53, 171–81Google Scholar
Kozac-Channing, L. F. and Heltz, G. R. (1983) Solubility of ozone in aqueous solutions of 0–0.6 M ionic strength at 5–30 °C. Environ. Sci. Technol. 17, 145–9CrossRefGoogle Scholar
Kreidenweis, S. M., Zhang, Y., and Taylor, G. R. (1997) The effects of clouds on aerosol and chemical species production and distribution 2. Chemistry model description and sensitivity analysis. J. Geophys. Res. 102, 23, 867–82CrossRefGoogle Scholar
Kreidenweis, S. M., Walcek, C., Kim, C.-H., et al. (2003) Modification of aerosol mass and size distribution due to aqueous-phase SO2 oxidation in clouds: comparison of several models. J. Geophys. Res. 108 (D7) doi:10.1029/2002JD002697CrossRefGoogle Scholar
Kreitzberg, C. W. and Perkey, D. (1976) Release of potential instability. Part I: A sequential plume model within a hydrostatic primitive equation model. J. Atmos. Sci. 33, 456–752.0.CO;2>CrossRefGoogle Scholar
Krekov G. M. (1993) Models of atmospheric aerosols. In Aerosol Effects on Climate. Jennings, S. G., ed., Tucson, University of Arizona Press, 9–72Google Scholar
Krishnamurti, T. N. and Moxim, W. J. (1971) On parameterization of convective and non-convective latent heat release. J. Appl. Meteor. 10, 3–132.0.CO;2>CrossRefGoogle Scholar
Krishnamurti, T. N., Bedi, H. S., and Hardiker, V. M. (1998) An Introduction to Global Spectral Modeling. New York, Oxford University PressGoogle Scholar
Krishnamurti, T. N., Pan, H.-L., Pasch, R. J., and Molinari, J. (1980) Cumulus parameterization and rainfall rates I. Mon. Wea. Rev. 108, 465–722.0.CO;2>CrossRefGoogle Scholar
Kritz, M. A. and Rancher, J. (1980) Circulation of Na, Cl, and Br in the tropical marine atmosphere. J. Geophys. Res. 85, 1633–9CrossRefGoogle Scholar
Kulmala, M., Laaksonen, A., and Pirjola, L. (1998) Parameterizations for sulfuric acid/water nucleation rates. J. Geophys. Res. 103, 8301–7CrossRefGoogle Scholar
Kuo, H. L. (1965) On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci. 22, 40–632.0.CO;2>CrossRefGoogle Scholar
Kuo, H. L. (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci. 31, 1232–402.0.CO;2>CrossRefGoogle Scholar
Kurihara, Y. (1973) A scheme of moist convective adjustment. Mon. Wea. Rev. 101, 547–532.3.CO;2>CrossRefGoogle Scholar
Kurihara, Y. and Bender, M. A. (1983) A numerical scheme to treat the open lateral boundary of limited area model. Mon. Wea. Rev. 111, 445–542.0.CO;2>CrossRefGoogle Scholar
Kusik, C. L. and Meissner, H. P. (1978) Electrolyte activity coefficients in inorganic processing. AIChE J. Symp. Ser. 173, 14–20Google Scholar
Lacis, A. A. and Hansen, J. E. (1974) A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci. 31, 118–332.0.CO;2>CrossRefGoogle Scholar
Lacis, A., Wang, W. C., and Hansen, J. (1979) Correlated k-distribution method for radiative transfer in climate models: Application to effect of cirrus clouds on climate. NASA Conf. Publ. 2076, 309–314Google Scholar
Lacis, A. A. and Oinas, V. (1991) A description of the correlated k-distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res. 96, 9027–63CrossRefGoogle Scholar
Lamb, H. (1910) On atmospheric oscillations. Proc. Roy. Soc. London 84, 551–72CrossRefGoogle Scholar
Langford, A. O., Proffitt, M. H., VanZandt, T. E., and Lamarque, J.-F. (1996) Modulation of tropospheric ozone by a propagating gravity wave. J. Geophys. Res. 101, 26, 605–13CrossRefGoogle Scholar
Larson S., Cass G., Hussey K., and Luce F. (1984) Visibility Model Verification by Image Processing Techniques. Final report to the California Air Resources Board under Agreement A2-077-32
Lary, D. J. (1997) Catalytic destruction of stratospheric ozone. J. Geophys. Res. 102, 21, 515–26CrossRefGoogle Scholar
Lazrus, A. L., Cadle, R. D., Gandrud, B. W., Greenberg, J. P., Huebert, B. J., and Rose, W. I. (1979) Sulfur and halogen chemistry of the stratosphere and of volcanic eruption plumes. J. Geophys. Res. 84, 7869CrossRefGoogle Scholar
Ledbury, W. and Blair, E. W. (1925) The partial formaldehyde vapour pressure of aqueous solutions of formaldehyde, II. J. Chem. Soc. 127, 2832–39CrossRefGoogle Scholar
Lee H. D. P., translator (1951) Meteorologica by Aristotle, T. E. Page, ed., Cambridge, MA, Harvard University PressGoogle Scholar
Lee K. O., Cole R., Sekar R., et al. (2001) Detailed characterization of morphology and dimensions of diesel particulates via thermophoretic sampling, SAF 2001-01-3572
Lee, K. W. (1985) Conservation of particle size distribution parameters during Brownian coagulation. J. Colloid Interface Sci. 108, 199–206CrossRefGoogle Scholar
Lee, T. J. and Pielke, R. A. (1992) Estimating the soil surface specific humidity. J. Appl. Meteor. 31, 480–42.0.CO;2>CrossRefGoogle Scholar
Lee Y.-N. (1984) Kinetics of some aqueous-phase reactions of peroxyacetyl nitrate. In Gas-Liquid Chemistry of Natural Waters, Vol.1, BNL 51757, pp. 21/1–21/7, Brookhaven National Laboratory, Brookhaven, NY
Henaff, P. (1968) Méthodes d'étude et propriétés des hydrates, hemiacétals et hemiacétals derivés des aldehydes et des cétones. Bull. Soc. Chim. France, 11, 4687–700Google Scholar
Lenschow, D. H., Li, X. S., Zhu, C. J., and Stankov, B. B. (1988) The stably stratified boundary layer over the great planes. Boundary-Layer Meteor. 42, 95–121CrossRefGoogle Scholar
Lesins, G., Chylek, P., and Lohmann, U. (2002) A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J. Geophys. Res. 107 (D10), doi:10.1029/2001JD000973CrossRefGoogle Scholar
Lettau, H. H. (‘1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness element description. J. Appl. Meteor. 8, 828–322.0.CO;2>CrossRefGoogle Scholar
Li, Z., Williams, A. L., and Rood, M. J. (1998) Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute. J. Atmos. Sci. 55, 1859–662.0.CO;2>CrossRefGoogle Scholar
Liang, J. and Jacob, D. J. (1997) Effect of aqueous-phase cloud chemistry on tropospheric ozone. J. Geophys. Res. 102, 5993–6002CrossRefGoogle Scholar
Liang, J. and Jacobson, M. Z. (1999) A study of sulfur dioxide oxidation pathways for a range of liquid water contents, pHs, and temperatures. J. Geophys. Res. 104, 13, 749–69CrossRefGoogle Scholar
Liang, J. and Jacobson, M. Z. (2000) Comparison of a 4000-reaction chemical mechanism with the carbon bond IV and an adjusted carbon bond IV-EX mechanism using SMVGEAR II. Atmos. Environ. 34, 3015–26CrossRefGoogle Scholar
Lide, D. R., ed.-in-chief (2003) CRC Handbook of Chemistry and Physics. Boca Raton, FL, CRC Press, Inc.Google Scholar
Lilly, D. K. (1996) A comparison of incompressible, anelastic and Boussinesq dynamics. Atmos. Res. 40, 143–51CrossRefGoogle Scholar
Lind, J. A. and Kok, G. L. (1986) Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid. J. Geophys. Res. 91, 7889–95CrossRefGoogle Scholar
Lind, J. A., Kok, G. L., and Lazrus, A. L. (1987) Aqueous phase oxidation of sulfur(IV) by hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid. J. Geophys. Res. 92, 4171–7CrossRefGoogle Scholar
Lindzen, R. S. (1981) Turbulence and stress due to gravity wave and tidal breakdown. J. Geophys. Res. 86, 9707–14CrossRefGoogle Scholar
Liou, K. N. (1974) Analytic two-stream and four-stream solutions for radiative transfer. J. Atmos. Sci. 31, 1473–52.0.CO;2>CrossRefGoogle Scholar
Liou, K. N. (2002) An Introduction to Atmospheric Radiation. Amsterdam, Academic PressGoogle Scholar
Liousse, C., Penner, J. E., Chuang, C., Walton, J. J., Eddleman, H., and Cachier, H. (1996) A global three-dimensional model study of carbonaceous aerosols. J. Geophys. Res. 101, 19, 411–32CrossRefGoogle Scholar
Liss P. S. and Merlivat L. (1986) Air–sea gas exchange rates: Introduction and synthesis. In The Role of Air–Sea Exchange in Geochemical Cycling. Buat-Menard, P., ed., Hingham, MA, D. Reidel Publishing Co., 113–127CrossRefGoogle Scholar
List, R. J., ed. (1984) Smithsonian Meteorological Tables, 6th edn. Washington, DC, Smithsonian Institution PressGoogle Scholar
List, R. and Gillespie, J. R. (1976) Evolution of raindrop spectra with collision-induced breakup. J. Atmos. Sci. 33, 2007–132.0.CO;2>CrossRefGoogle Scholar
Lister, J. D., Smit, D. J., and Hounslow, M. J. (1995) Adjustable discretized population balance for growth and aggregation. AIChE Journal 41, 591–603CrossRefGoogle Scholar
Liu, C. H. and Leung, D. Y. C. (2001) Turbulence and dispersion studies using a three-dimensional second-order closure Eulerian model. J. Appl. Meteorol. 40, 92–1132.0.CO;2>CrossRefGoogle Scholar
Lord, S. J. and Arakawa, A. (1980) Interaction of a cumulus cloud ensemble with the large-scale environment. Part II. J. Atmos. Sci. 37, 2677–922.0.CO;2>CrossRefGoogle Scholar
Lorentz H. A. (1906) The absorption and emission of lines of gaseous bodies. In H. A. Lorentz Collected Papers (The Hague, 1934–1939) 3, 215–38
Lorenz, E. N. (1960) Energy and numerical weather prediction. Tellus 12, 364–73CrossRefGoogle Scholar
Louis, J.-F. (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteor. 17, 187–202CrossRefGoogle Scholar
Lu R. (1994) Development of an integrated air pollution modeling system and simulations of ozone distributions over the Los Angeles Basin. Ph. D. Thesis, University of California, Los Angeles
Lu, R. and Turco, R. P. (1994) Air pollution transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects. J. Atmos. Sci. 51, 2285–3082.0.CO;2>CrossRefGoogle Scholar
Ludlum, F. H. (1980) Clouds and Storms. University Park, PA, The Pennsylvania State University PressGoogle Scholar
Lurmann, F. W., Carter, W. P. L., and Coyner, L. A. (1987) A Surrogate Species Chemical Reaction Mechanism for Urban Scale Air Quality Simulation Models. Volume I: Adaption of the Mechanism. EPA-600/3–87/014a, U.S. Environmental Protection Agency, Research Triangle Park, NCGoogle Scholar
Lurmann F. W., Main H. H., Knapp K. T., Stockburger L., Rasmussen R. A., and Fung K. (1992) Analysis of the Ambient VOC Data Collected in the Southern California Air Quality Study, Final Report to the California Air Resources Board under Contract A832-130
Madronich, S. (1987) Photodissociation in the atmosphere 1. Actinic flux and the effects of ground reflections and clouds. J. Geophys. Res. 92, 9740–52CrossRefGoogle Scholar
Madronich, S. and Calvert, J. G. (1989) The NCAR Master Mechanism of the Gas-phase Chemistry-Version 2.0. Rep. NCAR/TN-333+STR, National Center for Atmospheric ResearchGoogle Scholar
Mahfouf, J.-F. and Noilhan, J. (1991) Comparative study of various formulations of evaporation from bare soil using in situ data. J. Appl. Meteor. 30, 1354–652.0.CO;2>CrossRefGoogle Scholar
Mahfouf, J.-F. and Noilhan, J. (1996) Inclusion of gravitational drainage in a land surface scheme based on the force-restore method. J. Appl. Meteor. 35, 987–922.0.CO;2>CrossRefGoogle Scholar
Mahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B., and Troen, I. (1979) An observational study of the structure of the nocturnal boundary layer. Boundary-Layer Meteor. 17, 247–64CrossRefGoogle Scholar
Makar, P. A. (2001) The estimation of organic gas vapour pressure. Atmos. Environ. 35, 961–74CrossRefGoogle Scholar
Makar, P. A. and Karpik, S. R. (1996) Basis-spline interpolation on the sphere: Applications to semi-lagrangian advection. Mon. Wea. Rev. 124, 182–992.0.CO;2>CrossRefGoogle Scholar
Makar, P. A., Vouchet, V. S., and Nenes, A. (2003) Inorganic chemistry calculations using HETV – a vectorized solver for the SO42−-NO3−-NH4+ system based on the ISORROPIA algorithms. Atmos. Environ. 37, 2279–94CrossRefGoogle Scholar
Makar, P. A., Moran, M. D., Scholtz, M. T., and Taylor, A. (2003) Speciation of volatile organic compound emissions for regional air quality modeling of particulate matter and ozone. J. Geophys. Res. 108 (D2), 4041, doi:10.1029/2001JD000797CrossRefGoogle Scholar
Manabe, S. J., Smagorinsky, J., and Strickler, R. F. (1965) Simulated climatology of a general circulation model with a hydrological cycle. Mon. Wea. Rev. 93, 769–982.3.CO;2>CrossRefGoogle Scholar
Marbaix, P., Gallee, H., Brasseur, O., and Ypersele, J.-P. (2003) Lateral boundary conditions in regional climate models: A detailed study of the relaxation procedure. Mon. Wea. Rev. 131, 461–792.0.CO;2>CrossRefGoogle Scholar
Maricq, M. M., Chase, R. E., Podsiadlik, D. H., and Vogt, R. (1999) Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements. SAE Technical Paper 1999-01-1461, Warrendale, PA, USAGoogle Scholar
Marland G., Boden T. A., and Andres R. J. (2003) Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751–2000. In Trends Online: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA
Marlow, W. H. (1981) Size effects in aerosol particle interactions: The van der Waals potential and collision rates. Surf. Sci. 106, 529–37CrossRefGoogle Scholar
Marsh, A. R. W. and McElroy, W. J. (1985) The dissociation constant and Henry's law constant of HCl in aqueous solution. Atmos. Environ. 19, 1075–80CrossRefGoogle Scholar
Marshall, J. S. and Palmer, W. (1948) The distribution of raindrops with size. J. Meteor. 3, 165–82.0.CO;2>CrossRefGoogle Scholar
Marshall, S. F., Covert, D. S., and Charlson, R. J. (1995) Relationship between asymmetry parameter and hemispheric backscatter ratio: implications for climate forcing by aerosols. Appl. Opt. 34, 6306–11CrossRefGoogle ScholarPubMed
Martens, C. S., Wesolowski, J. J., Hariss, R. C., and Kaifer, R. (1973) Chlorine loss from Puerto Rican and San Francisco Bay Area marine aerosols. J. Geophys. Res. 78, 8778–92CrossRefGoogle Scholar
Martensson, E. M., Nilsson, E. D., Leeuw, G., Cohen, L. H., and Hansson, H.-C. (2003) Laboratory simulation and parameterization of the primary marine aerosol production. J. Geophys. Res. 108 (D9), 4297, doi:10.1029/2002JD002263CrossRefGoogle Scholar
Marticorena, B. and Bergametti, G. (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 100, 16415–30CrossRefGoogle Scholar
Marticorena, B., Bergametti, G., Gillette, D., and Belnap, J. (1997) Factors controlling threshold friction velocity in semiarid and arid areas of the United States. J. Geophys. Res. 102, 23277–87CrossRefGoogle Scholar
Martin, J. J., Wang, P. K., and Pruppacher, H. R. (1980) A theoretical study of the effect of electric charges on the efficiency with which aerosol particles are collected by ice crystal plates. J. Colloid Interface Sci. 78, 44–56CrossRefGoogle Scholar
Martin, L. R. and Hill, M. W. (1987a) The iron-catalyzed oxidation of sulfur: Reconciliation of the literature rates. Atmos. Environ. 21, 1487–90CrossRefGoogle Scholar
Martin, L. R. and Hill, M. W. (1987b) The effect of ionic strength on the manganese catalyzed oxidation of sulfur(IV). Atmos. Environ. 21, 2267–70CrossRefGoogle Scholar
Mason, B. J. (1971) The Physics of Clouds. Oxford, Clarendon PressGoogle Scholar
Matsuno, T. (1966) Numerical integrations of the primitive equations by simulated backward difference scheme. J. Meteor. Soc. Japan 44, 76–84CrossRefGoogle Scholar
Mauna Loa Data Center (2001) Data for atmospheric trace gases. http://mloserv.mlo.hawaii.gov/
Maxwell J. C. (1890) The Scientific Papers of James Clerk Maxwell, Vol. II. Niven, W. D., ed., Cambridge, Cambridge University Press, 636–40Google Scholar
Garnett, Maxwell J. C. (1904) Colours in metal glasses and in metallic films. Philos. Trans. Roy. Soc. A203, 385–420CrossRefGoogle Scholar
McClelland, L., Simkin, T., Summers, M., Nielsen, E., and Stein, T. C. (eds.) (1989) Global Volcanism 1975–1985. Englewood Cliffs, NJ, Prentice-Hall, 655ppGoogle Scholar
McCumber M. C. (1980) A numerical simulation of the influence of heat and moisture fluxes upon mesoscale circulations, Ph.D. Thesis, University of Virginia, Charlottesville
McCumber, M. C. and Pielke, R. A. (1981) Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model. Part I: Soil layer. J. Geophys. Res. 86, 9929–38CrossRefGoogle Scholar
McElroy, M. B., Salawitch, R. J., Wofsy, S. C., and Logan, J. A. (1986) Reduction of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature 321, 759–62CrossRefGoogle Scholar
McGraw, R. and Saunders, J. H. (1984) A condensation feedback mechanism for oscillatory nucleation and growth. Aerosol Sci. Technol. 3, 367–80CrossRefGoogle Scholar
McMurry, P. H. and Grosjean, D. (1985) Photochemical formation of organic aerosols: growth laws and mechanisms. Atmos. Environ. 19, 1445–51CrossRefGoogle Scholar
McRae, G. J., Goodin, W. R., and Seinfeld, J. H. (1982) Development of a second-generation mathematical model for urban air pollution – I. Model formulation. Atmos. Environ. 16, 679–96CrossRefGoogle Scholar
Meador, W. E. and Weaver, W. R. (1980) Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci. 37, 630–432.0.CO;2>CrossRefGoogle Scholar
Mellor, G. L. and Yamada, T. (1974) A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31, 1791–8062.0.CO;2>CrossRefGoogle Scholar
Mellor, G. L. and Yamada, T. (1982) Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851–75CrossRefGoogle Scholar
Meng, Z. and Seinfeld, J. H. (1996) Time scales to achieve atmospheric gas–aerosol equilibrium for volatile species. Atmos. Environ. 30, 2889–900CrossRefGoogle Scholar
Meng, Z., Seinfeld, J. H., Saxena, P., and Kim, Y. P. (1995) Atmospheric gas–aerosol equilibrium: IV. Thermodynamics of carbonates. Aerosol. Sci. Technol. 23, 131–54CrossRefGoogle Scholar
Meng, Z., Dabdub, D., and Seinfeld, J. H. (1998) Size-resolved and chemically resolved model of atmospheric aerosol dynamics. J. Geophys. Res. 103, 3419–35CrossRefGoogle Scholar
Mesinger, F. and Arakawa, A. (1976) Numerical Methods Used in Atmospheric Models. GARP Publication Series. No. 17, 1. World Meteorological Organization, 64ppGoogle Scholar
Metzger, S., Dentener, F., Pandis, S., and Lelieveld, J. (2002) Gas/aerosol partitioning: 1. A computationally efficient model. J. Geophys. Res. 107 (D16) 10.1029/2001JD001102Google Scholar
Middleton, P. and Brock, J. R. (1976) Simulation of aerosol kinetics. J. Colloid Interface Sci. 54, 249–64CrossRefGoogle Scholar
Middleton, W. E. K. (1952) Vision Through the Atmosphere. Toronto, Canada, University of Toronto PressGoogle Scholar
Mihailovic, D. T., Rajkovic, B., Lalic, B., and Dekic, L. (1995) Schemes for parameterizing evaporation from a non-plant covered surface and their impact on partitioning the surface energy in land–air exchange parameterization. J. Appl. Meteor. 34, 2462–752.0.CO;2>CrossRefGoogle Scholar
Millero, F. J. (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta 59, 661–7CrossRefGoogle Scholar
Millikan, R. A. (1923) The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces. Phys. Rev. 22, 1–23CrossRefGoogle Scholar
Mitchell, A. R. (1969) Computational Methods in Partial Differential Equations. New York, John WileyGoogle Scholar
Miyakoda, K., Smagorinsky, J., Strickler, R. F., and Hembree, G. D. (1969) Experimental extended predictions with a nine-level hemispheric model. Mon. Wea. Rev. 97, 1–762.3.CO;2>CrossRefGoogle Scholar
Moeng, C. H. (1984) A large-eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 2202–162.0.CO;2>CrossRefGoogle Scholar
Molina, L. T. and Molina, M. J. (1986) Production of Cl2O2 by the self reaction of the ClO radical. J. Phys. Chem. 91, 433–6CrossRefGoogle Scholar
Molina, M. J. and Rowland, F. S. (1974) Stratospheric sink for chlorofluoromethanes: Chlorine atom catalysed destruction of ozone. Nature 249, 810–2CrossRefGoogle Scholar
Molinari, J. (1982) A method for calculating the effects of deep cumulus convection in numerical models. Mon. Wea. Rev. 11, 1527–342.0.CO;2>CrossRefGoogle Scholar
Monahan E. C., Spiel D. E., and Davidson K. L. (1986) A model of marine aerosol generation via whitecaps and wave disruption. In Oceanic Whitecaps and Their Role in Air–Sea Exchange Processes. Monahan, E. C. and MacNiocaill, G., eds., Norwell, MA, D. Reidel, 167–74Google Scholar
Monin, A. S. and Obukhov, A. M. (1954) Basic laws of turbulent mixing in the ground layer of the atmosphere. Trans. Geophys. Inst. Akad. Nauk USSR 151, 1963–87Google Scholar
Monin, A. S. and Yaglom, (1971) Statistical Fluid Mechanics. Cambridge, MA, MIT PressGoogle Scholar
Monteith, J. L. and Szeicz, G. (1962) Radiative temperature in the heat balance of natural surfaces. Q. J. Roy. Meteor. Soc. 88, 496–507CrossRefGoogle Scholar
Moorthi, S. and Suarez, M. J. (1992) Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev. 120, 978–862.0.CO;2>CrossRefGoogle Scholar
Mordy, W. (1959) Computations of the growth by condensation of a population of cloud droplets. Tellus 11, 16–44CrossRefGoogle Scholar
Mountain, R. D., Mulholland, G. W., and Baum, H. (1986) Simulation of aerosol agglomeration in the free molecular and continuum flow regimes. J. Colloid. Interface Sci. 114, 67–81CrossRefGoogle Scholar
Moya, M., Pandis, S. N., and Jacobson, M. Z. (2001) Is the size distribution of urban aerosols determined by thermodynamic equilibrium? An application to Southern California. Atmos. Environ. 36, 2349–65CrossRefGoogle Scholar
Mozurkewich, M., McMurry, P. H., Gupta, A., and Calvert, J. G. (1987) Mass accommodation coefficients for HO2 radicals on aqueous particles. J. Geophys. Res. 92, 4163–70CrossRefGoogle Scholar
Mulholland, G. W., Samson, R. J., Mountain, R. D., and Ernst, M. H. (1988) Cluster size distribution for free molecular agglomeration. Energy and Fuels 2, 481–6CrossRefGoogle Scholar
Muller, H. (1928) Zur allgemeinen Theorie der raschen Koagulation. Die koagulation von Stabchen- und Blattchen-kolloiden; die Theorie beliebig polydisperser Systeme und der Stromungskoagulation. Kolloidbeihefte 27, 223–50Google Scholar
Munger, W. J., Collett, J. Jr., Daube, B. C., and Hoffmann, M. R. (1989) Carboxylic acids and carbonyl compounds in southern California clouds and fogs. Tellus 41b, 230–42CrossRefGoogle Scholar
Mylonas, D. T., Allen, D. T., Ehrman, S. H., and Pratsinis, S. E. (1991) The sources and size distributions of organonitrates in Los Angeles aerosols. Atmos. Environ. 25A, 2855–61CrossRefGoogle Scholar
Nair, R. D., Scroggs, J. S., and Semazzi, F. H. M. (2002) Efficient conservative global transport schemes for climate and atmospheric chemistry models. Mon. Wea. Rev. 130, 2059–732.0.CO;2>CrossRefGoogle Scholar
Nakicenovic, N. and Swart, R., eds. (2000) Emissions Scenarios. A Special Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University PressGoogle Scholar
Napari, I., Noppel, M., Vehkamaki, H., and Kulmala, M. (2002) Parameterization of ternary nucleation rates for H2SO4-NH3-H2O vapors. J. Geophys. Res. 107 (D19), 4381, doi:10.1029/2002JD002132CrossRefGoogle Scholar
National Oceanic and Atmospheric Administration (NOAA) (1976) U.S. Standard Atmosphere. Washington, DC
Naumann, K.-H. (2003) COSIMA-A computer program simulating the dynamics of fractal aerosols. J. Aerosol Sci. 34, 1371–97CrossRefGoogle Scholar
Nautical Almanac Office (NAO) and Her Majesty's Nautical Almanac Office (1993) Astronomical Almanac. Washington, DC, U.S. Government Printing Office
Nebeker, F. (1995) Calculating the Weather. San Diego, Academic Press, Inc.Google Scholar
Nenes, A., Pandis, S. N., and Pilinis, C. (1998) ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 4, 123–52CrossRefGoogle Scholar
Nenes, A., Pandis, S. N., and Pilinis, C. (1999) Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality. Atmos. Environ. 33, 1553–1560CrossRefGoogle Scholar
Nesbitt, F. L., Monks, P. S., Wayne, W. A., Stief, L. J., and Touni, R. (1995) The reaction of O(3P) + HOBr: Temperature dependence of the rate constant and importance of the reaction as an HOBr loss process. Geophys. Res. Lett. 22, 827–30CrossRefGoogle Scholar
Nguyen, K. and Dabdub, D. (2001) Two-level time-marching scheme using splines for solving the advection equation. Atmos. Environ. 35, 1627–37CrossRefGoogle Scholar
Nguyen, K. and Dabdub, D. (2002) Semi-Lagrangian flux scheme for the solution of the aerosol condensation/ evaporation equation. Aerosol Sci. Technol. 36, 407–418CrossRefGoogle Scholar
Nicolet, M. (1989) Solar spectral irradiances with their diversity between 120 and 900 nm. Planet. Space Sci. 37, 1249–89CrossRefGoogle Scholar
Noilhan, J. and Planton, S. (1989) A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev. 117, 536–492.0.CO;2>CrossRefGoogle Scholar
Noll, K. E., Fang, K. Y. P., and Khalili, E. (1990) Characterization of atmospheric coarse particles in the Los Angeles Basin. Aerosol Sci. Technol. 12, 28–38CrossRefGoogle Scholar
Odum, J. R., Hoffmann, T., Bowman, F., Collins, T., Flagan, R. C., and Seinfeld, J. H. (1996) Gas-particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 30, 2580–5CrossRefGoogle Scholar
Ogura, Y. and Phillips, N. A. (1962) Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173–92.0.CO;2>CrossRefGoogle Scholar
Okada, K. and Hitzenberger, R. (2001) Mixing properties of individual submicrometer particles in Vienna. Atmos. Environ. 35, 5617–28CrossRefGoogle Scholar
Oke, T. R. (1978) Boundary Layer Climates. London, MethuenCrossRefGoogle Scholar
Oke, T. R., Spronken-Smith, R. A., Jauregui, E., and Grimmond, C. S. B. (1999) The energy balance of central Mexico City during the dry season. Atmos. Environ. 33, 3919–30CrossRefGoogle Scholar
Okuyama, K., Kousaka, Y., and Hayashi, K. (1984) Change in size distribution of ultrafine aerosol particles undergoing Brownian coagulation. J. Colloid Interface Sci. 101, 98–109CrossRefGoogle Scholar
Olscamp, P. J., translator (1965) Discourse on Method, Optics, Geometry, and Meteorology by René Descartes. Indianapolis, Bobbs-Merrill Company, Inc.Google Scholar
Ooyama, V. K. (1971) A theory on parameterization of cumulus convection. J. Meteor. Soc. Japan 49, 744–56CrossRefGoogle Scholar
Orszag, S. A. (1970) Transform method for calculation of vector coupled sums: Application to the spectral form of the vorticity equation. J. Atmos. Sci. 27, 890–52.0.CO;2>CrossRefGoogle Scholar
Orszag, S. A. (1971) Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representations. Stud. Appl. Math. 50, 293–326CrossRefGoogle Scholar
Orville, H. D. and Kopp, F. J. (1977). Numerical simulations of the history of a hailstorm. J. Atmos. Sci. 34, 1596–6182.0.CO;2>CrossRefGoogle Scholar
Osborne, N. S., Stimson, H. F., and Ginnings, D. C. (1939) Measurements of heat capacity and heat of vaporization of water in the range of 0 degrees to 100 degrees celsius. J. Res. Nat. Bur. Stand. 23, 197–260CrossRefGoogle Scholar
Pandis, S. N. and Seinfeld, J. H. (1989) Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry. J. Geophys. Res. 94, 1105–26CrossRefGoogle Scholar
Pandis, S. N., Harley, R. A., Cass, G. R., and Seinfeld, J. H. (1992) Secondary organic aerosol formation and transport. Atmos. Environ. 26A, 2269–82CrossRefGoogle Scholar
Pandis, S. N., Russell, L. M., and Seinfeld, J. H. (1994) The relationship between DMS flux and CCN concentration in remote marine regions. J. Geophys. Res. 99, 16945–57CrossRefGoogle Scholar
Park J.-Y. and Lee Y.-N. (1987) Aqueous solubility and hydrolysis kinetics of peroxynitric acid. Paper presented at 193rd Meeting, American Chemical Society, Denver, CO, April 5–10
Parker, V. B. (1965) Thermal Properties of Aqueous Uni-univalent Electrolytes. National Standard Reference Data Series – NBS 2. U.S. Government Printing Office, Washington, DCCrossRefGoogle Scholar
Parkinson, C. L. and Washington, W. M. (1979) A large-scale numerical model for sea ice. J. Geophys. Res. 84, 311–37CrossRefGoogle Scholar
Pasquill, F. (1962) Atmospheric Diffusion. London, Van NostrandGoogle Scholar
Paulson, S. E. and Seinfeld, J. H. (1992) Development and evaluation of a photooxidation mechanism for isoprene. J. Geophys. Res. 97, 20, 703–15CrossRefGoogle Scholar
Peng, C., Chan, M. N., and Chan, C. K. (2001) The hygroscopic properties of dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions. Environ. Sci. Technol. 35, 4495–501CrossRefGoogle ScholarPubMed
Pepper, D. W., Kern, C. D., and Long, P. E. Jr. (1979) Modeling the dispersion of atmospheric pollution using cubic splines and chapeau functions. Atmos. Environ. 13, 223–37CrossRefGoogle Scholar
Perrin, D. D. (1982) Ionization Constants of Inorganic Acids and Bases in Aqueous Solution, 2nd edn. New York, PergamonGoogle Scholar
Perron, G., Roux, A., and Desnoyers, J. E. (1981) Heat capacities and volumes of NaCl, MgCl2, CaCl2, and NiCl2 up to 6 molal in water. Can. J. Chem. 59, 3049–54CrossRefGoogle Scholar
Petersen, R. L. (1997) A wind tunnel evaluation of methods for estimating surface roughness length at industrial facilities. Atmos. Environ. 31, 45–57CrossRefGoogle Scholar
Philip, J. R. (1957) Evaporation, and moisture and heat fields in the soil. J. Meteor. 14, 354–662.0.CO;2>CrossRefGoogle Scholar
Phillips, N. A. (1957) A coordinate system having some special advantages for numerical forecasting. J. Meteor. 14, 184–52.0.CO;2>CrossRefGoogle Scholar
Pielke, R. A. (1984) Mesoscale Meteorological Modeling. San Diego, Academic Press, IncGoogle Scholar
Pilinis, C. and Seinfeld, J. H. (1987) Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols. Atmos. Environ. 21, 2453–66CrossRefGoogle Scholar
Pilinis, C. and Seinfeld, J. H. (1988) Development and evaluation of an eulerian photochemical gas-aerosol model. Atmos. Environ. 22, 1985–2001CrossRefGoogle Scholar
Pilinis, C., Capaldo, K. P., Nenes, A., and Pandis, S. N. (2000) MADM-A new multicomponent aerosol dynamics model. Aerosol Sci. Technol. 32, 482–502CrossRefGoogle Scholar
Pinto, J. P., Turco, R. P., and Toon, O. B. (1989) Self-limiting physical and chemical effects in volcanic eruption clouds. J. Geophys. Res. 94, 11, 165CrossRefGoogle Scholar
Pitter, R. L. and Pruppacher, H. R. (1973) A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air. Q. J. Roy. Meteor. Soc. 99, 540–50CrossRefGoogle Scholar
Pitzer K. S. (1991) Ion interaction approach: Theory and data correlation. In Activity Coefficients in Electrolyte Solutions, 2nd edn. Pitzer, K. S., ed., Boca Raton, FL, CRC Press, 75–153Google Scholar
Pitzer, K. S. and Mayorga, G. (1973) Thermodynamics of electrolytes II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–8CrossRefGoogle Scholar
Pollack, J. B. and Cuzzi, J. N. (1980) Scattering by nonspherical particles of size comparable to a wavelength: A new semi-empirical theory and its application to tropospheric aerosols. J. Atmos. Sci. 37, 868–812.0.CO;2>CrossRefGoogle Scholar
Pooley F. D. and Mille M. (1999) Composition of air pollution particles. In Air Pollution and Health. Holgate, S. T., Samet, J. M., Koren, H. S., and Maynard, R. L., eds., San Diego, Academic Press, 619–34Google Scholar
Potter, J. F. (1970) The delta-function approximation in radiative transfer theory. J. Atmos. Sci. 27, 943–92.0.CO;2>CrossRefGoogle Scholar
Prather, M. J. (1986) Numerical advection by conservation of second-order moments. J. Geophys. Res. 91, 6671–81CrossRefGoogle Scholar
Pratsinis, S. E. (1988) Simultaneous nucleation, condensation, and coagulation in aerosol reactors. J. Colloid Interface Sci. 124, 416–27CrossRefGoogle Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1992). Numerical Recipes: The Art of Scientific Computing. Cambridge, Cambridge University PressGoogle Scholar
Price, C., Penner, J., and Prather, M. (1997) NOx from lightning 1. Global distribution based on lightning physics. J. Geophys. Res. 102, 5929–41CrossRefGoogle Scholar
Price, G. V. and MacPherson, A. K. (1973) A numerical weather forecasting method using cubic splines on a variable mesh. J. Appl. Meteor. 12, 1102–132.0.CO;2>CrossRefGoogle Scholar
Pruppacher, H. R. and Klett, J. D. (1997) Microphysics of Clouds and Precipitation, 2nd rev. and enl. edn., Dordrecht, Kluwer Academic PublishersGoogle Scholar
Pruppacher, H. R. and Rasmussen, R. (1979) A wind tunnel investigation of the rate of evaporation of large water drops falling at terminal velocity in air. J. Atmos. Sci. 36, 1255–602.0.CO;2>CrossRefGoogle Scholar
Purnell, D. K. (1976) Solution of the advection equation by upstream interpolation with a cubic spline. Mon. Wea. Rev. 104, 42–82.0.CO;2>CrossRefGoogle Scholar
Rahmes, T. F., Omar, A. H., and Wuebbles, D. J. (1998) Atmospheric distributions of soot particles by current and future aircraft fleets and resulting radiative forcing on climate. J. Geophys. Res. 103, 31, 657–67CrossRefGoogle Scholar
Rao, N. P. and McMurry, P. H. (1989) Nucleation and growth of aerosol in chemically reacting systems. Aerosol Sci. Technol. 11, 120–33CrossRefGoogle Scholar
Raoult, F.-M. (1887) General law of the vapor pressure of solvents. Comptes Rendus 104, 1430–3Google Scholar
Rasch, P. J. (1994) Conservative shape-preserving two-dimensional transport on a spherical grid. Mon. Wea. Rev. 122, 1337–502.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R. and Pruppacher, H. R. (1982) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: A wind tunnel study of frozen drops of radius <500 mm. J. Atmos. Sci. 39, 152–82.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R., Levizzani, M. V., and Pruppacher, H. R. (1984) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. II: A theoretical study for frozen drops of radius <500 mm. J. Atmos. Sci. 41, 374–802.0.CO;2>CrossRefGoogle Scholar
Reid, J. S. and Hobbs, P. V. (1998) Physical and optical properties of young smoke from individual biomass fires in Brazil. J. Geophys. Res. 103, 32, 013–30CrossRefGoogle Scholar
Reid, J. S., Hobbs, P. V., Ferek, R. J., et al. (1998) Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil. J. Geophys. Res. 103, 32, 059–80CrossRefGoogle Scholar
Reisin, T., Levin, Z., and Tzivion, S. (1996) Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci. 53, 497–5192.0.CO;2>CrossRefGoogle Scholar
Reynolds, S. D., Roth, P. M., and Seinfeld, J. H. (1973) Mathematical modeling of photochemical air pollution – I: Formulation of the model. Atmos. Environ. 7, 1033–61CrossRefGoogle Scholar
Richardson, L. F. (1922) Weather Prediction by Numerical Process. Cambridge, Cambridge University Press, reprinted 1965, 236ppGoogle Scholar
Robert, A. (1982) A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Japan Meteor. Soc. 60, 319–25CrossRefGoogle Scholar
Robinson, R. A. and Stokes, R. H. (1955) Electrolyte Solutions. New York, Academic PressGoogle Scholar
Rogak, S. N. and Flagan, R. C. (1992) Coagulation of aerosol agglomerates in the transition regime. J. Colloid Interface Sci. 151, 203–24CrossRefGoogle Scholar
Rogers, R. R. and Yau, M. K. (1989) A Short Course in Cloud Physics. Oxford, Pergamon PressGoogle Scholar
Rosenbaum, J. S. (1976) Conservation properties of numerical integration methods for systems of ordinary differential equations. J. Comp. Phys. 20, 259–67CrossRefGoogle Scholar
Ross, A. B. and Neta, P. (1979) Rate Constants for Reactions of Inorganic Radicals in Aqueous Solutions. NSRDS-NBS 65. National Bureau of Standards, U.S. Department of Commerce, Washington, DCCrossRefGoogle Scholar
Rossby, C. and collaborators (1939) Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Marine Res. 2, 38–55CrossRefGoogle Scholar
Rothman, L. S., et al. (2003) The HITRAN molecular spectroscopic database: Edition of 2000 including updates of 2001. J. Quant. Spectrosc. Radiat. Transfer 82, 5–44CrossRefGoogle Scholar
Roux, A., Musbally, G. M., Perron, G., et al. (1978) Apparent molal heat capacities and volumes of aqueous electrolytes at 25 °C: NaClO3, NaClO4, NaNO3, NaBrO3, NaIO3, KClO3, KBrO3, KIO3, NH4NO3, NH4Cl, and NH4ClO4. Can. J. Chem. 56, 24–8CrossRefGoogle Scholar
Russell, A. G., Winner, D. A., Harley, R. A., McCue, K. F., and Cass, G. R. (1993) Mathematical modeling and control of the dry deposition flux of nitrogen-containing air pollutants. Environ. Sci. Technol. 27, 2772–82CrossRefGoogle Scholar
Russell, L. M., Pandis, S. N., and Seinfeld, J. H. (1994) Aerosol production and growth in the marine boundary layer. J. Geophys. Res. 99, 20, 989–21, 003CrossRefGoogle Scholar
Saffman, P. G. and Turner, J. S. (1956) On the collision of drops in turbulent clouds. J. Fluid Mech. 1, 16–30CrossRefGoogle Scholar
Sander, R., Lelieveld, J., and Crutzen, P. J. (1995) Modelling of nighttime nitrogen and sulfur chemistry in size resolved droplets of an orographic cloud. J. Atmos. Chem. 20, 89–116CrossRefGoogle Scholar
Sandu, A. (2001) Positive numerical integration methods for chemical kinetic systems. J. Comp. Phys. 170, 589–602CrossRefGoogle Scholar
Sandu, A. (2002) A Newton–Cotes quadrature approach for solving the aerosol coagulation equation. Atmos. Environ. 36, 583–9CrossRefGoogle Scholar
Sandu, A., Verwer, J. G., Loon, M., et al. (1997) Benchmarking stiff ODE solvers for atmospheric chemistry problems X: Implicit versus explicit. Atmos. Environ. 31, 3151–66CrossRefGoogle Scholar
San Jose, R., Casanova, J. L., Viloria, R. E., and Casanova, J. (1985) Evaluation of the turbulent parameters of the unstable surface boundary layer outside Businger's range. Atmos. Environ. 19, 1555–61CrossRefGoogle Scholar
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J. (2003) Protocol for the development of the Mater Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 3, 161–80CrossRefGoogle Scholar
Saxena, P., Hudischewskyj, A. B., Seigneur, C., and Seinfeld, J. H. (1986) A comparative study of equilibrium approaches to the chemical characterization of secondary aerosols. Atmos. Environ. 20, 1471–83CrossRefGoogle Scholar
Saxena P., Mueller P. K., and Hildemann L. M. (1993) Sources and chemistry of chloride in the troposphere: A review. In Managing Hazardous Air Pollutants: State of the Art. Chow, W. and Connor, K. K., eds., Boca Raton, FL, Lewis Publishers, 173–90Google Scholar
Schmidt, K. H. (1972) Electrical conductivity techniques for studying the kinetics of radiation-induced chemical reactions in aqueous solutions. Int. J. Radiat. Phys. Chem. 4, 439–68CrossRefGoogle Scholar
Schmidt-Ott, A. and Burtscher, H. (1982) The effect of van der Waals forces on aerosol coagulation. J. Colloid Interface Sci. 89, 353–7CrossRefGoogle Scholar
Schnaiter, M., Horvath, H., Mohler, O., Naumann, K.-H., Saathoff, H., and Schock, O. W. (2003) UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J. Aerosol Sci. 34, 1421–44CrossRefGoogle Scholar
Schneider, W., Moortgat, G. K., Tyndall, G. S., and Burrows, J. P. (1987) Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K. J. Photochem. Photobiol, A: Chem. 40, 195–217CrossRefGoogle Scholar
Scholes, G. and Willson, R. L. (1967) γ-radiolysis of aqueous thymine solutions. Determination of relative reaction rates of OH radicals. Trans. Faraday Soc. 63, 2982–93CrossRefGoogle Scholar
Schroeder, W. H., Dobson, M., Kane, D. M., and Johnson, N. D. (1987) Toxic trace elements associated with airborne particulate matter: a review. J. Air Pollut. Control Assoc. 37, 1267–85Google ScholarPubMed
Schwartz, S. E. (1984) Gas- and aqueous-phase chemistry of HO2 in liquid water clouds. J. Geophys. Res. 89, 11, 589–98CrossRefGoogle Scholar
Schwartz S. E. (1986) Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds. In Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, Vol. G6. Jaeschke, W., ed., Berlin, Springer-Verlag, 415–71CrossRefGoogle Scholar
Schwartz, S. E. and White, W. H. (1981) Solubility equilibria of the nitrogen oxides and oxyacids in aqueous solution. Adv. Environ. Sci. Eng. 4, 1–45Google Scholar
Seaman, N. L., Ludwig, F. L., Donall, E. G., Warner, T. T., and Bhumralkar, C. M. (1989) Numerical studies of urban planetary boundary-layer structure under realistic synoptic conditions. J. Appl. Meteor. 28, 760–812.0.CO;2>CrossRefGoogle Scholar
Seery, D. J. and Britton, D. (1964) The continuous absorption spectra of chlorine, bromine, bromine chloride, iodine chloride, and iodine bromide. J. Phys. Chem. 68, 2263–6CrossRefGoogle Scholar
Sehested, K., Rasmussen, O. L., and Fricke, H. (1968) Rate constants of OH with HO2, O2−, and H2O2+ from hydrogen peroxide formation in pulse-irradiated oxygenated water. J. Phys. Chem. 72, 626–31CrossRefGoogle Scholar
Sehmel, G. A. (1980) Particle and gas dry deposition: A review. Atmos. Environ. 14, 983–1011CrossRefGoogle Scholar
Seinfeld, J. H. and Pandis, S. N. (1998) Atmospheric Chemistry and Physics. New York, Wiley-InterscienceGoogle Scholar
Sellers, W. D. (1965) Physical Climatology. Chicago, University of Chicago Press, 272ppGoogle Scholar
Sellers, P. J., Los, S. O., Tucker, C. J., et al. (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Clim. 9, 706–372.0.CO;2>CrossRefGoogle Scholar
Shao, Y. (2001) A model for mineral dust emission. J. Geophys. Res. 106, 20239–54CrossRefGoogle Scholar
Shao, Y., Raupach, M. R., and Leys, J. F. (1996) A model for predicting Aeolian sand drift and dust entrainment on scales from paddock to region. Aust. J. Soil Res. 34, 309–42CrossRefGoogle Scholar
Shen T.-L., Wooldridge P. J., and Molina M. J. (1995) Stratospheric pollution and ozone depletion. In Composition, Chemistry, and Climate of the Atmosphere. Singh, H. B., ed., New York, Van Nostrand ReinholdGoogle Scholar
Sheridan, P. J., Brock, C. A., and Wilson, J. C. (1994) Aerosol particles in the upper troposphere and lower stratosphere: Elemental composition and morphology of individual particles in northern midlatitudes. Geophys. Res. Lett. 21, 2587–90CrossRefGoogle Scholar
Sherman A. H. and Hindmarsh A. C. (1980) GEARS: A Package for the Solution of Sparse, Stiff Ordinary Differential Equations. Report UCRL-84102, Lawrence Livermore Laboratory
Shimazaki, T. and Laird, A. R. (1970) A model calculation of the diurnal variation in minor neutral constituents in the mesosphere and lower thermosphere including transport effects. J. Geophys. Res. 75, 3221–35CrossRefGoogle Scholar
Shir, C. C. and Bornstein, R. D. (1976) Eddy exchange coefficients in numerical models of the planetary boundary layer. Boundary-Layer Meteor. 11, 171–85CrossRefGoogle Scholar
Shuttleworth, W. J. (1989) Micrometeorology of temperate and tropical forest. Phil. Trans. Roy. Soc. London B324, 299–334CrossRefGoogle Scholar
Siegel, R. and Howell, J. R. (1992) Thermal Radiation Heat Transfer. Washington, DC, Taylor and FrancisGoogle Scholar
Singh H. B. (1995) Halogens in the atmospheric environment. In Composition, Chemistry, and Climate of the Atmosphere. Singh, H. B., ed., New York, Van Nostrand ReinholdGoogle Scholar
Singh, H. B., Viezee, W., and Salas, L. J. (1988) Measurements of selected C2-C5 hydrocarbons in the troposphere: Latitudinal, vertical, and temporal variations. J. Geophys. Res. 93, 15, 861–78CrossRefGoogle Scholar
Singh, H. B., Kanakidou, M., Crutzen, P. J., and Jacob, D. J. (1995) High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature 378, 50–4CrossRefGoogle Scholar
Singh, H. B., Herlth, D., Kolyer, R., et al. (1996) Reactive nitrogen and ozone over the western Pacific: Distributions, partitioning, and sources. J. Geophys. Res. 101, 1793–808CrossRefGoogle Scholar
Skamarock, W. C. and Klemp, J. B. (1992) The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Wea. Rev. 120, 2109–272.0.CO;2>CrossRefGoogle Scholar
Skamarock, W. C., Dye, J. E., Defer, E., Barth, M. C., Stith, J. L., and Ridley, B. A. (2003) Observational- and modeling-based budget of lightning-produced NOx in a continental thunderstorm. J. Geophys. Res. 108 (D10), 4305, doi:10.1029/2002JD002163CrossRefGoogle Scholar
Slinn, W. G. N., Hasse, L., Hicks, B. B., et al. (1978) Some aspects of the transfer of atmospheric trace constituents past the air–sea interface. Atmos. Environ. 12, 2055–87CrossRefGoogle Scholar
Smith, M. H. and Harrison, N. M. (1998) The sea spray generation function. J. Aerosol Sci. 29, Suppl. 1, S189–S190CrossRefGoogle Scholar
Smith, R. M. and Martell, A. E. (1976) Critical Stability Constants, Vol. 4: Inorganic Complexes. New York, PlenumCrossRefGoogle Scholar
Smolarkiewicz, P. K. (1983) A simple positive definite advection scheme with small implicit diffusion. Mon. Wea. Rev. 111, 479–862.0.CO;2>CrossRefGoogle Scholar
Smoluchowski, M. V. (1918) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92, 129–68Google Scholar
Snider, J. R. and Dawson, G. A. (1985) Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry's law data. J. Geophys. Res. 90, 3797–805CrossRefGoogle Scholar
Snyder, J. P. (1987) Map Projections – A Working Manual. U.S. Geological Survey professional paper 1395, U.S. Government Printing Office, WashingtonGoogle Scholar
Sokolik, I., Andronova, A., and Johnson, C. (1993) Complex refractive index of atmospheric dust aerosols. Atmos. Environ. 27A, 2495–502CrossRefGoogle Scholar
Solomon, S., Garcia, R. R., Rowland, F. S., and Wuebbles, D. J. (1986) On the depletion of Antarctic ozone. Nature 321, 755–7CrossRefGoogle Scholar
Sommer, L. (1989) Analytical Absorption Spectrophotometry in the Visible and Ultraviolet. Amsterdam, ElsevierGoogle Scholar
Spencer, J. W. (1971) Fourier series representation of the position of the Sun. Search 2, 172Google Scholar
Stam, D. M., Haan, J. F., Hovenier, J. W., and Stammes, P. (2000) A fast method for simulating observations of polarized light emerging from the atmosphere applied to the oxygen-A band. J. Quant. Spectrosc. Radiat. Transfer 64, 131–49CrossRefGoogle Scholar
Staniforth, A. and Cote, J. (1991) Semi-Lagrangian integration schemes for atmospheric models – a review. Mon. Wea. Rev. 119, 2206–232.0.CO;2>CrossRefGoogle Scholar
Steiner, D., Burtchnew, H., and Grass, H. (1992) Structure and disposition of particles from a spark ignition engine. Atmos. Environ. 26, 997–1003CrossRefGoogle Scholar
Stelson A. W., Bassett M. E., and Seinfeld J. H. (1984) Thermodynamic equilibrium properties of aqueous solutions of nitrate, sulfate and ammonium. In Chemistry of Particles, Fogs and Rain. Durham, J. L., ed., Ann Arbor, MI, Ann Arbor Publication, 1–52Google Scholar
Stephens, E. R., Scott, W. E., Hanst, P. L., and Doerr, R. C. (1956) Recent developments in the study of the organic chemistry of the atmosphere. J. Air Pollut. Contr. Assoc. 6, 159–65CrossRefGoogle Scholar
Stockwell, W. R. (1986) A homogeneous gas-phase mechanism for use in a regional acid deposition model. Atmos. Environ. 20, 1615–32CrossRefGoogle Scholar
Stockwell, W. R. (1995) On the HO2 + HO2 reaction: Its misapplication in atmospheric chemistry models. J. Geophys. Res. 100, 11, 695–8CrossRefGoogle Scholar
Stoer, J. and Bulirsch, R. (1980) Introduction to Numerical Analysis. New York, Springer-VerlagCrossRefGoogle Scholar
Stokes, R. H. and Robinson, R. A. (1966) Interactions in aqueous nonelectrolyte solutions.. Solute–solvent equilibria. J. Phys. Chem. 70, 2126–30CrossRefGoogle Scholar
Stommel, H. (1947) Entrainment of air into a cumulus cloud. Part I. J. Appl. Meteor. 4, 91–42.0.CO;2>CrossRefGoogle Scholar
Streets, D. G. and Waldhoff, S. T. (1998) Biofuel use in Asia and acidifying emissions, Energy 23, 1029–42CrossRefGoogle Scholar
Streets, D. G. and Waldhoff, S. T. (1999) Greenhouse-gas emissions from biofuel combustion in Asia. Energy 24, 841–55CrossRefGoogle Scholar
Strom, J., Okada, K., and Heintzenber, J. (1992) On the state of mixing of particles due to Brownian coagulation. J. Aerosol Sci. 23 467–80CrossRefGoogle Scholar
Stuart A. L. (2002) Volatile chemical partitioning during cloud hydrometeor freezing and its effects on tropospheric chemical distributions. Ph. D. Thesis, Stanford University
Stull, R. B. (1988) An Introduction to Boundary Layer Meteorology. Dordrecht, Kluwer Academic PublishersCrossRefGoogle Scholar
Stumm, W. and Morgan, J. J. (1981) Aquatic Chemistry. New York, Wiley Interscience, 780ppGoogle Scholar
Suck, S. H. and Brock, J. R. (1979) Evolution of atmospheric aerosol particle size distributions via Brownian coagulation: Numerical simulation. J. Aerosol Sci. 10, 581–90CrossRefGoogle Scholar
Sukhatme, S. P. and Saikhedkar, N. (1969) Heat capacities of glycerol-water mixtures and aqueous solutions of ammonium sulfate, ammonium nitrate and strontium nitrate. Ind. J. Technol. 7, 1–4Google Scholar
Sun, Q. and Wexler, A. S. (1998) Modeling urban and regional aerosols – condensation and evaporation near acid neutrality. Atmos. Environ. 32, 3527–31CrossRefGoogle Scholar
Tabazadeh, A. and Turco, R. P. (1993a) Stratospheric chlorine injection by volcanic eruptions: HCl scavenging and implications for ozone. Science 260, 1082–6CrossRefGoogle Scholar
Tabazadeh, A. and Turco, R. P. (1993b) A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles. J. Geophys. Res. 98, 12, 727–40CrossRefGoogle Scholar
Tabazadeh, A., Turco, R. P., Drdla, K., and Jacobson, M. Z. (1994) A study of Type I polar stratospheric cloud formation. Geophys. Res. Lett. 21, 1619–22CrossRefGoogle Scholar
Tabazadeh, A., Djikaev, Y. S., and Reiss, H. (2002) Surface crystallization of supercooled water in clouds. Proc. Nat. Acad. Sci. 99 15, 873–8CrossRefGoogle ScholarPubMed
Tang, I. N. (1996) Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J. Geophys. Res. 101, 19, 245–50CrossRefGoogle Scholar
Tang, I. N. (1997) Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance. J. Geophys. Res. 102, 1883–93CrossRefGoogle Scholar
Tang, I. N. and Munkelwitz, H. R. (1993) Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmos. Environ. 27A, 467–73CrossRefGoogle Scholar
Tang, I. N. and Munkelwitz, H. R. (1994) Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res. 99, 18, 801–8CrossRefGoogle Scholar
Tang, I. N., Wong, W. T., and Munkelwitz, H. R. (1981) The relative importance of atmospheric sulfates and nitrates in visibility reduction. Atmos. Environ. 15, 2463–71CrossRefGoogle Scholar
Tanguay, M., Robert, A., and Laprise, R. (1990) A semiimplicit semiLagrangian fully-compressible regional forecast model. Mon. Wea. Rev. 118, 1970–802.0.CO;2>CrossRefGoogle Scholar
Tao, Y. and McMurry, P. H. (1989) Vapor pressures and surface free energies of C14-C19 monocarboxylic acids and C5-dicarboxylic and C6-dicarboxylic acids. Environ. Sci. Technol. 25, 1788–93Google Scholar
Tapp, M. C. and White, P. W. (1976) A nonhydrostatic mesoscale model. Quart. J. Roy. Meteor. Soc. 102, 277–96CrossRefGoogle Scholar
Tegen, I., Lacis, A. A., and Fung, I. (1996) The influence on climate forcing of mineral aerosols from disturbed soils. Nature 380, 419–22CrossRefGoogle Scholar
Terry, D. A., McGraw, R., and Rangel, R. H. (2001) Method of moments solutions for a laminar flow aerosol reactor model. Aerosol Sci. Technol. 34, 353–62CrossRefGoogle Scholar
Tesche, T. W. (1988) Accuracy of ozone air quality models. J. Environ. Eng. 114, 739–52CrossRefGoogle Scholar
Thekaekara, M. P. (1974) Extraterrestrial solar spectrum, 3000–6100 Å at 1- Å intervals. Appl. Opt. 13, 518–22CrossRefGoogle ScholarPubMed
Thompson, N., Barrie, N., and Ayles, M. (1981) The meteorological office rainfall and evaporation calculation system: MORECS. Hydrol. Memo. 45, 1–69Google Scholar
Thuburn, J. (1996) Multidimensional flux-limited advection schemes. J. Comp. Phys. 123, 74–83CrossRefGoogle Scholar
Thuburn, J. (1997) TVD schemes, positive schemes, and the universal limiter. Mon. Wea. Rev. 125, 1990–32.0.CO;2>CrossRefGoogle Scholar
Tiedtke, M. (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev. 117, 1779–8002.0.CO;2>CrossRefGoogle Scholar
Tjernstrom, M. (1993) Turbulence length scales in stably stratified free shear flow analyzed from slant aircraft profiles. J. Appl. Meteor. 32, 948–632.0.CO;2>CrossRefGoogle Scholar
Toon, O. B. and Ackerman, T. P. (1981) Algorithms for the calculation of scattering by stratified spheres. Appl. Opt. 20, 3657–60CrossRefGoogle ScholarPubMed
Toon, O. B., Hamill, P., Turco, R. P., and Pinto, J. (1986) Condensation of HNO3 and HCl in the winter polar stratospheres. Geophys. Res. Lett. Nov. Supp. 13, 1284–7CrossRefGoogle Scholar
Toon, O. B., Turco, R. P., Westphal, D., Malone, R., and Liu, M. S. (1988) A multidimensional model for aerosols: Description of computational analogs. J. Atmos. Sci. 45, 2123–432.0.CO;2>CrossRefGoogle Scholar
Toon, O. B., McKay, C. P., and Ackerman, T. P. (1989a) Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res. 94, 16, 287–301CrossRefGoogle Scholar
Toon, O. B., Turco, R. P., Jordan, J., Goodman, J., and Ferry, G. (1989b) Physical processes in polar stratospheric ice clouds. J. Geophys. Res. 94, 11, 359–80CrossRefGoogle Scholar
Trautmann, T. and Wanner, C. (1999) A fast and efficient modified sectional method for simulating multicomponent collisional kinetics. Atmos. Environ. 33, 1631–40CrossRefGoogle Scholar
Tremback, C. J., Powell, J., Cotton, W. R., and Pielke, R. A. (1987) The forward-in-time upstream advection scheme: Extension to higher orders. Mon. Wea. Rev. 115, 540–552.0.CO;2>CrossRefGoogle Scholar
Troe, J. (1979) Predictive possibilities of unimolecular rate theory. J. Phys. Chem. 83, 114–26CrossRefGoogle Scholar
Tsang, T. H. and Brock, J. R. (1982) Aerosol coagulation in the plume from a cross-wind line source. Atmos. Environ. 16, 2229–35CrossRefGoogle Scholar
Tsang, T. H. and Brock, J. R. (1986) Simulation of condensation aerosol growth by condensation and evaporation. Aerosol Sci. Technol. 5, 385–8CrossRefGoogle Scholar
Tsang, T. H. and Huang, L. K. (1990) On a Petrov–Galerkin finite element method for evaporation of polydisperse aerosols. Aerosol Sci. Technol. 12, 578–97CrossRefGoogle Scholar
Tsang, T. H. and Korgaonkar, N. (1987) Effect of evaporation on the extinction coefficient of an aerosol cloud. Aerosol Sci. Technol. 7, 317–28CrossRefGoogle Scholar
Turco, R. P. and Whitten, R. C. (1974) A comparison of several computational techniques for solving some common aeronomic problems. J. Geophys. Res. 79, 3179–85CrossRefGoogle Scholar
Turco R. P., Hamill P., Toon O. B., Whitten R. C., and Kiang C. S. (1979) The NASA-Ames Research Center Stratospheric Aerosol Model: I. Physical Processes and Computational Analogs. NASA Technical Publication (TP) 1362, ⅲ–94
Turco, R. P., Toon, O. B., Whitten, R. C., Keesee, R. G., and Hollenbach, D. (1982) Noctilucent clouds: Simulation studies of their genesis, properties and global influence. Planet. Space Sci. 30, 1147–81CrossRefGoogle Scholar
Turco, R. P., Toon, O. B., and Hamill, P. (1989) Heterogeneous physiochemistry of the polar ozone hole. J. Geophys. Res. 94, 16, 493–510CrossRefGoogle Scholar
Twohy, C. H., Clarke, A. D., Warren, S. G., Radke, L. F., and Charlson, R. J. (1989) Light-absorbing material extracted from cloud droplets and its effect on cloud albedo. J. Geophys. Res. 94, 8623–31CrossRefGoogle Scholar
Tyndall, G. S. and Ravishankara, A. R. (1991) Atmospheric oxidation of reduced sulfur species. Int. J. Chem. Kinet. 23, 483–527CrossRefGoogle Scholar
Tzivion, S., Feingold, G., and Levin, Z. (1987) An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci. 44, 3139–492.0.CO;2>CrossRefGoogle Scholar
U.S. Department of the Army (1958) Universal Transverse Mercator Grid. Tables for Transformation of Coordinates from Grid to Geographic; Clarke 1866 Spheroid. U.S. Government Printing Office, Washington, DC
U.S. Environmental Protection Agency (USEPA) (1978) Air Quality Criteria for Ozone and Other Photochemical Oxidants. Report No. EPA-600/8-78-004
Vali, G. (1971) Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci. 28, 402–92.0.CO;2>CrossRefGoogle Scholar
Hulst, H. C. (1957) Light Scattering by Small Particles. New York, John Wiley and Sons, Inc.Google Scholar
Vanderzee, C. E., Waugh, D. H., and Haas, N. C. (1980) Enthalpies of dilution and relative apparent molar enthalpies of aqueous ammonium nitrate. The case of a weakly hydrolysed (dissociated) salt. J Chem. Thermodynam. 12, 21–5CrossRefGoogle Scholar
Dingenen, R. and Raes, F. (1993) Ternary nucleation of methane sulphonic acid, sulphuric acid and water vapour. J. Aerosol Sci. 24, 1–17CrossRefGoogle Scholar
Doren, J. M., Watson, L. R., Davidovits, P., Worsnop, D. R., Zahniser, S., and Kolb, C. E. (1990) Temperature dependence of the uptake coefficients of HNO3, HCl, and N2O5 by water droplets. J. Phys. Chem. 94, 3256–69Google Scholar
Genuchten, M. T. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Ann. Geophys. 3, 615–28Google Scholar
Weele, M. and Duynkerke, P. G. (1993) Effects of clouds on the photodissociation of NO2: Observation and modelling. J. Atmos. Chem. 16, 231–55CrossRefGoogle Scholar
Zandt, T. E. and Fritts, D. C. (1989) A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability. Pure Appl. Geophys. Pageoph. 130, 399–420Google Scholar
Varoglu, E. and Finn, W. D. L. (1980) Finite elements incorporating characteristics for one-dimensional diffusion-convection equation. J. Comp. Phys. 34, 371–89CrossRefGoogle Scholar
Vehkamaki, H., Kulmala, M., Napari, I., et al. (2002) An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions. J. Geophys. Res. 107 (D22), 4622, doi:10.1029/2002JD002184CrossRefGoogle Scholar
Venkataraman, C. and Friedlander, S. K. (1994) Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 2. Ambient measurements and effects of atmospheric processes. Environ. Sci. Technol. 28, 563–72CrossRefGoogle ScholarPubMed
Venkataraman, C., Lyons, J. M., and Friedlander, S. K. (1994) Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 1. Sampling, measurement methods, and source characterization. Environ. Sci. Technol. 28, 555–62CrossRefGoogle ScholarPubMed
Verwer, J. G. (1994) Gauss–Seidel iteration for stiff ODEs from chemical kinetics. SIAM J. Sci. Comput. 15, 1243–50CrossRefGoogle Scholar
Villars, D. S. (1959) A method of successive approximations for computing combustion equilibria on a high speed digital computer. J. Phys. Chem. 63, 521–5CrossRefGoogle Scholar
Visser, J. (1972) On Hamaker constants: A comparison between Hamaker constants and Lifshitz–van der Waals constants. Adv. Colloid Interface Sci. 3, 331–63CrossRefGoogle Scholar
Waggoner, A. P., Weiss, R. E., Ahlquist, N. C., Covert, D. S., Will, S., and Charlson, R. J. (1981) Optical characteristics of atmospheric aerosols. Atmos. Environ. 15, 1891–909CrossRefGoogle Scholar
Wagman, D. D., Evans, W. H., Parker, V. B., et al. (1982) The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11, Suppl. 2Google Scholar
Walcek, C. (2000) Minor flux adjustment near mixing ratio extremes for simplified yet highly accurate monotonic calculation of tracer advection. J. Geophys. Res. 105, 9335–48CrossRefGoogle Scholar
Walcek, C. and Aleksic, N. M. (1998) A simple but accurate mass conservative, peak-preserving, mixing ratio bounded advection algorithm with Fortran code. Atmos. Environ. 32, 3863–80CrossRefGoogle Scholar
Walcek, C. J., Brost, R. A., and Chang, J. S. (1986) SO2, sulfate and HNO3 deposition velocities computed using regional landuse and meteorological data. Atmos. Environ. 20, 949–64CrossRefGoogle Scholar
Walcek, C. J., Yuan, H.-H., and Stockwell, W. R. (1997) The influence of aqueous-phase chemical reactions on ozone formation in polluted and nonpolluted clouds. Atmos. Environ. 31, 1221–37CrossRefGoogle Scholar
Walmsley, J. L. and Wesely, M. L. (1996) Modification of coded parameterizations of surface resistances to gaseous dry deposition. Atmos. Environ. 30A, 1181–8CrossRefGoogle Scholar
Wang, C. and Prinn, R. G. (2000) On the roles of deep convective clouds in tropospheric chemistry. J. Geophys. Res. 105, 22, 269–97CrossRefGoogle Scholar
Wang, P. K., Grover, S. N., and Pruppacher, H. R. (1978) On the effect of electric charges on the scavenging of aerosol particles by clouds and small raindrops. J. Atmos. Sci. 35, 1735–432.0.CO;2>CrossRefGoogle Scholar
Wanninkhof, R. (1992) Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373–82CrossRefGoogle Scholar
Washington, W. M. and Parkinson, C. L. (1986) An Introduction to Three-Dimensional Climate Modeling. Mill Valley, CA, University Science BooksGoogle Scholar
Watson, R. T. (1977) Rate constants for reactions of ClOx of atmospheric interest. J. Phys. Chem. Ref. Data 6, 871–917CrossRefGoogle Scholar
Weeks, J. L. and Rabani, J. (1966) The pulse radiolysis of deaerated aqueous carbonate solutions. J. Phys. Chem. 70, 2100–6CrossRefGoogle Scholar
Weingartner, E., Burtscher, H., and Baltensperger, U. (1997) Hygroscopic properties of carbon and diesel soot particles. Atmos. Environ. 31, 2311–27CrossRefGoogle Scholar
Weisman, M. L., Skamarock, W. C., and Klemp, J. B. (1997) The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev. 125, 527–482.0.CO;2>CrossRefGoogle Scholar
Welch, R. M., Cox, S. K., and Davis, J. M. (1980) Solar Radiation and Clouds, Meteorological Monograph 17. American Meteorological SocietyCrossRefGoogle Scholar
Wengle, H. and Seinfeld, J. H. (1978) Pseudospectral solution of atmospheric diffusion problems. J. Comp. Phys. 26, 87–106CrossRefGoogle Scholar
Wentzel, M., Gorzawski, H., Naumann, K.-H., Saathoff, H., and Weinbruch, S. (2003) Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J. Aerosol Sci. 34, 1347–70CrossRefGoogle Scholar
Wesely, M. L. (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 23, 1293–304CrossRefGoogle Scholar
Wesely, M. L. and Hicks, B. B. (1977) Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation. J. Air Pollut. Control Ass. 27, 1110–6CrossRefGoogle Scholar
West, R., Crisp, D., and Chen, L. (1990). Mapping transformation for broadband atmospheric radiation calculations. J. Quant. Spectrosc. Radiat. Transfer 43, 191–9CrossRefGoogle Scholar
Wetzel, P. J. and Chang, J. (1987) Concerning the relationship between evapotranspiration and soil moisture. J. Climate Appl. Meteor. 26, 18–272.0.CO;2>CrossRefGoogle Scholar
Wexler, A. S. and Clegg, S. L. (2002) Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42−, NO3−, Cl−, Br−, and H2O. J. Geophys. Res. 107 (D14) 10.1029/2001JD000451CrossRefGoogle Scholar
Wexler, A. S. and Seinfeld, J. H. (1990) The distribution of ammonium salts among a size and composition dispersed aerosol. Atmos. Environ. 24A, 1231–46CrossRefGoogle Scholar
Wexler, A. S. and Seinfeld, J. H. (1991) Second-generation inorganic aerosol model. Atmos. Environ. 25A, 2731–48CrossRefGoogle Scholar
Whitby E. R. (1985) The Model Aerosol Dynamics Model. Part I. Report to the U.S. Environmental Protection Agency. Department of Mechanical Engineering, University of Minnesota, Minneapolis
Whitby, K. T. (1978) The physical characteristics of sulfur aerosols. Atmos. Environ. 12, 135–59CrossRefGoogle Scholar
White, M. (2000) Leonardo: The First Scientist. London, Abacus, 370ppGoogle Scholar
Whitten, G. Z., Hogo, H., and Killus, J. P. (1980) The carbon bond mechanism: A condensed kinetic mechanism for photochemical smog. Environ. Sci. Technol. 14, 690–700CrossRefGoogle ScholarPubMed
Wicker, L. J. and Skamarock, W. C. (1998) A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev. 126, 1992–92.0.CO;2>CrossRefGoogle Scholar
Wicker, L. J. and Skamarock, W. C. (2002) Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev. 130, 2088–972.0.CO;2>CrossRefGoogle Scholar
Wilke, C. R. and Chang, P. (1955) Correlation of diffusion coefficients in dilute solutions. Am. Inst. Chem. Eng. J. 1, 264–70CrossRefGoogle Scholar
Wine, P. H., Tang, Y., Thorn, R. P., Wells, J. R., and Davis, D. D. (1989) Kinetics of aqueous-phase reactions of the SO4− radical with potential importance in cloud chemistry. J. Geophys. Res. 94, 1085–94CrossRefGoogle Scholar
Wiscombe, W. (1977) The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci. 34, 1408–222.0.CO;2>CrossRefGoogle Scholar
Wolf, M. E. and Hidy, G. M. (1997) Aerosols and climate: Anthropogenic emissions and trends for 50 years. J. Geophys. Res. 102, 11, 113–21CrossRefGoogle Scholar
Woodcock, A. H. (1953) Salt nuclei in marine air as a function of altitude and wind force. J. Meteorol. 10, 362–712.0.CO;2>CrossRefGoogle Scholar
Woods, T. N., Prinz, D. K., Rottman, G. J., et al. (1996) Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements. J. Geophys. Res. 101, 9541–69CrossRefGoogle Scholar
World Meteorological Organization (WMO) (1975) Manual on the Observation of Clouds and Other Meteors. World Meteorological Organization, Geneva
World Meteorological Organization (WMO) (1995) Scientific Assessment of Ozone Depletion: 1994. Report 25, Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva
World Meteorological Organization (WMO) (1998) Scientific Assessment of Ozone Depletion: 1998. Report 44, WMO Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva
Worsnop, D. R., Fox, L. E., Zahniser, M. S., and Wofsy, S. C. (1993). Vapor pressures of solid hydrates of nitric acid: Implications for polar stratospheric clouds. Science 259, 71–4CrossRefGoogle ScholarPubMed
Wu, J. (1993) Production of spume drops by the wind tearing of wave crests: The search for quantification. J. Geophys. Res. 98, 18, 221–7CrossRefGoogle Scholar
Wu, Y.-C. and Hamer, W. J. (1980) Revised values of the osmotic coefficients and mean activity coefficients of sodium nitrate in water at 25 °C. J. Phys. Chem. Ref. Data 9, 513–8CrossRefGoogle Scholar
Xiong, C. and Friedlander, S. K. (2001) Morphological properties of atmospheric aerosol aggregates. Proc. Natl. Acad. Sci. 9, 11, 851–6Google Scholar
Yabe, T., Tanaka, R., Nakamura, T., and Xiao, F. (2001) An exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension. Mon. Wea. Rev. 129, 332–442.0.CO;2>CrossRefGoogle Scholar
Yamamoto, G., Tanaka, M., and Asano, S. (1970) Radiative transfer in water clouds in the infrared region. J. Atmos. Sci. 27, 282–922.0.CO;2>CrossRefGoogle Scholar
Yamartino, R. J. (1993) Nonnegative conserved scalar transport using grid-cell-centered spectrally constrained Blackman cubics for applications on a variable-thickness mesh. Mon. Wea. Rev. 121, 753–632.0.CO;2>CrossRefGoogle Scholar
Yanenko, N. A. (1971) The Method of Fractional Steps. Berlin, Springer-Verlag, 160ppCrossRefGoogle Scholar
Yin, F., Grosjean, D., and Seinfeld, J. H. (1990) Photooxidation of dimethyl sulfide and dimethyl disulfide. I: Mechanism development. J. Atmos. Chem. 11, 309–64CrossRefGoogle Scholar
Young, A. T. (1980) Revised depolarization corrections for atmospheric extinction. Appl. Opt. 19, 3427–8CrossRefGoogle ScholarPubMed
Young, T. R. and Boris, J. P. (1977) A numerical technique for solving stiff ordinary differential equations associated with the chemical kinetics of reactive-flow problems. J. Phys. Chem. 81, 2424–7CrossRefGoogle Scholar
Zawadski, I., Torlaschi, E., and Sauvageau, R. (1981) The relationship between mesoscale thermodynamic variables and convective precipitation. J. Atmos. Sci. 38, 1535–402.0.CO;2>CrossRefGoogle Scholar
Zaytsev, I. D. and Aseyev, G. G., eds. (1992) Properties of Aqueous Solutions of Electrolytes (translated by M. A. Lazarev and V. R. Sorochenko). Boca Raton, FL, CRC PressGoogle Scholar
Zeldovich, Y. B. (1942) Theory of new-phase formation: cavitation. J. Exp. Theor. Phys. (USSR) 12, 525–38Google Scholar
Zhang, D. and Anthes, R. A. (1982) A high-resolution model of the planetary boundary layer – sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor. 21, 1594–6092.0.CO;2>CrossRefGoogle Scholar
Zhang, Y., Bischof, C. H., Easter, R. C., and Wu, P.-T. (1998) Sensitivity analysis of multi-phase chemical mechanism using automatic differentiation. J. Geophys. Res. 103, 18, 953–79CrossRefGoogle Scholar
Zhang, Y., Seigneur, C., Seinfeld, J. H., Jacobson, M. Z., and Binkowski, F. (1999) Simulation of aerosol dynamics: A comparative review of algorithms used in air quality models. Aerosol Sci. Technol. 31, 487–514CrossRefGoogle Scholar
Zhang, Y., Seigneur, C., Seinfeld, J. H., Jacobson, M., Clegg, S. L., and Binkowski, F. (2000) A comparative review of inorganic aerosol thermodynamic equilibrium modules: Similarities, differences, and their likely causes. Atmos. Environ. 34, 117–37CrossRefGoogle Scholar
Zhang, Y., Pun., B., Wu, S.-Y., et al. (2004) Development and application of the model for aerosol dynamics, reaction, ionization and dissolution (MADRID). J. Geophys. Res. 109, D01202, doi: 10.1029/2003JD 003501CrossRefGoogle Scholar
Zhao, J. and Turco, R. P. (1995) Nucleation simulations in the wake of a jet aircraft in stratospheric flight. J. Aerosol Sci. 26, 779–95CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mark Z. Jacobson, Stanford University, California
  • Book: Fundamentals of Atmospheric Modeling
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139165389.025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mark Z. Jacobson, Stanford University, California
  • Book: Fundamentals of Atmospheric Modeling
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139165389.025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mark Z. Jacobson, Stanford University, California
  • Book: Fundamentals of Atmospheric Modeling
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139165389.025
Available formats
×