Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-30T06:29:19.496Z Has data issue: false hasContentIssue false

Preface to the third edition

Published online by Cambridge University Press:  05 January 2013

John T. O. Kirk
Affiliation:
Kirk Marine Optics
John Kirk
Affiliation:
Canberra
Get access

Summary

Preface to the third edition

Four things are required for plant growth: energy in the form of solar radiation; inorganic carbon in the form of carbon dioxide or bicarbonate ions; mineral nutrients; and water. Those plants which, in the course of evolution, have remained in, or have returned to, the aquatic environment have one major advantage over their terrestrial counterparts: namely, that water – lack of which so often limits productivity in the terrestrial biosphere – is for them present in abundance; but for this a price must be paid. The medium – air – in which terrestrial plants carry out photosynthesis offers, within the sort of depth that plant canopies occupy, no significant obstacle to the penetration of light. The medium – water – in which aquatic plants occur, in contrast, both absorbs and scatters light. For the phytoplankton and the macrophytes in lakes and rivers, coastal and oceanic waters, both the intensity and spectral quality of the light vary markedly with depth. In all but the shallowest waters, light availability is a limiting factor for primary production by the aquatic ecosystem. The aquatic plants must compete for solar radiation not only with each other (as terrestrial plants must also do), but also with all the other light-absorbing components of the aquatic medium. This has led, in the course of evolution, to the acquisition by each of the major groups of algae of characteristic arrays of light-harvesting pigments that are of great biochemical interest, and also of major significance for an understanding both of the adaptation of the algae to their ecological niche and of the phylogeny and taxonomy of the different algal groups. Nevertheless, in spite of the evolution of specialized light-harvesting systems, the aquatic medium removes so much of the incident light that aquatic ecosystems are, broadly speaking, less productive than terrestrial ones.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×