Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T20:11:35.102Z Has data issue: false hasContentIssue false

10 - Band structure of crystals

Published online by Cambridge University Press:  05 June 2012

Peter V. Landshoff
Affiliation:
University of Cambridge
Allen Metherell
Affiliation:
University of Central Florida
W. Gareth Rees
Affiliation:
University of Cambridge
Get access

Summary

Electrons in crystals

A crystal consists of a collection of atoms arranged in a regular array, the spacing between atoms being of the same order of magnitude as the dimensions of the atoms. Each atom is more or less anchored to one point, called its site in the lattice, by the electrostatic forces produced by all the other atoms. We shall not find it necessary here to discuss the details of how this comes about; nor shall we consider the various patterns in which the atoms can be arranged. It will be sufficient to remember the essential feature that the structure of the crystal is periodic in space.

We have seen in chapter 5 that the energy of an electron bound to an atom is restricted to certain discrete values. Imagine that we can assemble a crystal of identical atoms whose spacing L can be altered at will. If L is large enough, the motion of an electron in one of the atoms will be affected to a negligible extent by the electrons and nuclei of the other atoms. Each atom then behaves as if it were isolated, with its electrons in discrete bound states. In figure 10.1 (a) we have drawn a schematic diagram of the potential V(r) in which an electron moves in this situation. Suppose that the spacing L is now reduced (figure 10.1(b)). The potential V(r) in the neighbourhood of a given atom is now affected by the presence of the nuclei and electrons of the other atoms, particularly those that are closest.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×