Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-02T05:01:16.832Z Has data issue: false hasContentIssue false

4 - Choosing coordinates: the lapse and shift

Published online by Cambridge University Press:  05 March 2013

Thomas W. Baumgarte
Affiliation:
Bowdoin College, Maine
Stuart L. Shapiro
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

In Chapter 2 we performed a 3 + 1 decomposition of Einstein's field equations and have seen that these can be split into two distinct sets: constraint equations and evolution equations. The constraint equations contain no time derivatives and relate field quantities on a given t = constant spacelike hypersurface. The evolution equations contain first-order time derivatives that tell us how the field quantities change from one hypersurface to the next. In Chapter 3 we have brought the constraint equations into a form that is suitable for numerical implementation, that is, we cast the equations in terms of spatial differential operators that can be inverted with standard numerical techniques. We will provide a brief introduction to some common numerical algorithms for solving these (elliptic) equations in Chapter 6. The 3 + 1 evolution equations that we derived, e.g., equation (2.134) for γij, and equation (2.135) for Kij, are not quite ready for numerical integration. For one thing, we have yet to impose coordinate conditions by specifying the lapse function α and the shift vector βithat appear in these equations. The lapse and shift are freely specifiable gauge variables that need to be chosen in order to advance the field data from one time slice to the next. As it turns out, finding kinematical conditions for the coordinates that allow for a well-behaved, long time evolution is nontrivial in general. However, geometric insight and numerical experimentation can be combined to produce good gauge choices for treating many of the most important physical and astrophysical problems requiring numerical relativity for solution, as we shall see.

Type
Chapter
Information
Numerical Relativity
Solving Einstein's Equations on the Computer
, pp. 98 - 122
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×