Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-28T19:56:23.020Z Has data issue: false hasContentIssue false

9 - Completeness Using Canonical Models

Published online by Cambridge University Press:  05 June 2014

James W. Garson
Affiliation:
University of Houston
Get access

Summary

Not all the systems mentioned in this book have been shown to be complete, only the ones for which a method has been described for converting trees into proofs. In this section, a more powerful strategy for showing completeness will be presented that applies to a wider range of propositional modal logics. It is a version of the so-called Henkin or canonical model technique, which is widely used in logic. This method is more abstract than the method of Chapter 8, and it is harder to adapt to systems that include quantifiers and identity, but a serious student of modal logic should become familiar with it. The fundamental idea on which the method is based is the notion of a maximally consistent set. Maximally consistent sets play the role of possible worlds. They completely describe the facts of a world by including either A or ~A (but never both) for each sentence A in the language.

The Lindenbaum Lemma

A crucial step in demonstrating completeness with such maximally consistent sets is to prove the famous Lindenbaum Lemma. To develop that result, some concepts and notation need to be introduced. When M is a (possibly) infinite set of sentences, ‘M, A’ indicates the result of adding A to the set M, and ‘M ⊢S C’ indicates that there is a finite list H formed from some of the members of M, such that H ⊢S C. Set M′ is an extension of M, provided that every member of M is a member of M′. We say that set M is consistent in S iff M ⊬S ⊥. M is maximal iff for every sentence A, either A or ~A is in M. M is maximally consistent for S (or mc for short) iff M is both maximal and consistent in S. When it is clear from the context what system is at issue, or if the results being discussed are general with respect to S, the subscript ‘S’ on ‘⊢’ will be dropped, and we will use ‘consistent’ in place of ‘consistent for S’. It should be remembered, however, that what counts as an mc set depends on the system S. We are now ready to state the Lindenbaum Lemma.

Lindenbaum Lemma. Every consistent set has an mc extension.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×