Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-23T22:02:26.954Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 November 2012

Kanishka Perera
Affiliation:
Florida Institute of Technology
Martin Schechter
Affiliation:
University of California, Irvine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Agarwal, R. P., V., Otero-Espinar, K., Perera, and D. R., Vivero. Basic properties of Sobolev's spaces on time scales. Adv. Difference Equ., pages Art. ID 38121, 14, 2006.Google Scholar
[2] Ahmad, S., A. C., Lazer, and J. L., Paul. Elementary critical point theory and perturbations of elliptic boundary value problems at resonance. Indiana Univ. Math. J., 25(10): 933–944, 1976.Google Scholar
[3] Amann, H. and E., Zehnder. Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7(4): 539–603, 1980.Google Scholar
[4] Ambrosetti, A.Differential equations with multiple solutions and nonlinear functional analysis. In Equadiff 82 (Würzburg, 1982), volume 1017 of Lecture Notes in Math., pages 10–37. Springer, Berlin, 1983.
[5] Ambrosetti, A.Elliptic equations with jumping nonlinearities. J. Math. Phys. Sci., 18(1): 1–12, 1984.Google Scholar
[6] Ambrosetti, A., H., Brezis, and G., Cerami. Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal., 122(2): 519–543, 1994.Google Scholar
[7] Ambrosetti, A., J. G., Azorero, and I., Peral. Multiplicity results for some nonlinear elliptic equations. J. Funct. Anal., 137(1): 219–242, 1996.Google Scholar
[8] Ambrosetti, A. and G., Prodi. A Primer of Nonlinear Analysis, volume 34 of Cambridge Studies in Advanced Mathematics, pages viii+171. Cambridge University Press, Cambridge, 1995. Corrected reprint of the 1993 original.
[9] Ambrosetti, A. and P. H., Rabinowitz. Dual variational methods in critical point theory and applications. J. Functional Analysis, 14: 349–381, 1973.Google Scholar
[10] Anane, A.Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math., 305(16): 725–728, 1987.Google Scholar
[11] Anane, A. and Tsouli, N.On the second eigenvalue of the p-Laplacian. In Nonlinear Partial Differential Equations (Fès, 1994), volume 343 of Pitman Res. Notes Math. Ser., pages 1–9. Longman, Harlow, 1996.
[12] Arcoya, D. and L., Orsina. Landesman–Lazer conditions and quasilinear elliptic equations. Nonlinear Anal., 28(10): 1623–1632, 1997.Google Scholar
[13] Bartolo, P., V., Benci, and D., Fortunato. Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal., 7(9): 981–1012, 1983.Google Scholar
[14] Bartsch, T. and S., Li. Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlinear Anal., 28(3): 419–441, 1997.Google Scholar
[15] Benci, V.Some applications of the generalized Morse–Conley index. Confer. Sem. Mat. Univ. Bari, 218: 32, 1987.Google Scholar
[16] Benci, V.A new approach to the Morse–Conley theory and some applications. Ann. Mat. Pura Appl. (4), 158: 231–305, 1991.Google Scholar
[17] Benci, V.Introduction to Morse theory: a new approach. In Topological Nonlinear Analysis, volume 15 of Progr. Nonlinear Differential Equations Appl., pages 37–177. Birkhäuser Boston, Boston, MA, 1995.
[18] Benci, V. and P. H., Rabinowitz. Critical point theorems for indefinite functionals. Invent. Math., 52(3): 241–273, 1979.Google Scholar
[19] Berger, M. S.Nonlinearity and Functional Analysis, volume 74 of Pure and Applied Mathematics, pages xix+417. Academic Press, 1977.
[20] Bouchala, J. and P., Drábek. Strong resonance for some quasilinear elliptic equations. J. Math. Anal. Appl., 245(1): 7–19, 2000.Google Scholar
[21] Brezis, H. and L., Nirenberg. Remarks on finding critical points. Comm. Pure Appl. Math., 44(8–9): 939–963, 1991.Google Scholar
[22] Các, N. P.On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue. J. Differential Equations, 80(2): 379–404, 1989.Google Scholar
[23] Cambini, A.Sul lemma di M. Morse. Boll. Un. Mat. Ital. (4), 7: 87–93, 1973.Google Scholar
[24] Castro, A. and A. C., Lazer. Applications of amaximin principle. Rev. Colombiana Mat., 10: 141–149, 1976.Google Scholar
[25] Cerami, G.An existence criterion for the critical points on unbounded manifolds. Istit. Lombardo Accad. Sci. Lett. Rend.A, 112(2): 332–336, 1979.Google Scholar
[26] Chabrowski, J.Variational Methods for Potential Operator Equations, pages x+290. Walter de Gruyter, 1997.
[27] Chang, K. C. and N., Ghoussoub. The Conley index and the critical groups via an extension of Gromoll–Meyer theory. Topol. Methods Nonlinear Anal., 7(1): 77–93, 1996.Google Scholar
[28] Chang, K. C.Solutions of asymptotically linear operator equations via Morse theory. Comm. Pure Appl. Math., 34(5): 693–712, 1981.Google Scholar
[29] Chang, K.-C.Infinite-dimensional Morse Theory and Multiple Solution Problems, volume 6 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston Inc., Boston, MA, 1993.
[30] Chang, K.-C.Methods in Nonlinear Analysis. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005.
[31] Cingolani, S. and M., Degiovanni. Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity. Comm. Partial Differential Equations, 30(7–9): 1191–1203, 2005.Google Scholar
[32] Corvellec, J.-N. and A., Hantoute. Homotopical stability of isolated critical points of continuous functionals. Set-Valued Anal., 10(2–3): 143–164, 2002.Google Scholar
[33] Costa, D. G. and E. A., Silva. On a class of resonant problems at higher eigenvalues. Differential Integral Equations, 8(3): 663–671, 1995.Google Scholar
[34] Cuesta, M.On the Fučík spectrum of the Laplacian and the p-Laplacian. In Proceedings of Seminar in Differential Equations, Kvilda, Czech Republic, May 29 – June 2, 2000, pages 67–96. Centre of Applied Mathematics, Faculty of Applied Sciences, University of West Bohemia in Pilsen.
[35] Cuesta, M. and J.-P., Gossez. A variational approach to nonresonancewith respect to the Fučik spectrum. Nonlinear Anal., 19(5): 487–500, 1992.Google Scholar
[36] Dacorogna, B.Direct Methods in the Calculus of Variations, pages xii+619, Springer, 2008.
[37] Dancer, E. N.On the Dirichlet problem for weakly non-linear elliptic partial differential equations. Proc. Roy. Soc. Edinburgh Sect.A, 76(4): 283–300, 1976/1977.Google Scholar
[38] Dancer, E. N.Corrigendum: “On the Dirichlet problem for weakly nonlinear elliptic partial differential equations” [Proc. Roy. Soc. Edinburgh Sect. A 76 (1976/77), no. 4, 283–300; MR 58 #17506]. Proc. Roy. Soc. Edinburgh Sect.A, 89(1–2): 15, 1981.Google Scholar
[39] Dancer, E. N.Remarks on jumping nonlinearities. In Topics in Nonlinear Analysis, volume 35 of Progr. Nonlinear Differential Equations Appl., pages 101–116. BirkhäNauser, Basel, 1999.
[40] Dancer, E. N.Some results for jumping nonlinearities. Topol. Methods Nonlinear Anal., 19(2): 221–235, 2002.Google Scholar
[41] Dancer, N. and K., Perera. Some remarks on the Fučík spectrum of the p-Laplacian and critical groups. J. Math. Anal. Appl., 254(1): 164–177, 2001.Google Scholar
[42] de Figueiredo, D. G. and J.-P., Gossez. On the first curve of the Fučik spectrum of an elliptic operator. Differential Integral Equations, 7(5–6): 1285–1302, 1994.Google Scholar
[43] de Paiva, F. O. and E., Massa. Multiple solutions for some elliptic equations with a nonlinearity concave at the origin. Nonlinear Anal., 66(12): 2940–2946, 2007.Google Scholar
[44] Degiovanni, M. and S., Lancelotti. Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6): 907–919, 2007.Google Scholar
[45] Degiovanni, M. and S., Lancelotti. Linking solutions for p-Laplace equations with nonlinearity at critical growth. J. Funct. Anal., 256(11): 3643–3659, 2009.Google Scholar
[46] Degiovanni, M., S., Lancelotti, and K., Perera. Nontrivial solutions of p-superlinear p-laplacian problems via a cohomological local splitting. Commun. Contemp. Math., 12(3): 475–486, 2010.Google Scholar
[47] Dold, A.Partitions of unity in the theory of fibrations. Ann. of Math. (2), 78: 223–255, 1963.Google Scholar
[48] Drábek, P.Solvability and Bifurcations of Nonlinear Equations, volume 264 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1992.
[49] Drábek, P. and S. B., Robinson. Resonance problems for the p-Laplacian. J. Funct. Anal., 169(1): 189–200, 1999.Google Scholar
[50] Esteban, J. R. and J. L., Vázquez. On the equation of turbulent filtration in one-dimensional porous media. Nonlinear Anal., 10(11): 1303–1325, 1986.Google Scholar
[51] Fadell, E. R. and P. H., Rabinowitz. Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math., 45(2): 139–174, 1978.Google Scholar
[52] Fang, F. and S., Liu. Nontrivial solutions of superlinear p-Laplacian equations. J. Math. Anal. Appl., 351(1): 138–146, 2009.Google Scholar
[53] Fučík, S.Boundary value problems with jumping nonlinearities. Časopis Pěst. Mat., 101(1): 69–87, 1976.Google Scholar
[54] Gallouët, T. and O., Kavian. Résultats d'existence et de non-existence pour certains problèmes demi-linéaires à l'infini. Ann. Fac. Sci. Toulouse Math. (5), 3(3–4): 201–246 (1982), 1981.Google Scholar
[55] Ghoussoub, N.Location, multiplicity and Morse indices of min-max critical points. J. Reine Angew. Math., 417: 27–76, 1991.Google Scholar
[56] Ghoussoub, N.Duality and Perturbation Methods in Critical Point Theory, volume 107 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993. With appendices by David Robinson.
[57] Gromoll, D. and W., Meyer. On differentiable functions with isolated critical points. Topology, 8: 361–369, 1969.Google Scholar
[58] Guo, Y. and J., Liu. Solutions of p-sublinear p-Laplacian equation via Morse theory. J. London Math. Soc. (2), 72(3): 632–644, 2005.Google Scholar
[59] Hirano, N. and T., Nishimura. Multiplicity results for semilinear elliptic problems at resonance and with jumping nonlinearities. J. Math. Anal. Appl., 180(2): 566–586, 1993.Google Scholar
[60] Hofer, H.The topological degree at a critical point of mountain-pass type. AMS Proceedings of Symposia in Pure Math., 45: 501–509, 1986.Google Scholar
[61] Kelley, J. L.General Topology. Springer-Verlag, New York, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27.
[62] Krasnosel'skii, M. A.Topological Methods in the Theory of Nonlinear Integral Equations. Translated by A. H., Armstrong; translation edited by J., Burlak. A Pergamon Press Book. The Macmillan Co., New York, 1964.
[63] Kryszewski, W. and A., Szulkin. An infinite-dimensional Morse theory with applications. Trans. Amer. Math. Soc., 349(8): 3181–3234, 1997.Google Scholar
[64] Kuiper, N. H.C1-equivalence of functions near isolated critical points. Ann. of Math., 69: 199–218, 1972.Google Scholar
[65] Lancelotti, S.Existence of nontrivial solutions for semilinear problems with strictly differentiable nonlinearity. Abstr. Appl. Anal., pages Art. ID 62458, 14, 2006.
[66] Lazer, A. C. and P. J., McKenna. Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues. II. Comm. Partial Differential Equations, 11(15): 1653–1676, 1986.Google Scholar
[67] Lazer, A. C. and S., Solimini. Nontrivial solutions of operator equations and Morse indices of critical points of min-max type. Nonlinear Anal., 12(8): 761–775, 1988.Google Scholar
[68] Lazer, A.Introduction to multiplicity theory for boundary value problems with asymmetric nonlinearities. In Partial Differential Equations (Rio de Janeiro, 1986), volume 1324 of Lecture Notes in Math., pages 137–165. Springer, Berlin, 1988.
[69] Li, C., S., Li, and Z., Liu. Existence of type (II) regions and convexity and concavity of potential functionals corresponding to jumping nonlinear problems. Calc. Var. Partial Differential Equations, 32(2): 237–251, 2008.Google Scholar
[70] Li, S. J. and J. Q., Liu. Morse theory and asymptotic linear Hamiltonian system. J. Differential Equations, 78(1): 53–73, 1989.Google Scholar
[71] Li, S. J. and J. Q., Liu. Nontrivial critical points for asymptotically quadratic function. J. Math. Anal. Appl., 165(2): 333–345, 1992.Google Scholar
[72] Li, S. J. and M., Willem. Applications of local linking to critical point theory. J. Math. Anal. Appl., 189(1): 6–32, 1995.Google Scholar
[73] Li, S. and J. Q., Liu. Computations of critical groups at degenerate critical point and applications to nonlinear differential equations with resonance. Houston J. Math., 25(3): 563–582, 1999.Google Scholar
[74] Li, S., K., Perera, and J., Su. Computation of critical groups in elliptic boundaryvalue problems where the asymptotic limits may not exist. Proc. Roy. Soc. Edinburgh Sect.A, 131(3): 721–732, 2001.Google Scholar
[75] Li, S. and Z.-Q., Wang. Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems. J. Anal. Math., 81: 373–396, 2000.Google Scholar
[76] Li, S. and M., Willem. Multiple solutions for asymptotically linear boundary value problems in which the nonlinearity crosses at least one eigenvalue. NoDEA Nonlinear Differential Equations Appl., 5(4): 479–490, 1998.Google Scholar
[77] Li, S., S., Wu, and H.-S., Zhou. Solutions to semilinear elliptic problems with combined nonlinearities. J. Differential Equations, 185(1): 200–224, 2002.Google Scholar
[78] Li, S. and Z., Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete Contin. Dynam. Systems, 5(3): 489–493, 1999.Google Scholar
[79] Li, S. and W., Zou. The computations of the critical groups with an application to elliptic resonant problems at a higher eigenvalue. J. Math. Anal. Appl., 235(1): 237–259, 1999.Google Scholar
[80] Lindqvist, P.On the equation div (∣∇u∣p−2∇u)+λ∣u∣p−2u=0. Proc. Amer. Math. Soc., 109(1): 157–164, 1990.Google Scholar
[81] Lindqvist, P.Addendum: “On the equation div (∣∇u∣p−2∇u)+λ∣u∣p−2u=0” [Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164; MR 90h:35088]. Proc. Amer. Math. Soc., 116(2): 583–584, 1992.Google Scholar
[82] Liu, J. Q.The Morse index of a saddle point. Systems Sci. Math. Sci., 2(1): 32–39, 1989.Google Scholar
[83] Liu, J. Q. and S. J., Li. An existence theorem for multiple critical points and its application. Kexue Tongbao (Chinese), 29(17): 1025–1027, 1984.Google Scholar
[84] Liu, S. and S., Li. Existence of solutions for asymptotically ‘linear’ p-Laplacian equations. Bull. London Math. Soc., 36(1): 81–87, 2004.Google Scholar
[85] Ljusternik, L. and L., Schnirelmann. Methodes Topologique dans les Problémes Variationnels. Hermann and Cie, Paris, 1934.
[86] Magalhães, C. A.Semilinear elliptic problem with crossing of multiple eigenvalues. Comm. Partial Differential Equations, 15(9): 1265–1292, 1990.Google Scholar
[87] Margulies, C. A. and W., Margulies. An example of the Fučik spectrum. Nonlinear Anal., 29(12): 1373–1378, 1997.Google Scholar
[88] Marino, A. and G., Prodi. Metodi perturbativi nella teoria di Morse. Boll. Un. Mat. Ital. (4), 11(3, suppl.): 1–32, 1975. Collection of articles dedicated to Giovanni Sansone on the occasion of his eighty-fifth birthday.Google Scholar
[89] Marino, A. and G., Prodi. La teoria di Morse per gli spazi di Hilbert. Rend. Sem. Mat. Univ. Padova, 41: 43–68, 1968.Google Scholar
[90] Mawhin, J. and M., Willem. On the generalized Morse lemma. Bull. Soc. Math. Belg. Sér.B, 37(2): 23–29, 1985.Google Scholar
[91] Mawhin, J. and M., Willem. Critical Point Theory and Hamiltonian Systems, volume 74 of Applied Mathematical Sciences. Springer-Verlag, New York, 1989.
[92] Medeiros, E. and K., Perera. Multiplicity of solutions for a quasilinear elliptic problem via the cohomological index. Nonlinear Anal., 71(9): 3654–3660, 2009.Google Scholar
[93] Milnor, J.Morse Theory, pages vi+153. Princeton University Press, 1963.
[94] Moroz, V.On theMorse critical groups for indefinite sublinear elliptic problems. Nonlinear Anal., 52(5): 1441–1453, 2003.Google Scholar
[95] Morse, M.Relations between the critical points of a real function of n independent variables. Trans. Amer. Math. Soc., 27(3): 345–396, 1925.Google Scholar
[96] Motreanu, D. and K., Perera. Multiple nontrivial solutions of Neumann p-Laplacian systems. Topol. Methods Nonlinear Anal., 34(1): 41–48, 2009.Google Scholar
[97] Ni, W. M.Some minimax principles and their applications in nonlinear elliptic equations. J. Analyse Math., 37: 248–275, 1980.Google Scholar
[98] Nirenberg, L.Topics in Nonlinear Functional Analysis, pages viii+259, American Mathematical Society, 1974. With a chapter by E. Zehnder, Notes by R. A. Artino.
[99] Nirenberg, L.Variational and topological methods in nonlinear problems. Bull. Amer. Math. Soc. (N.S.), 4(3): 267–302, 1981.Google Scholar
[100] Padial, J. F., P., Takáč, and L., Tello. An antimaximum principle for a degenerate parabolic problem. In Ninth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, volume 33 of Monogr. Semin. Mat. García Galdeano, pages 433–440. Prensas Univ. Zaragoza, Zaragoza, 2006.
[101] Palais, R. S. and S., Smale. A generalized Morse theory. Bull. Amer. Math. Soc., 70: 165–172, 1964.Google Scholar
[102] Palais, R. S.Morse theory on Hilbert manifolds. Topology, 2: 299–340, 1963.Google Scholar
[103] Palais, R. S.Critical point theory and the minimax principle. In Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif, 1968), pages 185–212. Amer. Math. Soc., Providence, RI, 1970.
[104] Perera, K.Critical groups of pairs of critical points produced by linking subsets. J. Differential Equations, 140(1): 142–160, 1997.Google Scholar
[105] Perera, K.Multiplicity results for some elliptic problems with concave nonlinearities. J. Differential Equations, 140(1): 133–141, 1997.Google Scholar
[106] Perera, K.Critical groups of critical points produced by local linking with applications. Abstr. Appl. Anal., 3(3–4): 437–446, 1998.Google Scholar
[107] Perera, K.Homological local linking. Abstr. Appl. Anal., 3(1–2):181–189, 1998.Google Scholar
[108] Perera, K.Applications of local linking to asymptotically linear elliptic problems at resonance. NoDEA Nonlinear Differential Equations Appl., 6(1): 55–62, 1999.Google Scholar
[109] Perera, K.One-sided resonance for quasilinear problems with asymmetric nonlinearities. Abstr. Appl. Anal., 7(1): 53–60, 2002.Google Scholar
[110] Perera, K.Nontrivial critical groups in p-Laplacian problems via the Yang index. Topol. Methods Nonlinear Anal., 21(2): 301–309, 2003.Google Scholar
[111] Perera, K.Nontrivial solutions of p-superlinear p-Laplacian problems. Appl. Anal., 82(9): 883–888, 2003.Google Scholar
[112] Perera, K.p-superlinear problems with jumping nonlinearities. In Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th Birthday. Vol. 1, 2, pages 823–829. Kluwer Acad. Publ., Dordrecht, 2003.
[113] Perera, K., R. P., Agarwal, and D., O'Regan. Morse Theoretic Aspects of p-Laplacian Type Operators, volume 161 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.
[114] Perera, K. and M., Schechter. Morse index estimates in saddle point theorems without a finite-dimensional closed loop. Indiana Univ. Math. J., 47(3): 1083–1095, 1998.Google Scholar
[115] Perera, K. and M., Schechter. Type II regions between curves of the Fučik spectrum and critical groups. Topol. Methods Nonlinear Anal., 12(2): 227–243, 1998.Google Scholar
[116] Perera, K. and M., Schechter. A generalization of the Amann-Zehnder theorem to nonresonance problems with jumping nonlinearities. NoDEA Nonlinear Differential Equations Appl., 7(4): 361–367, 2000.Google Scholar
[117] Perera, K. and M., Schechter. The Fučík spectrum and critical groups. Proc. Amer. Math. Soc., 129(8): 2301–2308 (electronic), 2001.Google Scholar
[118] Perera, K. and M., Schechter. Critical groups in saddle point theorems without a finite dimensional closed loop. Math. Nachr., 243: 156–164, 2002.Google Scholar
[119] Perera, K. and M., Schechter. Double resonance problems with respect to the Fučík spectrum. Indiana Univ. Math. J., 52(1): 1–17, 2003.Google Scholar
[120] Perera, K. and M., Schechter. Sandwich pairs in p-Laplacian problems. Topol. Methods Nonlinear Anal., 29(1): 29–34, 2007.Google Scholar
[121] Perera, K. and M., Schechter. Flows and critical points. NoDEA Nonlinear Differential Equations Appl., 15(4–5): 495–509, 2008.Google Scholar
[122] Perera, K. and M., Schechter. Sandwich pairs for p-Laplacian systems. J. Math. Anal. Appl., 358(2): 485–490, 2009.Google Scholar
[123] Perera, K. and A., Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete Contin. Dyn. Syst., 13(3): 743–753, 2005.Google Scholar
[124] Pitcher, E.Inequalities of critical point theory. Bull. Amer. Math. Soc., 64(1): 1–30, 1958.Google Scholar
[125] Qi, G. J.Extension of Mountain Pass Lemma. Kexue Tongbao (English Ed.), 32(12): 798–801, 1987.Google Scholar
[126] Rabinowitz, P. H.Variational methods for nonlinear eigenvalue problems. In Eigenvalues of Non-Linear Problems, pages 139–195. Springer-Verlag, Berlin, 1974.
[127] Rabinowitz, P. H.Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5(1): 215–223, 1978.Google Scholar
[128] Rabinowitz, P. H.Some minimax theorems and applications to nonlinear partial differential equations. In Nonlinear Analysis (Collection of Papers in Honor of Erich H. Rothe), pages 161–177. Academic Press, New York, 1978.
[129] Rabinowitz, P. H.Minimax Methods in Critical Point Theory with Applications to Differential Equations, volume 65 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986.
[130] Ramos, M. and L., Sanchez. Homotopical linking and Morse index estimates in min-max theorems. Manuscripta Math., 87(3): 269–284, 1995.Google Scholar
[131] Ribarska, N. K., Ts. Y., Tsachev, and M. I., Krastanov. A saddle point theorem without a finite-dimensional closed loop. C. R. Acad. Bulgare Sci., 51(11–12): 13–16, 1998.Google Scholar
[132] Rothe, E. H.Some remarks on critical point theory in Hilbert space. In Nonlinear Problems (Proc. Sympos., Madison, Wis., (1962), pages 233–256. University of Wisconsin Press, Madison, WI, 1963.
[133] Rothe, E. H.Some remarks on critical point theory in Hilbert space (continuation). J. Math. Anal. Appl., 20: 515–520, 1967.Google Scholar
[134] Rothe, E. H.On continuity and approximation questions concerning critical Morse groups in Hilbert space. In Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967), pages 275–295. Ann. of Math. Studies, No. 69. Princeton University Press, Princeton, NJ, 1972.
[135] Rothe, E. H.Morse theory in Hilbert space. Rocky Mountain J. Math., 3: 251–274, 1973. Rocky Mountain Consortium Symposium on Nonlinear Eigenvalue Problems (Santa Fe, NM, 1971).Google Scholar
[136] Ruf, B.On nonlinear elliptic problems with jumping nonlinearities. Ann. Mat. Pura Appl. (4), 128: 133–151, 1981.Google Scholar
[137] Schechter, M.A generalization of the saddle point method with applications. Ann. Polon. Math., 57(3): 269–281, 1992.Google Scholar
[138] Schechter, M.New saddle point theorems. In Generalized Functions and Their Applications (Varanasi, 1991), pages 213–219. Plenum, New York, 1993.
[139] Schechter, M.Splitting subspaces and saddle points. Appl. Anal., 49(1–2): 33–48, 1993.Google Scholar
[140] Schechter, M.The Fučík spectrum. Indiana Univ. Math. J., 43(4): 1139–1157, 1994.Google Scholar
[141] Schechter, M.Bounded resonance problems for semilinear elliptic equations. Nonlinear Anal., 24(10): 1471–1482, 1995.Google Scholar
[142] Schechter, M.New linking theorems. Rend. Sem. Mat. Univ. Padova, 99: 255–269, 1998.Google Scholar
[143] Schechter, M.Linking Methods in Critical Point Theory. Birkhäuser Boston Inc., Boston, MA, 1999.
[144] Schechter, M.An Introduction to Nonlinear Analysis, volume 95 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2004.
[145] Schechter, M.Sandwich pairs. In Proc. Conf. Differential & Difference Equations and Applications, pages 999–1007. Hindawi Publ. Corp., New York, 2006.
[146] Schechter, M.Sandwich pairs in critical point theory. Trans. Amer. Math. Soc., 360(6): 2811–2823, 2008.Google Scholar
[147] Schechter, M.Minimax Systems and Critical Point Theory. Birkhäuser Boston Inc., Boston, MA, 2009.
[148] Schechter, M. and K., Tintarev. Pairs of critical points produced by linking subsets with applications to semilinear elliptic problems. Bull. Soc. Math. Belg. Sér.B, 44(3): 249–261, 1992.Google Scholar
[149] Schwartz, J. T.Nonlinear Functional Analysis, pages vii+236. Gordon and Breach, 1969. Notes byH., Fattorini, R., Nirenberg and H., Porta, with an additional chapter by Hermann Karcher.
[150] Silva, E. A. de B. e.Linking theorems and applications to semilinear elliptic problems at resonance. Nonlinear Anal., 16(5): 455–477, 1991.Google Scholar
[151] Smale, S.Morse theory and a non-linear generalization of the Dirichlet problem. Ann. of Math. (2), 80: 382–396, 1964.Google Scholar
[152] Solimini, S.Morse index estimates in min-max theorems. Manuscripta Math., 63(4): 421–453, 1989.Google Scholar
[153] Struwe, M.Variational Methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series ofModern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, fourth edition, 2008.
[154] Su, J. and C., Tang. Multiplicity results for semilinear elliptic equations with resonance at higher eigenvalues. Nonlinear Anal., 44(3, Ser. A: Theory Methods): 311–321, 2001.Google Scholar
[155] Szulkin, A.Cohomology and Morse theory for strongly indefinite functionals. Math. Z., 209(3): 375–418, 1992.Google Scholar
[156] Tanaka, M.On the existence of a non-trivial solution for the p-Laplacian equation with a jumping nonlinearity. Tokyo J. Math., 31(2): 333–341, 2008.Google Scholar
[157] Wang, Z. Q.A note on the second variation theorem. Acta Math. Sinica, 30(1): 106–110, 1987.Google Scholar
[158] Willem, M.Minimax Theorems, volume 24 in Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA, 1996.
[159] Wu, S.-p. and H., Yang. A class of resonant elliptic problems with sublinear nonlinearity at origin and at infinity. Nonlinear Anal., 45(7, Ser. A: Theory Methods): 925–935, 2001.Google Scholar
[160] Yang, C.-T.On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobô and Dyson. I. Ann. of Math. (2), 60: 262–282, 1954.Google Scholar
[161] Zeidler, E.Nonlinear Functional Analysis and its Applications. III, pages xxii+662, World Publishing Corporation, 1985. Translated from the German by Leo F. Boron.
[162] Zou, W. and J. Q., Liu. Multiple solutions for resonant elliptic equations via local linking theory andMorse theory. J. Differential Equations, 170(1): 68–95, 2001.Google Scholar
[163] Zou, W. and M., Schechter. Critical Point Theory and its Applications. Springer, New York, 2006.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Kanishka Perera, Florida Institute of Technology, Martin Schechter, University of California, Irvine
  • Book: Topics in Critical Point Theory
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139342469.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Kanishka Perera, Florida Institute of Technology, Martin Schechter, University of California, Irvine
  • Book: Topics in Critical Point Theory
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139342469.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Kanishka Perera, Florida Institute of Technology, Martin Schechter, University of California, Irvine
  • Book: Topics in Critical Point Theory
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139342469.009
Available formats
×