Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T12:03:15.716Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

J. Donald Rimstidt
Affiliation:
Virginia Polytechnic Institute and State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Geochemical Rate Models
An Introduction to Geochemical Kinetics
, pp. 210 - 227
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, A.W., Gast, A.P. (1997). Physical Chemistry of Surfaces. Wiley, New York.Google Scholar
Alkattan, M., Oelkers, E.H., Dandurand, J.L., Schott, J. (1998). An experimental study of calcite and limestone dissolution rates as a function of pH from −1 to 3 and temperature from 25 to 80°C. Chemical Geology, 151, 199–214.CrossRefGoogle Scholar
Amis, E.S. (1966). Solvent Effects on Reaction Rates and Mechanisms. Academic Press, New York.Google Scholar
Appelo, C.A.J. (1996). Multicomponent ion exchange and chromatography in natural systems. In Reactive Transport in Porous Media, eds. Lichtner, P.C., Steefel, C.I.Mineralogical Society of America, Washington D.C., pp. 193–227.Google Scholar
Applin, K.R., Lasaga, A.C. (1984). The determination of SO42−, NaSO4−, and MgSO4o tracer diffusion coefficients and their application to diagenetic flux calculations. Geochimica et Cosmochimica Acta, 48, 2151–2162.CrossRefGoogle Scholar
Aris, R. (1956). On the dispersion of a solute in a fluid flowing through a tube. Proceedings of the Royal Society A, 235, 67–77.CrossRefGoogle Scholar
Aris, R. (1989). Elementary Chemical Reactor Analysis. Dover Publications, New York.Google Scholar
Aris, R. (1994). Mathematical Modeling Techniques. Dover Publications, New York.Google Scholar
Arking, A. (1996). Absorption of solar energy in the atmosphere: Discrepancy between model and observations. Science, 273, 779–782.CrossRefGoogle ScholarPubMed
Arnold, F.H., Schofield, S.A., Blanch, H.W. (1986). Analytical affinity chromatography I. Local equilibrium and the measurement of association and inhibition constants. Journal of Chromatography, 355, 1–12.CrossRefGoogle Scholar
Arvidson, R.S., Luttgbe, A. (2010). Mineral dissolution kinetics as a function of distance from equilibrium: New experimental results. Chemical Geology, 269, 79–88.CrossRefGoogle Scholar
Asano, T., le Nobel, W.J. (1978). Activation and reaction volumes in solution. Chemical Reviews, 78, 407–489.CrossRefGoogle Scholar
Ašperger, S. (2003). Chemical Kinetics and Inorganic Reaction Mechanisms, 2nd edn. Kluwer Academic, New York.CrossRefGoogle Scholar
Astruc, D. (1995). Electron transfer and radical processes in transition-metal chemistry. VCH Publishers, Inc., New York.Google Scholar
Augustithis, S.S., Mposkos, E., Vgenopoulos, A. (1980). Diffusion rings (sphaeroids) in bauxite. Chemical Geology, 30, 351–362.CrossRefGoogle Scholar
Avrahami, M., Golding, R.M. (1968). The oxidation of the sulphide ion at very low concentrations in aqueous solutions. Journal of the Chemical Society A, 647–651.CrossRefGoogle Scholar
Avrami, M. (1939). Kinetics of phase change. I. Journal of Chemical Physics, 7, 1103–1112.CrossRefGoogle Scholar
Avrami, M. (1940). Kinetics of phase change. II. Journal of Chemical Physics, 8, 212–224.CrossRefGoogle Scholar
Axford, S.D.T. (1997). Aggregation of colloidal silica: Reaction-limited kernel, stability ratio and distribution moments. Journal of the Chemical Society, Faraday Transactions, 93, 303–311.CrossRefGoogle Scholar
Bahr, J.M., Rubin, J. (1987). Direct comparison of kinetic and local equilibrium formulations for solute transport affected by surface reactions. Water Resources Research, 23, 438–452.CrossRefGoogle Scholar
Ball, P. (1999). The Self-Made Tapestry. Oxford University Press, Oxford.Google Scholar
Bandstra, J.Z., Brantley, S.L. (2008). Surface evolution of dissolving minerals investigated with a kinetic Ising model. Geochimica et Cosmochimica Acta, 72, 2587–2600.CrossRefGoogle Scholar
Barenblatt, G.I. (2003). Scaling. Cambridge University Press, Cambridge, U.K.CrossRefGoogle Scholar
Barnes, H.H. (1967). Roughness Characteristics of Natural Channels. U.S. Geological Survey, Washington D.C., p. 213.Google Scholar
Basolo, F., Pearson, R.G. (1967). Mechanisms of Inorganic Reactions, 2nd edn. John Wiley & Sons, New York.Google Scholar
Bender, E.A. (1978). An Introduction to Mathematical Modeling. Wiley-Interscience, New York.Google Scholar
Berger, G., Cadore, E., Schott, J., Dove, P.M. (1994). Dissolution rate of quartz in lead and sodium electrolyte solutions between 25 and 300°C: Effect of the nature of surface complexes and reaction affinity. Geochimica et Cosmochimica Acta, 58, 541–551.CrossRefGoogle Scholar
Berner, E.K., Berner, R.A. (1987). The Global Water Cycle. Prentice-Hall, Inc., Englewood Cliffs, N.J.Google Scholar
Berner, R.A. (1980). Early Diagenesis. Princeton University Press, Princeton.Google Scholar
Berner, R.A., Sjöberg, E.L., Velbel, M.A., Krom, M.D. (1980). Dissolution of pyroxenes and amphiboles during weathering. Science, 207, 1205–1206.CrossRefGoogle ScholarPubMed
Bethke, C.M. (2007). Geochemical and Biogeochemical Reaction Modeling, 2nd edn. Oxford University Press, New York.CrossRefGoogle Scholar
Bevington, P.R. (1969). Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York.Google Scholar
Bielski, B.H.J., Cabelli, D.E., Arudi, R.L. (1985). Reactivity of HO2/O2− radicals in aqueous solution. Journal of Chemical and Physical Reference Data, 14, 1041–1100.CrossRefGoogle Scholar
Bishop, K.J.M., Wilmer, C.E., Soh, S., Grzybowski, B.A. (2009). Nanoscale forces and their uses in self-assembly. Small, 5, 1600–1630.CrossRefGoogle ScholarPubMed
Bjerklie, D.M., Dingman, S.L. (2005). Comparison of constitutive flow resistance equations based on the Manning and Chezy equations applied to natural rivers. Water Resources Research, 41, W11502.CrossRefGoogle Scholar
Boerlage, S.F.E., Kennedy, M.D., Bremere, I., Witkamp, G.J., Van der Hoek, J.P., Schippers, J.C. (2002). The scaling potential of barium sulphate in reverse osmosis systems. Journal of Membrane Science, 197, 251–268.CrossRefGoogle Scholar
Brantley, S.L., Crane, S.R., Crerar, D.A., Hellmann, R., Stallard, R. (1986a). Dissolution at dislocation etch pits in quartz. Geochimica et Cosmochimica Acta, 50, 2349–2361.CrossRefGoogle Scholar
Brantley, S.L., Crane, S.R., Crerar, D.A., Hellmann, R., Stallard, R. (1986b). Dislocation etch pits in quartz. In Geochemical Processes at Mineral Surfaces, eds. Davis, J.A., Hayes, K.F.American Chemical Society, Washington D.C., pp. 635–649.Google Scholar
Brezonik, P.L. (1994). Chemical Kinetics and Process Dynamics in Aquatic Systems. Lewis Publishers, Boca Raton F.L.Google Scholar
Bridgman, P.W. (1931). Dimensional Analysis. Yale University Press, New Haven C.T.Google Scholar
Bruckner, R. (2002). Advanced Organic Chemistry Reaction Mechanisms. Harcourt Academic Press, San Diego C.A.Google Scholar
Brunauer, S., Emmett, P.H., Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.CrossRefGoogle Scholar
Bunge, H.J. (1997). Some remarks on modelling and simulation of physical phenomena. Textures and Microstructures, 28, 151–165.CrossRefGoogle Scholar
Burd, A.B., Jackson, G.A. (2009). Particle aggregation. Annual Reviews of Marine Science, 1, 65–90.CrossRefGoogle ScholarPubMed
Burkin, A.R. (2001). Chemical Hydrometallurgy. Imperial College Press, London.CrossRefGoogle Scholar
Burrows, N.D., Yuwono, V.M., Penn, R.L. (2010). Quantifying the kinetics of crystal growth by oriented aggregation. MRS Bulletin, 35, 133–137.CrossRefGoogle Scholar
Burton, W.K., Cabrera, N. (1949). Crystal growth and surface structure: Part 1. Discussions of the Faraday Society, 5, 33–39.CrossRefGoogle Scholar
Burton, W.K., Cabrera, N., Frank, F.C. (1949). Role of dislocations in crystal growth. Nature, 163, 398–399.CrossRefGoogle Scholar
Burton, W.K., Cabrera, N., Frank, F.C. (1951). The growth of crystals and the equilibrium structure of their surfaces. Philosophical Transactions Royal Society of London, 243, 299–358.CrossRefGoogle Scholar
Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513–886.CrossRefGoogle Scholar
Buxton, G.V., Mulazzani, Q.G., Ross, A.B. (1995). Critical review of rate constants for reactions of transients from metal ions and metal complexes in aqueous solution. Journal of Chemical and Physical Reference Data, 24, 1055–1349.CrossRefGoogle Scholar
Cabrera, N., Burton, W.K. (1949). Crystal growth and surface structure: Part 2. Discussions of the Faraday Society, 5, 40–48.CrossRefGoogle Scholar
Cabrera, N., Vermiyea, D.A. (1958). The growth of crystals from solution. In Growth and Perfection of Crystals, eds. Doremus, R.H., Roberts, B.W., Turnbull, D.John Wiley & Sons, New York, pp. 393–410.Google Scholar
Campanario, J.M. (1995). Automatic ‘balancing’ of chemical equations. Computers in Chemistry, 19, 85–90.CrossRefGoogle Scholar
Capellos, C., Beielski, B.H.J. (1972). Kinetic Systems. Wiley-Interscience, New York.Google Scholar
Carslaw, H.S., Jaeger, J.C. (1959). Conduction of Heat in Solids. Oxford University Press, New York.Google Scholar
Casado, J., López-Quintela, M.A., Lorenzo-Barral, F.M. (1986). The initial rate method in chemical kinetics. Journal of Chemical Education, 63, 450–452.CrossRefGoogle Scholar
Casey, W.H. (2001). A view of reactions at mineral surfaces from the aqueous phase. Mineralogical Magazine, 65, 323–337.CrossRefGoogle Scholar
Casey, W.H., Swaddle, T.W. (2003). Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry. Reviews in Geophysics, 41, 1008.CrossRefGoogle Scholar
Casey, W.H., Westrich, H.R., Banfield, J.F., Ferruzzi, G., Arnold, G.W. (1993). Leaching and reconstruction at the surface of dissolving chain-silicate minerals. Nature, 366, 253–256.CrossRefGoogle Scholar
Cazes, J., Scott, R.P.W. (2002). Chromatography Theory. Marcel Dekker, Inc., New York.Google Scholar
Ceccarello, S., Black, S., Read, D., Hodson, M.E. (2004). Industrial radioactive barite scale: Suppression of radium uptake by introduction of competing ions. Minerals Engineering, 17, 323–330.CrossRefGoogle Scholar
Chaïrat, C., Schott, J., Oelkers, E.H., Lartigue, J.-E., Harouiya, N. (2007). Kinetics and mechanism of natural fluroapatite dissolution at 25°C and pH from 3 to 12. Geochimica et Cosmochimica Acta, 71, 5901–5912.CrossRefGoogle Scholar
Chaudhry, M.H. (2008). Open-Channel Flow. Springer, New York.CrossRefGoogle Scholar
Chermak, J.A., Rimstidt, J.D. (1990). Hydrothermal transformation rate of kaolinite to muscovite/illite. Geochimica et Cosmochimica Acta, 54, 2979–2990.CrossRefGoogle Scholar
Chotantarat, S., Ong, S.K., Sutthirat, C., Osathaphan, K. (2011). Effect of pH on transport of Pb2+, Mn2+, Zn2+, and Ni2+ through lateritic soil: Column experiments and transport modeling. Journal of Environmental Sciences, 23, 640–648.CrossRefGoogle Scholar
Cölfen, H., Antonietti, M. (2008). Mesocrystals and Nonclassical Crystallization. John Wiley & Sons, Chichester, U.K.CrossRefGoogle Scholar
Colombani, J. (2008). Measurement of the pure dissolution rate constant of a mineral in water. Geochimica et Cosmochimica Acta, 72, 5634–5640.CrossRefGoogle Scholar
Crank, J. (1975). The Mathematics of Diffusion. Oxford University Press, New York.Google Scholar
Crutchfield, J.P. (2012). Between order and chaos. Nature Physics, 8, 17–24.CrossRefGoogle Scholar
Cukierman, S. (2006). Et tu, Grotthuss! and other unfinished stories. Biochimica et Biophysica Acta, 1725, 876–885.CrossRefGoogle Scholar
Curti, E. (1997). Coprecipitation of Radionucleides: basic concepts, literature review, and first applications. Wettingen, Switzerland, p. 107.Google Scholar
Curti, E. (1999). Coprecipitation of radionuclides with calcite: Estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Applied Geochemistry, 14, 433–445.CrossRefGoogle Scholar
Cussler, E.L. (2009). Diffusion, 3rd edn. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cygan, R.T., Carrigan, C.R. (1992). Time-dependent Soret transport: Applications to brine and magma. Chemical Geology, 95, 201–212.CrossRefGoogle Scholar
Damasceno, P.F., Engel, M., Glotzer, S.C. (2012). Predictive self-assembly of polyhedra into complex structures. Science, 337, 453–457.CrossRefGoogle ScholarPubMed
Danckwerts, P.V. (1953). Continuous flow systems. Distribution of residence times. Chemical Engineering Science, 2, 1–13.CrossRefGoogle Scholar
Davidson, L.E., Shaw, S., Benning, L.G. (2008). The kinetics and mechanism of schwertmannite transformation to goethite and hematite under alkaline conditions. American Mineralogist, 93, 1326–1337.CrossRefGoogle Scholar
de Groot, S.R., Mazur, P. (1984). Non-equilibrium Thermodynamics. Dover Publications, New York.Google Scholar
de Pablo, J., Casas, I., Giménez, J., Molera, M., Rovira, M., Duro, L., Bruno, J. (1999). The oxidative dissolution mechanism of uranium dioxide. I. The effect of temperature in hydrogen carbonate medium. Geochimica et Cosmochimica Acta, 63, 3079–3103.CrossRefGoogle Scholar
Debessy, J., Pagel, M., Beny, J.-M., Christensen, H., Hickel, B., Kosztolanyi, C., Poty, B. (1988). Radiolysis evidenced by H2–O2 and H2-bearing fluid inclusions in three uranium deposits. Geochimica et Cosmochimica Acta, 52, 1155–1167.CrossRefGoogle Scholar
Deming, W.E. (1943). Statistical Adjustment of Data. Dover Publications, New York.Google Scholar
Denbigh, K.G., Turner, J.C.R. (1984). Residence-time distributions, mixing, and dispersion. In Chemical Reactor Theory: An Introduction, 3rd edn. Cambridge University Press, New York, pp. 81–110.Google Scholar
Denny, M.W. (1993). Air and Water. Princeton University Press, Princeton.Google Scholar
Derome, D., Cathelineau, M., Lhomme, T., Cuney, M. (2003). Fluid inclusion evidence of the differential migration of H2 and O2 in the McArthur River unconformity-type uranium deposit (Saskatchewan, Canada). Possible role on post-ore modifications of the host rocks. Journal of Geochemical Exploration, 78–79, 525–530.CrossRefGoogle Scholar
Dietzel, M. (2000). Dissolution of silicates and the stability of polysilicic acid. Geochimica et Cosmochimica Acta, 64, 3275–3281.CrossRefGoogle Scholar
Doerner, H.A., Hoskins, W.M. (1925). Co-precipitation of radium and barium sulfates. Journal of the American Chemical Society, 47, 662–675.CrossRefGoogle Scholar
Dominé, F., Dounaceur, R., Scacchi, G., Marquaire, P.-M., Dessort, D., Pradier, B., Brevart, O. (2002). Up to what temperature is petroleum stable? New insights from a 5200 free radical reactions model. Organic Geochemistry, 33, 1487–1499.CrossRefGoogle Scholar
Dotson, N.A., Galván, R., Laurence, R.L., Tirrel, M. (1996). Polymerization Process Modeling. VCH Publishers, Inc., New York.Google Scholar
Douglas, J.F. (1969). Dimensional Analysis for Engineers. Sir Isaac Pitman & Sons Ltd., London.Google Scholar
Dove, P.M. (1994). The dissolution kinetics of quartz in sodium chloride solutions at 25°C to 300°C. American Journal of Science, 294, 665–712.CrossRefGoogle Scholar
Dove, P.M., Han, N., De Yoreo, J.J. (2005). Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior. Proceedings of the National Academy of Sciences, 102, 15357–15362.CrossRefGoogle ScholarPubMed
Draganic, I.G. (2005). Radiolysis of water: A look at its origin and occurrence in the nature. Radiation Physics and Chemistry, 72, 181–186.CrossRefGoogle Scholar
Dria, M.A., Bryant, S.L., Schechter, R.S., Lake, L.W. (1987). Interacting precipitation/dissolution waves: The movement of inorganic contaminants in groundwater. Water Resources Research, 23, 2076–2090.CrossRefGoogle Scholar
Drljaca, A., Hubbard, C.D., van Dldik, R., Asano, T., Basilevsky, M.V., le Nobel, W.J. (1988). Activation and reaction volumes in solution. 3. Chemical Reviews, 98, 2167–2298.CrossRefGoogle Scholar
Druschel, G.K., Hamers, R.J., Luthe IIIr, G.W., Banfield, J.F. (2003). Kinetics and mechanism of trithionate and tetrathionate oxidation at low pH by hydroxyl radicals. Aquatic Geochemistry, 9, 145–164.CrossRefGoogle Scholar
Dunning, W.J. (1955). Theory of crystal nucleation from vapor, liquid, and solid systems. In Chemistry of the Solid State, ed. Garner, W.E.Academic Press, Inc., New York, pp. 159–183.Google Scholar
Dunning, W.J. (1969). General and theoretical introduction. In Nucleation, ed. Zettlemoyer, A.C.Marcel Dekker, Inc., New York, pp. 1–67.Google Scholar
Dutrizac, J.E. (2002). Calcium sulphate solubilities in simulated zinc processing solutions. Hydrometallurgy, 2002, 109–135.CrossRefGoogle Scholar
Eckert, C.A. (1972). High pressure kinetics in solution. Annual Review of Physical Chemistry, 239–264.CrossRefGoogle Scholar
Edwards, J.O., Green, E.F., Ross, J. (1968). From stoichiometry and rate law to mechanism. Journal of Chemical Education, 45, 381–385.CrossRefGoogle Scholar
Edzwald, J.K., Upchurch, J.B., O’Melia, C.R. (1974). Coagulation in estuaries. Environmental Science and Technology, 8, 58–63.CrossRefGoogle Scholar
El-Kadi, A., Plummer, L.N., Aggarwal, P. (2011). NETPATH-WIN: An interactive user version of the mass-balance model, NETPATH. Groundwater, 49, 593–599.CrossRefGoogle ScholarPubMed
Epstein, I.R., Kustin, K., DeKepper, P., Orbán, M. (1983). Oscillating chemical reactions. Scientific American, 248, 112–123.CrossRefGoogle Scholar
Erdemir, D., Lee, A.Y., Myerson, A.S. (2009). Nucleation of crystals from solution: Classical and two-step models. Accounts of Chemical Research, 42, 621–629.CrossRefGoogle ScholarPubMed
Erdey-Grúz, T. (1974). Transport Phenomena in Aqueous Solutions. John Wiley & Sons, New York.Google Scholar
Ershov, B.G., Gordeev, A.V. (2008). A model for radiolysis of water and aqueous solutions. Radiation Physics and Chemistry, 77, 928–935.CrossRefGoogle Scholar
Evans, M.G., Polanyi, M. (1935). Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Transactions of the Faraday Society, 31 875–894.CrossRefGoogle Scholar
Eyring, H. (1935). The activated complex in chemical reactions. Journal of Chemical Physics, 3, 107–115.CrossRefGoogle Scholar
Feth, J.H., Robertson, C.E., Polzer, W.L. (1964). Sources of mineral constituents in water from granitic rocks, Sierra Nevada, California and Nevada. U.S. Geological Survey.Google Scholar
Field, R.J., Schneider, F.W. (1989). Oscillating chemical reactions and nonlinear dynamics. Journal of Chemical Education, 66, 195–204.CrossRefGoogle Scholar
Fokin, V.M., Zanotto, E.D., Schmelzer, J.W.P. (2010). On the thermodynamic driving force for interpretation of nucleation experiments. Journal of Non-Crystalline Solids, 356, 2185–2191.CrossRefGoogle Scholar
Ford, I.J. (2004). Statistical mechanics of nucleation: A review. Journal of Mechanical Engineering Science, 218, 883–899.CrossRefGoogle Scholar
Fournier, R.O. (1977). Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5, 41–50.CrossRefGoogle Scholar
Fu, L., Milliken, K.L., SharpJr., J.M. (1994). Porosity and permeability variations in fractured and Liesegang-banded Breathitt sandstones (Middle Pennsylvanian), eastern Kentucky: Diagenetic controls and implications for modeling dual porosity systems. Journal of Hydrology, 154, 351–381.CrossRefGoogle Scholar
Fubini, B. (1998). Surface chemistry and quartz hazard. Annals of Occupational Hygiene, 42, 521–530.CrossRefGoogle ScholarPubMed
Fueno, T. (1999). The Transition State. Gordon & Breach, Amsterdam, p. 329.Google Scholar
Furukawa, Y., Shimada, W. (1993). Three-dimensional pattern formation during growth of ice dendrites – its relation to universal law of dendritic growth. Journal of Crystal Growth, 128, 234–239.CrossRefGoogle Scholar
Garg, L.C., Maren, T.H. (1972). The rates of hydration of carbon dioxide and dehydration of carbonic acid at 37°C. Biochimica et Biophysical Acta, 261, 70–76.CrossRefGoogle Scholar
Garn, P.D. (1975). An examination of the kinetic compensation effect. Journal of Thermal Analysis, 7, 475–478.CrossRefGoogle Scholar
Garrels, R.M., MacKenzie, F.T. (1967). Origin of the chemical composition of some springs and lakes. In Equilibrium Concept in Natural Water Systems, ed. Gould, R.F.American Chemical Society, Washington D.C., pp. 222–242.CrossRefGoogle Scholar
Garten, V.A., Head, R.B. (1970). Homogeneous nucleation in aqueous solution. Journal of Crystal Growth, 6, 349–351.CrossRefGoogle Scholar
Gauch Jr, H.G. (1993). Prediction, parsimony and noise. American Scientist, 81, 468–478.Google Scholar
Gebauer, D., Völkel, A., Cölfen, H. (2008). Stable prenucleation calcium carbonate clusters. Science, 322, 1819–1822.CrossRefGoogle ScholarPubMed
Gelhar, L.W., Welty, C., Rehfeldt, K.R. (1992). A critical review of data on field-scale dispersion in aquifers. Water Resources Research, 28, 1955–1974.CrossRefGoogle Scholar
Gibbs, G.V., Cox, D.F., Ross, N.L., Crawford, T.D., Burt, J.B., Rosso, K.M. (2005). A mapping of the electron localization function for earth materials. Physics and Chemistry of Minerals, 32, 208–221.CrossRefGoogle Scholar
Gillespie, R.J., Robinson, E.A. (2006). Gilbert N. Lewis and the chemical bond: The electron pair and the octet rule from 1916 to the present day. Journal of Computational Chemistry, 28, 87–97.CrossRefGoogle Scholar
Gimarc, B.M. (1974). Applications of qualitative molecular orbital theory. Accounts of Chemical Research, 7, 384–392.CrossRefGoogle Scholar
Goldich, S.S. (1938). A study in rock weathering. Geology, 46, 17–58.CrossRefGoogle Scholar
Goldschmidt, V.M. (1958). Geochemistry. Clarendon Press, Oxford.Google Scholar
Gordon, L., Rowley, K. (1957). Coprecipitation of radium with barium sulfate. Analytical Chemistry, 29, 34–37.CrossRefGoogle Scholar
Greenberg, A.E., Clesceri, L.S., Eaton, A.D. (1992). Standard Methods for the Examination of Water and Wastewater, 18th edn. American Public Health Association, Washington D.C.Google Scholar
Grossman, R.B. (1999). The Art of Writing Reasonable Reaction Mechanisms. Springer, New York.CrossRefGoogle Scholar
Gunnarson, I., Arnórsson, S. (2003). Silica scaling: The main obstacle in efficient use of high-temperature geothermal fluids. International Geothermal Conference, Reykjavík, Iceland, pp. 30–36.Google Scholar
Gupta, A., Yan, D.S. (2006). Mineral Processing Design and Operation. Elsevier, Amsterdam.Google Scholar
Gutmann, V. (1978). The Donor–Acceptor Approach to Molecular Interactions. Plenum Press, New York.CrossRefGoogle Scholar
Guy, B. (1993). Mathematical revision of Korzhinskii’s theory of infiltration metasomatic zoning. European Journal of Mineralogy, 5, 317–339.CrossRefGoogle Scholar
Hall, C., Day, J. (1977). Systems and Models: terms and basic principles. In Ecosystem Modeling in Theory and Practice, eds Hall, C., Day, J.Wiley-Interscience, New York, pp. 6–36.Google Scholar
Hall, C., Day, J., Odum, H. (1977). A circuit language for energy and matter. In Ecosystem Modeling in Theory and Practice, eds Hall, C., Day, J.Wiley-Interscience, New York, pp. 37–49.Google Scholar
Harris, R.L. (1999). Information Graphics. Oxford University Press, Oxford.Google Scholar
Harte, J. (1988). Consider a Spherical Cow. University Science Books, Mill Valley, C.A.Google Scholar
Hartman, P., Perdok, W.G. (1955a). On the relations between structure and morphology of crystals. I. Acta Crystallographica, 8, 49–52.CrossRefGoogle Scholar
Hartman, P., Perdok, W.G. (1955b). On the relations between structure and morphology of crystals. II. Acta Crystallographica, 8, 521–524.CrossRefGoogle Scholar
Hartman, P., Perdok, W.G. (1955c). On the relations between structure and morphology of crystals. III. Acta Crystallographica, 8, 525–529.CrossRefGoogle Scholar
Harvey, M.C., Schreiber, M.E., Rimstidt, J.D., Griffith, M.A. (2006). Scorodite dissolution kinetics: Implications for arsenic release. Environmental Science and Technology, 40, 6709–6714.CrossRefGoogle ScholarPubMed
He, S., Oddo, J.E., Tomson, M.B. (1994). The inhibition of gypsum and barite nucleation in NaCl brines at temperatures from 25 to 90°C. Applied Geochemistry, 9, 561–567.CrossRefGoogle Scholar
Heaney, P.J. (1993). A proposed mechanism for the growth of chalcedony. Contributions to Mineralogy and Petrology, 115, 66–74.CrossRefGoogle Scholar
Heizmann, J.J., Bessieres, J., Bessieres, A. (1986). Advances in kinetic models. Journal de chimie physique, 83, 725–732.CrossRefGoogle Scholar
Helfferich, F.G. (1989). The theory of precipitation/dissolution waves. AIChE Journal, 35, 75–87.CrossRefGoogle Scholar
Helgeson, H.C. (1968). Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions – I. Thermodynamic relations. Geochimica et Cosmochimica Acta, 32, 853–877.CrossRefGoogle Scholar
Helgeson, H.C. (1979). Mass transfer among minerals and hydrothermal solution. In Geochemistry of Hydrothermal Ore Deposits, second edn., ed. Barnes, H.L.John Wiley & Sons, New York, pp. 568–610.Google Scholar
Helgeson, H.C., Garrels, R.M., MacKenzie, F.T. (1969). Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions – II. Applications. Geochimica et Cosmochimica Acta, 33, 455–481.CrossRefGoogle Scholar
Hellmann, R., Eggleston, C.M., HochellaJr., M.F., Crerar, D.A. (1990). The formation of leached layers on albite surfaces during dissolution under hydrothermal conditions. Geochimica et Cosmochimica Acta, 54, 1267–1281.CrossRefGoogle Scholar
Hem, J.D. (1985). Study and Interpretation of the Chemical Characteristics of Natural Water. U.S. Geological Survey, Washington D.C.Google Scholar
Hendricks, D. (2006). Water Treatment Unit Processes. Taylor & Francis/CRC Press, Boca Raton, F.L.Google Scholar
Henisch, H.K. (1988). Crystals in Gels and Liesegang Rings. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Higgins, G.H. (1959). Evaluation of the ground-water contamination hazard from underground nuclear explosions. Journal of Geophysical Research, 64, 1509–1519.CrossRefGoogle Scholar
HillJr., C.G. (1977). An Introduction to Chemical Engineering Kinetics and Reactor Design. John Wiley & Sons, New York.Google Scholar
Hofmann, A. (1972). Chromatographic theory of infiltration metasomatism and its application to feldspars. American Journal of Science, 272, 69–90.CrossRefGoogle Scholar
Horne, R.L., Rodriguez, F. (1983). Dispersion in tracer flow in fractured geothermal systems. Geophysical Research Letters, 10, 289–292.CrossRefGoogle Scholar
Houston, P.L. (2001). Chemical Kinetics and Reaction Dynamics. Dover Publications, New York.Google Scholar
Huminicki, D.M.C., Rimstidt, J.D. (2009). Iron oxyhydroxide coating of pyrite for acid mine drainage control. Applied Geochemistry, 24, 1626–1634.CrossRefGoogle Scholar
Huntley, H.E. (1967). Dimensional Analysis. Dover Publications, New York.Google Scholar
HussJr., A., Lim, P.K., Eckert, C.A. (1982). Oxidation of aqueous sulfur dioxide. 2. High-pressure studies and proposed reaction mechanisms. Journal of Physical Chemistry, 86, 4229–4233.CrossRefGoogle Scholar
Icopini, G.A., Brantley, S.L., Heaney, P.J. (2005). Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25°C. Geochimica et Cosmochimica Acta, 69, 293–303.CrossRefGoogle Scholar
Ingold, C.K. (1969). Structure and Mechanism in Organic Chemistry. Cornell University Press, Ithaca.Google Scholar
Jamtveit, B., Hammer, Ø. (2012). Sculpting of rocks by reactive fluids. Geochemical Perspectives, 1, 341–480.CrossRefGoogle Scholar
Jamtveit, B., Meakin, P. (1999). Growth, Dissolution and Pattern Formation in Geosystems. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
Jensen, W.B. (1980). The Lewis Acid-Base Concepts. John Wiley & Sons, New York.Google Scholar
Jin, L., Auerbach, S.M., Monson, P.A. (2011). Modeling three-dimensional network formation with an atomic lattice model: Application to silicic acid polymerization. Journal of Chemical Physics, 134, 134703.CrossRefGoogle ScholarPubMed
John, D.A. (2010). Porphyry Copper Deposit Model. U.S. Geological Survey, Washington D.C., p. 169.Google Scholar
Kashchiev, D., van Rosmalen, G.M. (2003). Review: Nucleation in solution revisited. Crystal Research and Technology, 38, 555–574.CrossRefGoogle Scholar
Kirby, C.S., Cravotta III, C.A. (2005a). Net alkalinity and net acidity 1: Theoretical considerations. Applied Geochemistry, 20, 1920–1940.CrossRefGoogle Scholar
Kirby, C.S., Cravotta III, C.A. (2005b). Net alkalinity and net acidity 2: Practical considerations. Applied Geochemistry, 20, 1941–1964.CrossRefGoogle Scholar
Kline, S.J. (1965). Similitude and Approximation Theory. McGraw-Hill Book Company, New York.Google Scholar
Knapp, R.B. (1989). Spatial and temporal scales of local equilibrium in dynamic fluid-rock systems. Geochimica et Cosmochimica Acta, 53, 1955–1964.CrossRefGoogle Scholar
Kondepudi, D., Prigogine, I. (1998). Modern Thermodynamics. John Wiley & Sons, Chichester, U.K.Google Scholar
Kondo, S., Miura, T. (2010). Reaction–diffusion model as a framework for understanding biological pattern formation. Science, 329, 1616–1620.CrossRefGoogle ScholarPubMed
Korzhinskii, D.S. (1970). Theory of Metasomatic Zoning. Clarendon Press, Oxford, London.Google Scholar
Krishnamurthy, E.V. (1978). Generalized matrix inverse approach for automatic balancing of chemical equations. International Journal of Mathematical Education in Science and Technology, 9, 323–328.CrossRefGoogle Scholar
Krug, H.-J., Brandstädter, H., Jacob, K.H. (1996). Morphological instabilities in pattern formation by precipitation and crystallization processes. Geologische rundschau, 85, 19–28.CrossRefGoogle Scholar
Laidler, K.J. (1987a). Theories of Reaction Rates. Harper & Row, New York, pp. 80–99.Google Scholar
Laidler, K.J. (1987b). Chemical Kinetics, 3rd edn. Harper & Row, New York.Google Scholar
Lamberto, D.J., Alverez, M.M., Muzzio, F.J. (1999). Experimental and computational investigation of the laminar flow structure in a stirred tank. Chemical Engineering Science, 54, 919–942.CrossRefGoogle Scholar
Larson, M.A., Garside, J. (1986). Solute clustering and interfacial tension. Journal of Crystal Growth, 76, 88–92.CrossRefGoogle Scholar
Lasaga, A.C. (1980a). Dynamic treatment of geochemical cycles: global kinetics. In: Kinetics of Geochemical Processes, eds Lasaga, A.C., Kirkpatrick, R.J.Mineralogical Society of America, Washington D.C., pp. 69–105.Google Scholar
Lasaga, A.C. (1980b). The kinetic treatment of geochemical cycles. Geochimica et Cosmochimica Acta, 44, 815–828.CrossRefGoogle Scholar
Lasaga, A.C. (1998a). Geochemical Kinetics. Princeton University Press, Princeton N.J.Google Scholar
Lasaga, A.C. (1998b). Kinetic Theory in Earth Sciences. Princeton, University Press, Princeton, N.J.CrossRefGoogle Scholar
Lasaga, A.C., Berner, R.A. (1998). Fundamental aspects of quantitative models for geochemical cycles. Chemical Geology, 145, 161–175.CrossRefGoogle Scholar
Lasaga, A.C., Blum, A.E. (1986). Surface chemistry, etch pits and mineral-water reactions. Geochimica et Cosmochimica Acta, 50, 2363–2379.CrossRefGoogle Scholar
Lasaga, A.C., Gibbs, G. (1990). Ab-initio quantum mechanical calculations of water-rock interactions: Adsorbtion and hydrolysis reactions. American Journal of Science, 290, 263–295.CrossRefGoogle Scholar
Laub, R.J. (1985). Theory of chromatography. In Inorganic Chromatographic Analysis, ed. Macdonald, J.C.John Wiley & Sons, New York, pp. 13–186.Google Scholar
Le Caër, S. (2011). Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water, 3, 235–253.CrossRefGoogle Scholar
Lefticariu, L., Pratt, L.A., LaVern, J.A., Schimmelmann, A. (2010). Anoxic pyrite oxidation by water radiolysis products – A potential source of biosustaining energy. Earth and Planetary Science Letters, 292, 57–67.CrossRefGoogle Scholar
Leifer, A. (1988). The Kinetics of Envrionmental Aquatic Photochemistry. American Chemical Society, Washington D.C.Google Scholar
Lerman, A. (1979). Geochemical Processes: Water and Sediment Environments. Wiley-Interscience, New York.Google Scholar
Lerman, A., Wu, L. (2008). Kinetics of global geochemical cycles. In Kinetics of Water-Rock Interaction, eds Brantley, S.L., Kubicki, J.D., White, A.F.Springer, New York, pp. 655–736.CrossRefGoogle Scholar
Leubner, I.H. (2000). Particle nucleation and growth models. Current Opinion in Colloid and Interface Science, 5, 151–159.CrossRefGoogle Scholar
Levenspiel, O. (1972a). Chemical Reaction Engineering. John Wiley & Sons, New York.Google Scholar
Levenspiel, O. (1972b). Single Ideal Reactors, Chemical Reaction Engineering, 2nd edn. John Wiley & Sons, New York, pp. 91–117.Google Scholar
Levich, V.G. (1962). Physicochemical Hydrodynamics. Prentice-Hall, Inc., Englewood Cliffs, N.J.Google Scholar
Lewis, G.N. (1916). The atom and the molecule. Journal of the American Chemical Society, 38, 762–785.CrossRefGoogle Scholar
Li, Y.-H., Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, 38, 703–714.Google Scholar
Liesegang, R.E. (1913). Geologische Diffusionen. Verlag von Theodor Steinkopff, Dresden.Google Scholar
Liesegang, R.E. (1915). Die Achate. Verlag von Theodor Steinkopff, Dresden.Google Scholar
Limerinos, J.T. (1970). Manning Coefficient from Measured Bed Roughness in Natural Channels, U.S. Geological Survey Water Supply Paper 1898-B.Google Scholar
Lin, L.-H., Slater, G.F., Lollar, B.S., Lacrampe-Couloume, G., Onstott, T.C. (2005). The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochimica et Cosmochimica Acta, 69, 893–903.CrossRefGoogle Scholar
Liu, J., Aruguete, D.M., Jinschek, J.R., Rimstidt, J.D., HochellaJr., M.F. (2008). The non-oxidative dissolution of galena nanocrystals: Insights into mineral dissolution rates as a function of grain size, shape, and aggregation state. Geochimica et Cosmochimica Acta, 72, 5984–5996.CrossRefGoogle Scholar
Liu, L., Guo, Q.-X. (2001). Isokinetic relationship, isoequilibrium relationship, and enthalpy–entropy compensation. Chemical Reviews, 101, 673–695.CrossRefGoogle ScholarPubMed
Liu, S.-T., Nancollas, G.H. (1971). The kinetics of dissolution of calcium sulfate dihydrate. Journal of Inorganic and Nuclear Chemistry, 33, 2311–2316.CrossRefGoogle Scholar
Lowell, S., Shields, J.E. (1991). Powder Surface Area and Porosity, 3rd edn. Chapman & Hall, London.CrossRefGoogle Scholar
MacInnis, I.N., Brantley, S.L. (1993). Development of etch pit size distributions on dissolving minerals. Chemical Geology, 105, 31–49.CrossRefGoogle Scholar
Maffezzoli, A., Kenny, J.M., Torre, L. (1995). On the physical dimensions of the Avrami constant. Thermochimica Acta, 269/270, 185–190.CrossRefGoogle Scholar
Mandel, J. (1964). The Statistical Analysis of Experimental Data. Dover Publications, New York.Google Scholar
Marangoni, A.G. (1998). On the use and misuse of the Avrami equation in characterization of the kinetics of fat crystallization. Journal of the American Oil Chemists’ Society, 75, 1465–1467.CrossRefGoogle Scholar
Marcus, R.A. (1964). Chemical and electrochemical electron-transfer theory. Annual Reviews of Physical Chemistry, 155–196.CrossRefGoogle Scholar
Marcus, R.A. (1968). Theoretical relations among rate constants, barriers, and Brønsted slopes of chemical reactions. Journal of Physical Chemistry, 72, 891–898.CrossRefGoogle Scholar
Marcus, R.A. (1985). Electron transfers in chemistry and biology. Biochimica et Biophysica Acta, 811, 265–322.CrossRefGoogle Scholar
Marcus, R.A. (2000). Tutorial on rate constants and reorganization energies. Journal of Electroanalytical Chemistry, 483, 2–6.CrossRefGoogle Scholar
Marin, G.B., Yablonsky, G.S. (2011). Kinetics of Chemical Reactions. Wiley-VCH, Weinheim, Germany.Google Scholar
Markov, I.V. (2003). Crystal Growth for Beginners. World Scientific, London.CrossRefGoogle Scholar
McCabe, W.L., Smith, J.C., Harriott, P. (1993). Unit Operations of Chemical Engineering. McGraw-Hill, Inc., New York.Google Scholar
McClamroch, N.H. (1980). State Models of Dynamic Systems. Springer-Verlag, New York.CrossRefGoogle Scholar
McIntire, W.L. (1963). Trace element partition coefficients: A review of theory and applications to geology. Geochimica et Cosmochimica Acta, 27, 1209–1264.CrossRefGoogle Scholar
Meldrum, F.C., Sear, R.P. (2008). Now you see them. Science, 322, 1802–1103.CrossRefGoogle Scholar
Merino, E. (1992). Self-organization in stylolites. American Scientist, 80, 466–473.Google Scholar
Merino, E., Banerjee, A. (2008). Terra rosa genesis, implications for karst, and eolian dust: A geodynamic thread. Journal of Geology, 116, 62–75.CrossRefGoogle Scholar
Merino, E., Canals, A. (2011). Self-accelerating dolomite-for-calcite replacement: Self-organized dynamics of burial dolomitization and associated mineralization. American Journal of Science, 311, 573–607.CrossRefGoogle Scholar
Meyer, D. (1999). Surfaces, Interfaces, and Colloids, 2nd edn. John Wiley & Sons, New York.Google Scholar
Miller, D.G. (1982). Estimation of Tracer Diffusion Coefficients of Ions in Aqueous Solution. Lawrence Livermore Laboratory, Livermore, C.A.CrossRefGoogle Scholar
Millero, F.J. (2001). The oxidation of hydrogen sulfide in natural waters. In The Physical Chemistry of Natural Waters. John Wiley & Sons, Inc., New York, pp. 582–632.Google Scholar
Moore, J.W., Pearson, R.G. (1981). Kinetics and Mechanism. John Wiley & Sons, New York.Google Scholar
Müller, S.C., Kai, S., Ross, J. (1982). Curiosities in periodic precipitation patterns. Science, 216, 635–637.CrossRefGoogle ScholarPubMed
Murphy, G. (1950). Similitude in Engineering. Ronald Press Company, New York.Google Scholar
Mutaftschiev, B. (2001). The Atomistic Nature of Crystal Growth. Springer, Berlin.CrossRefGoogle Scholar
Narayanasamy, J., Kubicki, J.D. (2005). Mechanism of hydroxyl radical generation from a silica surface: Molecular orbital calculations. Journal of Physical Chemistry B, 109, 21796–21807.CrossRefGoogle ScholarPubMed
Nauman, E.B. (2008). Residence time theory. Industrial & Engineering Chemistry Research, 47, 3752–3766.CrossRefGoogle Scholar
Neta, P., Huie, R.E., Ross, A.B. (1988). Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Chemical and Physical Reference Data, 17, 1027–1284.CrossRefGoogle Scholar
Nicholson, R.V., Gillham, R.W., Reardon, E.J. (1990). Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings. Geochemica et Cosmochimica Acta, 54, 395–402.CrossRefGoogle Scholar
Nico, P., Anastasio, C., Zasoski, R.J. (2002). Rapid photo-oxidation of Mn(II) mediated by humic substances. Geochimica et Cosmochimica Acta, 66, 4047–4056.CrossRefGoogle Scholar
Nicolis, G., Prigogine, I. (1977). Self-Organization in Nonequilibrium Systems. John Wiley & Sons, New York.Google Scholar
Nicolis, G., Prigogine, I. (1989). Exploring Complexity. W.H. Freeman & Company, New York.Google Scholar
Nielsen, A.E. (1964). Kinetics of Precipitation. Macmillan Company, New York.Google Scholar
Nkedl-Kizza, P., Rao, P.S.C., Hornsby, A.G. (1987). Influence of organic cosolvents on leaching of hydrophobic organic chemicals through soils. Environmental Science and Technology, 21, 1107–1111.CrossRefGoogle Scholar
Nordstrom, D.K. (1977). Thermochemical redox equilibria of Zo Bell’s solution. Geochimica et Cosmochimica Acta, 41, 1835–1841.CrossRefGoogle Scholar
Nordstrom, D.K. (2012). Models, validation, and applied geochemistry: Issues in science, communication, and philosophy. Applied Geochemistry, 27, 1899–1919.CrossRefGoogle Scholar
Oelkers, E.H. (1991). Calculation of diffusion coefficients for aqueous organic species at temperatures from 0 to 350°C. Geochimica et Cosmochimica Acta, 55, 3515–3529.CrossRefGoogle Scholar
Oelkers, E.H., Helgeson, H.C. (1988). Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Aqueous tracer diffusion coefficients of ions to 1000°C and 5 kb. Geochimica et Cosmochimica Acta, 52, 63–85.CrossRefGoogle Scholar
Ohlin, C.A., Villa, E.M., Rustad, J.R., Casey, W.H. (2010). Dissolution of insulating oxide materials at the molecular scale. Nature Materials, 9, 11–19.CrossRefGoogle ScholarPubMed
Oreskes, N., Shrader-Frechette, K., Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the Earth Sciences. Science, 263, 641–646.CrossRefGoogle ScholarPubMed
Ortoleva, P.J. (1994). Geochemical Self-Organization. Oxford University Press, New York.Google Scholar
Overton, W. (1977). A strategy of model construction. In Ecosystem Modeling in Theory and Practice: An introduction with case histories, eds, Hall, C., Day, J.Wiley-Interscience, New York, pp. 50–73.Google Scholar
Palandri, J.L., Kharaka, Y.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. U.S. Geological Survey, Menlo Park, C.A., p. 64.Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry. Cornell University Press, Ithaca, N.Y. (3rd edition).Google Scholar
Penn, R.L. (2004). Kinetics of oriented aggregation. Journal of Physical Chemistry B, 108, 12707–12712.CrossRefGoogle Scholar
Penn, R.L., Tanaka, K., Erbs, J. (2007). Size dependent kinetics of oriented aggregation. Journal of Crystal Growth, 309, 97–102.CrossRefGoogle Scholar
Petrovich, R. (1981a). Kinetics of dissolution of mechanically comminuted rock-forming oxides and silicates – I. Deformation and dissolution of quartz under laboratory conditions. Geochimica et Cosmochimica Acta, 45, 1665–1674.CrossRefGoogle Scholar
Petrovich, R. (1981b). Kinetics of dissolution of mechanically comminuted rock-forming oxides and silicates – II. Deformation and dissolution of oxides and silicates in the laboratory and at the Earth’s surface. Geochimica et Cosmochimica Acta, 45, 1675–1686.CrossRefGoogle Scholar
Pina, C.M., Putnis, A. (2002). The kinetics of nucleation of solid solutions from aqueous solutions: A new model for calculating non-equilibrium distribution coefficients. Geochimica et Cosmochimica Acta, 66, 185–192.CrossRefGoogle Scholar
Piscitelle, L.J. (1990). Determination of initial rates for a general class of chemical reactions: A methodology. International Journal of Chemical Kinetics, 22, 683–688.CrossRefGoogle Scholar
Platten, J.K., Bou-Ali, M.M., Dutrieux, J.F. (2003). Enhanced molecular separation in inclined thermogravitational columns. Journal of Physical Chemistry B, 107, 11763–11767.CrossRefGoogle Scholar
Plummer, L.N., Parkhurst, D.L., Thorstenson, D.C. (1983). Development of reaction models for ground-water systems. Geochimica et Cosmochimica Acta, 47, 665–686.CrossRefGoogle Scholar
Plummer, L.N., Prestemon, E.C., Parkhurst, D.L. (1991). An interactive code (NETPATH) for modeling net geochemical reactions along a flow path. U.S. Geological Survey, Reston, V.A., p. 227.Google Scholar
Plummer, L.N., Prestemon, E.C., Parkhurst, D.L. (1992). NETPATH: An interactive code for interpreting NET geochemical reactions from chemical and isotopic data along a flow PATH. In 7th International Symposium on Water-Rock Interaction–WRI-7, eds Kharaka, Y.F., Maest, A.S. A.A. Balkema, Park City, U.T., pp. 239–242.Google Scholar
Pollard, J.H. (1977). A Handbook of Numerical and Statistical Techniques. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Powers, J.E., Wilke, C.R. (1957). Separation of liquids by thermal diffusion. A.I.Ch.E. Journal, 3, 231–222.Google Scholar
Presnall, D.C. (1986). An algebraic method for determining equilibrium crystallization and fusion paths in multicomponent systems. American Mineralogist, 71, 1061–1070.Google Scholar
Prigogine, I. (1977). Time, structure and fluctuations. Nobel Lecture December 8, 1977, p. 23.Google Scholar
Prigogine, I. (1980). From Being to Becoming. W.H. Freeman & Company, San Francisco.Google Scholar
Prigogine, I., Stengers, I. (1984). Order out of Chaos. Bantam Books, Toronto.Google Scholar
Probstein, R.F. (1989). Physicochemical Hydrodynamics: An Introduction. Butterworths, Boston.Google Scholar
Purcell, E.M. (1977). Life at low Reynolds number. American Journal of Physics, 45, 3–11.CrossRefGoogle Scholar
Qian, J., Zhan, H., Zhao, W., Sun, F. (2005). Experimental study of turbulent unconfined groundwater flow in a single fracture. Journal of Hydrology, 311, 134–142.CrossRefGoogle Scholar
Rebreanu, L., Vanderborght, J.-P., Chou, L. (2008). The diffusion coefficient of dissolved silica revisited. Marine Chemistry, 112, 230–233.CrossRefGoogle Scholar
Rescigno, A., Thakur, A.K. (1988). Development of compartmental concepts. In Pharmacokinetics: Mathematical and statistical approaches to metabolism and distribution of chemicals and drugs, eds Pecile, A., Rescigno, A.Plenum Press, New York, pp. 19–26.CrossRefGoogle Scholar
Rimstidt, J.D. (1997a). Gangue mineral transport and deposition. In The Geochemistry of Hydrothermal Ore Deposits, 3rd edn., ed. Barnes, H.L.John Wiley & Sons, New York, pp. 487–515.Google Scholar
Rimstidt, J.D. (1997b). Quartz solubility at low temperatures. Geochimica et Cosmochimica Acta, 61, 2553–2558.CrossRefGoogle Scholar
Rimstidt, J.D., Balog, A., Webb, J. (1998). Distribution of trace elements between carbonate minerals and aqueous solutions. Geochimica et Cosmochimica Acta, 62, 1851–1863.CrossRefGoogle Scholar
Rimstidt, J.D., Barnes, H.L. (1980). The kinetics of silica-water reactions. Geochimica et Cosmochimica Acta, 44, 1683–1699.CrossRefGoogle Scholar
Rimstidt, J.D., Brantley, S.L., Olsen, A.A. (2012). Systematic review of forsterite dissolution data. Geochimica et Cosmochimica Acta, 99, 159–178.CrossRefGoogle Scholar
Rimstidt, J.D., Newcomb, W.D. (1993). Measurement and analysis of rate data: The rate of reaction of ferric iron with pyrite. Geochimica et Cosmochimica Acta, 57, 1919–1934.CrossRefGoogle Scholar
Rimstidt, J.D., Vaughan, D.J. (2003). Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. Geochimica et Cosmochimica Acta, 67, 873–880.CrossRefGoogle Scholar
Robie, R.A., Hemmingway, B.S. (1995). Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. U.S. Geological Survey, Washington D.C., p. 461.Google Scholar
Robinson, R.A., Stokes, R.H. (1959). Electrolyte Solutions, 2nd edn. Dover Publications, New York.Google Scholar
Rose, A.W., Hawkes, H.E., Webb, J.S. (1979). Geochemistry in Mineral Exploration. Academic Press, London.Google Scholar
Ross, J., Müller, S.C., Vidal, C. (1988). Chemical waves. Science, 240, 460–465.CrossRefGoogle ScholarPubMed
Rothbaum, H.P., Rohde, A.G. (1979). Kinetics of silica polymerization and deposition from dilute solutions between 5 and 180°C. Journal of Colloid and Interface Science, 71, 533–559.CrossRefGoogle Scholar
Rubinow, S.I. (1975). Tracers in physiological systems. In Introduction to Mathematical Biology. John Wiley & Sons, New York, pp. 104–155.Google Scholar
Schechter, R.S., Bryant, S.L., Lake, L.W. (1987). Isotherm-free chromatography: Propagation of precipitation/dissolution waves. Chemical Engineering Communications, 58, 353–376.CrossRefGoogle Scholar
Schepartz, B. (1980). Dimensional Analysis in the Biomedical Sciences. Charles C Thomas, Springfield, I.L.Google Scholar
Schmidt, L.D. (1998). The Engineering of Chemical Reactions. Oxford University Press, New York.Google Scholar
Schott, J., Oelkers, E.H. (1995). Dissolution and crystallization rates of silicate minerals as a function of chemical affinity. Pure & Applied Chemistry, 67, 903–910.CrossRefGoogle Scholar
Schott, J., Pokrovsky, O.S., Spalla, O., Devreux, F., Gloter, A., Mielczarski, J.A. (2012). Formation, growth and transformation of leached layers during silicate minerals dissolution: The example of wollastonite. Geochimica et Cosmochimica Acta, 98, 259–281.CrossRefGoogle Scholar
Schulze-Makuch, D. (2005). Longitudinal dispersivity data and implications for scaling behavior. Ground Water, 43, 443–456.CrossRefGoogle ScholarPubMed
Shen, L., Chen, Z. (2007). Critical review of the impact of tortuosity on diffusion. Chemical Engineering Science, 62, 3748–3755.CrossRefGoogle Scholar
Shoemaker, C. (1977). Mathematical construction of ecological models. In Ecosystem Modeling in Theory and Practice, eds Hall, C., Day, , J. Wiley-Interscience, New York, pp. 76–113.Google Scholar
Silverman, J., Dodson, R.W. (1952). The exchange reaction between the two oxidation states of iron in acid solution. Journal of Physical Chemistry, 56, 846–852.CrossRefGoogle Scholar
Sjöberg, E.L., Rickard, D. (1983). The influence of experimental design on the rate of calcite dissolution. Geochimica et Cosmochimica Acta, 47, 2281–2285.CrossRefGoogle Scholar
Sleutel, M., Maes, D., Van Driessche, A. (2012). What can mesoscopic level in situ observations teach us about kinetics and thermodynamics of crystallization? In: Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, eds Nicolis, G., Maes, D.John Wiley & Sons, Inc.Hoboken, N.J.Google Scholar
Smetannikov, A.F. (2011). Hydrogen generation during the radiolysis of crystallization water in carnallite and possible consequences of this process. Geochemistry International, 49, 916–924.CrossRefGoogle Scholar
Söhnel, O. (1982). Electrolyte crystal-aqueous solution interfacial tensions from crystallization data. Journal of Crystal Growth, 57, 101–108.CrossRefGoogle Scholar
Söhnel, O., Garside, J. (1988). Solute clustering and nucleation. Journal of Crystal Growth, 89, 202–208.CrossRefGoogle Scholar
Southworth, B.A. (1995). Hydroxyl radical production via the photo-Fenton reaction in natural waters. Department of Civil and Environmental Engineering. Massachusetts Institute of Technology, p. 188.Google Scholar
Sparks, D.L. (1989). Kinetics of Soil Chemical Processes. Academic Press, Inc., San Diego.Google Scholar
Spinks, J.W.T., Woods, R.J. (1990). An Introduction to Radiation Chemistry, 3rd edn. John Wiley & Sons, New York.Google Scholar
Staicu, C.I. (1982). Restricted and General Dimensional Analysis. Abacus Press, Tunbridge Wells, Kent, U.K.Google Scholar
Steefel, C.I. (2008). Geochemical kinetics and transport. In Kinetics of Water-Rock Interaction, eds Brantley, S.L., Kubicki, J.D., White, A.F.Springer, New York, pp. 545–589.CrossRefGoogle Scholar
Steinmann, P., Lichtner, P.C., Shotyk, W. (1994). Reaction path approach to mineral weathering reactions. Clays and Clay Minerals, 42, 197–206.CrossRefGoogle Scholar
Stumm, W. (1990). Aquatic Chemical Kinetics. John Wiley & Sons, New York, p. 545.Google Scholar
Stumm, W. (1992). Chemistry of the Solid-Water Interface. John Wiley & Sons, New York.Google Scholar
Sunagawa, I. (2005). Crystals: Growth, Morphology, and Perfections. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Taylor, G. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society A, 219, 186–203.CrossRefGoogle Scholar
Taylor, J.R. (1982). An Introduction to Error Analysis. University Science Books, Mill Valley, C.A.Google Scholar
Teng, H.H., Dove, P.M., DeYoreo, J.J. (2000). Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws. Geochimica et Cosmochimica Acta, 64, 2255–2266.CrossRefGoogle Scholar
Tester, J.W., Worley, W.G., Robinson, B.A., Grigsby, C.O., Feerer, J.L. (1994). Correlating quartz dissolution kinetics in pure water from 25 to 625°C. Geochimica et Cosmochimica Acta, 58, 2407–2420.CrossRefGoogle Scholar
Tuckerman, M.E., Marx, D., Parrinello, M. (2002). The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature, 417, 925–929.CrossRefGoogle ScholarPubMed
Tufte, E.R. (2001). The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT.Google Scholar
Turing, A.M. (1953). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237, 37–72.CrossRefGoogle Scholar
Turnbull, D., Fisher, J.C. (1949). Rate of nucleation in condensed systems. Journal of Chemical Physics, 17, 71–73.CrossRefGoogle Scholar
Uhlmann, D.R., Chalmers, B. (1966). The energetics of nucleation. In Nucleation Phenomena, eds Michaels, A.S.American Chemical Society, Washington D.C., pp. 1–13.Google Scholar
van Boekel, M.A.J.S. (2009). Kinetic Modeling of Reactions in Foods. CRC Press, Boca Raton, F.L.Google Scholar
van Dldik, R., Asano, T., le Nobel, W.J. (1989). Activation and reaction volumes in solution. 2. Chemical Reviews, 89, 549–688.CrossRefGoogle Scholar
Van Herk, J., Pietersen, H.S., Schuiling, R.D. (1989). Neutralization of industrial waste acids with olivine – the dissolution of forsteritic olivine at 40–70°C. Chemical Geology, 76, 341–352.CrossRefGoogle Scholar
Velbel, M.A. (1989). Weathering of hornblende to ferruginous products by a dissolution–reprecipitation mechanism: Petrography and stoichiometry. Clays and Clay Minerals, 37, 515–524.CrossRefGoogle Scholar
Vidal, O., Murphy, W.M. (1999). Calculation of the effect of gaseous thermodiffusion and thermogravitation processes on the relative humidity surrounding a high level nuclear waste canister. Waste Management, 19, 189–198.CrossRefGoogle Scholar
Vogel, S. (1994). Life in Moving Fluids, 2nd edn. Princeton University Press, Princeton, N.J.Google Scholar
Wagner, W., Pruß, A. (2002). The IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data, 31, 387–535.CrossRefGoogle Scholar
Wainer, H. (2005). Graphic Discovery. Princeton University Press, Princeton, NJ.Google Scholar
Waley, S.G. (1981). An easy method for the determination of initial rates. Biochemistry Journal, 193, 1009–1012.CrossRefGoogle ScholarPubMed
Walton, A.G. (1969). Nucleation in liquids and solutions. In Nucleation, ed. Zettlemoyer, A.C.Marcel Dekker, Inc., New York, pp. 225–307.Google Scholar
Wang, Y., Merino, E. (1995). Origin of fibrosity and banding in agates from flood basalts. American Journal of Science, 295, 49–77.CrossRefGoogle Scholar
Watson, J.T.R., Basu, R.S., Sengers, J.V. (1980). An improved representation equation for the dynamic viscosity of water substance. Journal of Physical and Chemical Reference Data, 9, 1255–1290.CrossRefGoogle Scholar
WeberJr., W.J., DiGiano, F.A. (1996). Process Dynamics in Environmental Systems. John Wiley & Sons, Inc., New York.Google Scholar
Wechsler, J. (1988). On aesthetics in science. In Design Science Collection, ed. Loeb, A.L.Birkhäuser, Boston, p. 180.Google Scholar
Wehrli, B. (1989). Monte Carlo simulations of surface morphologies during mineral dissolution. Journal of Colloid and Interface Science, 132, 230–242.CrossRefGoogle Scholar
Weinstein, L., Adam, J.A. (2008). Guesstimation. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Weiss, P., Driesner, T., Heinrich, C.A. (2012). Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science, 338, 1613–1616.CrossRefGoogle Scholar
Weissbart, E.J., Rimstidt, J.D. (2000). Wollastonite: Incongruent dissolution and leached layer formation. Geochimica et Cosmochimica Acta, 64, 4007–4016.CrossRefGoogle Scholar
Wen, C.Y. (1968). Noncatalytic heterogeneous solid fluid reaction models. Industrial and Engineering Chemistry, 60, 34–54.CrossRefGoogle Scholar
Weng, P.F. (1995). Silica scale inhibition and colloidal silica dispersion for reverse osmosis systems. Desalination, 103, 59–67.CrossRefGoogle Scholar
White, A.F., Peterson, M.L. (1990). Role of reactive-surface area characterization in geochemical kinetic models. In ACS Symposium Series 416, Chemical Modeling of Aqueous Systems II, eds Melchior, D.C., Bassett, R.L.American Chemical Society, Los Angeles, CA, pp. 461–475.CrossRefGoogle Scholar
Williamson, M.A., Rimstidt, J.D. (1993). The rate of decomposition of the ferric-thiosulfate complex in acidic aqueous solutions. Geochimica et Cosmochimica Acta, 57, 3555–3561.CrossRefGoogle Scholar
Williamson, M.A., Rimstidt, J.D. (1994). The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochimica et Cosmochimica Acta, 58, 5443–5454.CrossRefGoogle Scholar
Winfree, A.T. (1972). Spiral waves of chemical activity. Science, 175, 634–636.CrossRefGoogle ScholarPubMed
Wolff, G.A., Gualtieri, J.G. (1962). PBC vector, critical bond energy ratio and crystal equilibrium form. American Mineralogist, 47, 562–584.Google Scholar
Wulff, G. (1977). On the question of the rate of growth and dissolution of crystal faces. In Crystal Form and Structure, ed. Schneer, C.J.Dowden, Hutchinson & Ross, Inc, Stroudsburg, P.A, pp. 43–52.Google Scholar
Yoneawa, C., Tanaka, Y., Kamioka, H. (1996). Water-rock reactions during gamma-ray irradiation. Applied Geochemistry, 11, 461–469.CrossRefGoogle Scholar
Zhang, J.-W., Nancollas, G.H. (1990). Mechanisms of growth and dissolution of sparing soluble salts. In Mineral-Water Interface Geochemistry, eds Hochella, M.F., White, A.F.Mineralogical Society of America, Washington D.C., pp. 365–396.Google Scholar
Zhang, J.-Z., Millero, F.J. (1993). The products from the oxidation of H2S in seawater. Geochimica et Cosmochimica Acta, 57, 1705–1718.CrossRefGoogle Scholar
Zheng, C., Bennett, G.D. (1995). Applied Contaminant Transport Modeling. Van Nostrand Reinhold, New York.Google Scholar
Zhu, C., Anderson, G. (2002). Environmental Applications of Geochemical Modeling. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Zhu, C., Lu, P. (2009). Alkali feldspar dissolution and secondary mineral precipitation in batch systems: 3. Saturation states of product minerals and reaction paths. Geochimica et Cosmochimica Acta, 73, 3171–3200.CrossRefGoogle Scholar
Zlokarnik, M. (1991). Dimensional Analysis and Scale-up in Chemical Engineering. Springer-Verlag, New York.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • J. Donald Rimstidt, Virginia Polytechnic Institute and State University
  • Book: Geochemical Rate Models
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139342773.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • J. Donald Rimstidt, Virginia Polytechnic Institute and State University
  • Book: Geochemical Rate Models
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139342773.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • J. Donald Rimstidt, Virginia Polytechnic Institute and State University
  • Book: Geochemical Rate Models
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139342773.012
Available formats
×