Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T08:36:46.849Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 February 2016

Arkady Pikovsky
Affiliation:
Universität Potsdam, Germany
Antonio Politi
Affiliation:
University of Aberdeen
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Lyapunov Exponents
A Tool to Explore Complex Dynamics
, pp. 259 - 276
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, E. (ed.). 2010. 50 years of Anderson localization. World Scientific Publishing, Hackensack, NJ.Google Scholar
Abramowitz, M., and Stegun, I. A. 1964. Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, vol. 55. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC.Google Scholar
Acebron, J. A., Bonilla, L. L., Perez Vicente, C. J., Ritort, F., and Spigler, R. 2005. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77: 137–185.CrossRefGoogle Scholar
Ahlers, V., Zillmer, R., and Pikovsky, A. 2001. Lyapunov exponents in disordered chaotic systems: avoided crossing and level statistics. Phys. Rev. E 63: 036213.Google ScholarPubMed
Ames, W. F. 1992. Numerical methods for partial differential equations. 3rd edn. Academic Press, Boston, MA.Google Scholar
Anderson, P. W. 1958. Absence of diffusion in certain random lattices. Phys. Rev. 109: 1492–1505.CrossRefGoogle Scholar
Arecchi, F., Giacomelli, G., Lapucci, A., and Meucci, R. 1992. Two-dimensional representation of a delayed dynamical system. Phys. Rev. A 45: R4225–R4228.CrossRefGoogle ScholarPubMed
Arnold, L. 1998. Random dynamical systems. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Arnold, L., and Imkeller, P. 1995. Furstenberg-Khas'minski?i formulas for Lyapunov exponents via anticipative calculus. Stochastics Stochastics Rep. 54: 127–168.Google Scholar
Arnold, L., Papanicolaou, G., and Wihstutz, V. 1986. Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications. SIAM J. Appl. Math. 46: 427–450.CrossRefGoogle Scholar
Artuso, R., Casati, G., and Guarneri, I. 1997. Numerical study on ergodic properties of triangular billiards. Phys. Rev. E 55: 6384–6390.CrossRefGoogle Scholar
Artuso, R., Guarneri, I., and Rebuzzini, L. 2000. Spectral properties and anomalous transport in a polygonal billiard. Chaos 10: 189–194.CrossRefGoogle Scholar
Ashwin, P., and Breakspear, M. 2001. Anisotropic properties of riddled basins. Phys. Lett. A 280: 139–145.CrossRefGoogle Scholar
Ashwin, P., Buescu, J., and Stewart, I. 1994. Bubbling of attractors and synchronisation of chaotic oscillators. Phys. Lett. A 193: 126–139.CrossRefGoogle Scholar
Aston, Ph. J., and Dellnitz, M. 1995. Symmetry breaking bifurcations of chaotic attractors. Int. J. Bifurcat. Chaos 5: 1643–1676.CrossRefGoogle Scholar
Aston, Ph. J., and Dellnitz, M. 1999. The computation of Lyapunov exponents via spatial integration with application to blowout bifurcations. Comput. Methods Appl. Mech. Engrg. 170: 223–237.CrossRefGoogle Scholar
Aston, Ph. J., and Laing, C. R. 2000. Symmetry and chaos in the complex Ginzburg- Landau equation. II. Translational symmetries. Physica D 135: 79–97.CrossRefGoogle Scholar
Aston, Ph. J., and Melbourne, I. 2006. Lyapunov exponents of symmetric attractors. Nonlinearity 19: 2455–2466.CrossRefGoogle Scholar
Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., and Vulpiani, A. 1996. Growth of noninfinitesimal perturbations in turbulence. Phys. Rev. Lett. 77: 1262–1265. Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., and Vulpiani, A. 1997. Predictability in the large: an extension of the concept of Lyapunov exponent. J. Phys. A – Math. Gen. 30: 1–26.CrossRefGoogle ScholarPubMed
Badii, R., and Politi, A. 1997. Complexity: hierarchical structures and scaling in physics. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Bagnoli, F., Rechtman, R., and Ruffo, S. 1992. Damage spreading and Lyapunov exponents in cellular automata. Phys. Lett. A 172: 34–38.CrossRefGoogle Scholar
Barabasi, A.-L, and Stanley, H. E. 1995. Fractal concepts in surface growth. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Baranyai, A., Evans, D. J., and Cohen, E. G. D. 1993. Field-dependent conductivity and diffusion in a two-dimensional Lorentz gas. J. Stat. Phys. 70: 1085–1098.CrossRefGoogle Scholar
Barreira, L., and Pesin, Y. 2007. Nonuniform hyperbolicity: dynamics of systems with nonzero Lyapunov exponents. Encyclopedia of mathematics and its applications, vol. 115. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Baxendale, P. H., and Goukasian, L. 2002. Lyapunov exponents for small random perturbations of Hamiltonian systems. Ann. Probab. 30: 101–134.Google Scholar
Beck, C., and Schlogl, F. 1995. Thermodynamics of chaotic systems: an introduction. Cambridge University Press, Cambridge.Google Scholar
Beenakker, C. W. J. 1997. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69: 731–808.CrossRefGoogle Scholar
Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M. 1980a. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part I: theory. Meccanica 15: 9–20.Google Scholar
Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M. 1980b. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part II: numerical application. Meccanica 15: 21–30.Google Scholar
Benzi, R., Paladin, G., Parisi, G., and Vulpiani, A. 1985. Characterization of intermittency in chaotic systems. J. Phys. A – Math. Gen. 18: 2157.CrossRefGoogle Scholar
Berlekamp, E. R., Conway, J. H., and Guy, R. K. 1982. Winning ways for your mathematical plays. Vol. 2: Games in particular. Academic Press, London and New York.Google Scholar
Bettencourt, J. H., Lopez, C., and Hernandez-Garcia, E. 2013. Characterization of coherent structures in three-dimensional turbulent flows using the finite-size Lyapunov exponent. J. Phys. A – Math. Theor. 46: 254022.CrossRefGoogle Scholar
Beyn, W.-J., and Lust, A. 2009. A hybrid method for computing Lyapunov exponents. Numer. Math. 113: 357–375.CrossRefGoogle Scholar
Biktashev, V. N. 2005. Causodynamics of autowave patterns. Phys. Rev. Lett. 95: 084501.CrossRefGoogle ScholarPubMed
Bliokh, K. Y., Bliokh, Yu. P., Freilikher, V., Savel'ev, S., and Nori, F. 2008. Colloquium: Unusual resonators: plasmonics, metamaterials, and random media. Rev. Mod. Phys. 80: 1201–1213.CrossRefGoogle Scholar
Bochi, J., and Viana, M. 2005. The Lyapunov exponents of generic volume-preserving and symplectic maps. Ann. Math. 161: 1423–1485.CrossRefGoogle Scholar
Borland, R. E. 1963. The nature of the electronic states in disordered one-dimensional systems. P. Roy. Soc. Lond. A Mat. 274: 529–545.CrossRefGoogle Scholar
Bougerol, Ph., and Lacroix, J. 1985. Products of random matrices with applications to Schrodinger operators. Progress in Probability and Statistics, vol. 8. Birkhauser, Boston, MA.CrossRefGoogle Scholar
Bourgain, J. 2005. Green's function estimates for lattice Schrodinger operators and applications. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Bridges, T. J., and Reich, S. 2001. Computing Lyapunov exponents on a Stiefel manifold. Physica D 156: 219–238.CrossRefGoogle Scholar
Broomhead, D. S., Jones, R., and King, G. P. 1987. Topological dimension and local coordinates from time series data. J. Phys. A – Math. Gen. 20: L563–L569.CrossRefGoogle Scholar
Brown, R., Bryant, P., and Abarbanel, H. D. I. 1991. Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys. Rev. A 43: 2787–2806.CrossRefGoogle ScholarPubMed
Bryant, P., Brown, R., and Abarbanel, H. D. I. 1990. Lyapunov exponents from observed time series. Phys. Rev. Lett. 65: 1523–1526.CrossRefGoogle ScholarPubMed
Butcher, J. C. 2008. Numerical methods for ordinary differential equations. 2nd edn. John Wiley & Sons, Chichester.CrossRefGoogle Scholar
Campanino, M., and Klein, A. 1990. Anomalies in the one-dimensional Anderson model at weak disorder. Comm. Math. Phys. 130: 441–456.CrossRefGoogle Scholar
Carroll, T. L., and Pecora, L. M. 1991. Synchronizing chaotic circuits. IEEE Trans. Circ. and Systems 38: 453–456.Google Scholar
Casetti, L., Livi, R., and Pettini, M. 1995. Gaussian model for chaotic instability of Hamiltonian flows. Phys. Rev. Lett. 74: 375–378.CrossRefGoogle ScholarPubMed
Cecconi, F., and Politi, A. 1999. An analytic estimate of the maximum Lyapunov exponent in products of tridiagonal random matrices. J. Phys. A – Math. Gen. 32: 7603–7621.CrossRefGoogle Scholar
Cencini, M., and Torcini, A. 2001. Linear and nonlinear information flow in spatially extended systems. Phys. Rev. E 63: 056201.CrossRefGoogle ScholarPubMed
Cencini, M., and Vulpiani, A. 2013. Finite size Lyapunov exponent: review on applications. J. Phys. A – Math. and Theor. 46: 254019.CrossRefGoogle Scholar
Cencini, M., Falcioni, M., Vergni, D., and Vulpiani, A. 1999. Macroscopic chaos in globally coupled maps. Physica D 130: 58–72.CrossRefGoogle Scholar
Cessac, B., Doyon, B., Quoy, M., and Samuelides, M. 1994. Mean-field equations, bifurcation map and route to chaos in discrete time neural networks. Physica D 74: 24–44.CrossRefGoogle Scholar
Chernov, N., and Markarian, R. 2006. Chaotic billiards. American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
Chernov, N. I., Eyink, G. L., Lebowitz, J. L., and Sinai, Ya. G. 1993. Derivation of Ohm's law in a deterministic mechanical model. Phys. Rev. Lett. 70: 2209–2212.CrossRefGoogle Scholar
Chirikov, B. V., and Vecheslavov, V. V. 1989. Chaotic dynamics of comet Halley. Astronomy & Astrophysics 221: 146–154.Google Scholar
Christiansen, F., and Politi, A. 1997. Guidelines for the construction of a generating partition in the standard map. Physica D 109: 32–41.CrossRefGoogle Scholar
Christiansen, F., and Rugh, H. H. 1997. Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization. Nonlinearity 10: 1063–1072.CrossRefGoogle Scholar
Cipriani, P., and Politi, A. 2004. An open-system approach for the characterization of spatio-temporal chaos. J. Stat. Phys. 114: 205–228.CrossRefGoogle Scholar
Cohen, J. E., and Newman, Ch. M. 1984. The stability of large random matrices and their products. Ann. Probab. 12: 283–310.CrossRefGoogle Scholar
Cole, J. D. 1951. On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9: 225–236.CrossRefGoogle Scholar
Collet, P., and Eckmann, J.-P. 1980. Iterated maps on the interval as dynamical systems. Birkhauser, Boston, MA.Google Scholar
Collet, P., and Eckmann, J.-P. 1999. Extensive properties of the complex Ginzburg-Landau equation. Comm. Math. Phys. 200: 699–722.CrossRefGoogle Scholar
Cook, J., and Derrida, B. 1990. Lyapunov exponents of large, sparse random matrices and the problem of directed polymers with complex random weights. J. Stat. Phys. 61: 961–986.CrossRefGoogle Scholar
Cooper, F., Khare, A., and Sukhatme, U. 1995. Supersymmetry and quantum mechanics. Phys. Rep. 251: 267–385.CrossRefGoogle Scholar
Corazza, M., Kalnay, E., Patil, D. J., Yang, S. C., Morss, R., Cai, M., Szunyogh, I., Hunt, B. R., and Yorke, J. A. 2003. Use of the breeding technique to estimate the structure of the analysis “errors of the day”. Nonl. Processes in Geophysics 10: 233–243.Google Scholar
Crauel, H., Debussche, A., and Flandoli, F. 1997. Random attractors. J. Dynam. Differential Equations 9: 307–341.CrossRefGoogle Scholar
Crisanti, A., Paladin, G., and Vulpiani, A. 1993. Products of random matrices in statistical physics. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Crutchfield, J. P., and Kaneko, K. 1988. Are attractors relevant to turbulence?Phys. Rev. Lett. 60: 2715–2718.CrossRefGoogle Scholar
Curato, G., and Politi, A. 2013. Onset of chaotic dynamics in neural networks. Phys. Rev. E 88: 042908.CrossRefGoogle ScholarPubMed
Cvitanović, P., Gunaratne, G. H., and Procaccia, I. 1988. Topological and metric properties of Henon-type strange attractors. Phys. Rev. A 38: 1503–1520.CrossRefGoogle ScholarPubMed
Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., and Vattay, G. 2013. Chaos: classical and quantum. Niels Bohr Institute, Copenhagen. www.chaosbook.org.Google Scholar
Dahlqvist, P. 1997. The Lyapunov exponent in the Sinai billiard in the small scatterer limit. Nonlinearity 10: 159–173.CrossRefGoogle Scholar
Daido, H. 1984. Coupling sensitivity of chaos: a new universal property of chaotic dynamical systems. Progr. Theoret. Phys. Suppl. 79: 75–95.CrossRefGoogle Scholar
Daido, H. 1985. Coupling sensitivity of chaos and the Lyapunov dimension: the case of coupled two-dimensional maps. Phys. Lett. A 110: 5–9.CrossRefGoogle Scholar
Daido, H. 1987. Coupling sensitivity of chaos: theory and further numerical evidence. Phys. Lett. A 121: 60–66.CrossRefGoogle Scholar
D'Alessandro, G., Grassberger, P., Isola, S., and Politi, A. 1990. On the topology of the Henon map. J. Phys. A – Math. Gen. 23: 5285–5294.CrossRefGoogle Scholar
Darrigol, O. 2002. Stability and instability in nineteenth-century fluid mechanics. Rev. Histoire Math. 8: 5–65.Google Scholar
Deissler, R. J., and Kaneko, K. 1987. Velocity-dependent Lyapunov exponents as a measure of chaos for open-flow systems. Phys. Lett. A 119: 397–402.CrossRefGoogle Scholar
Delfini, L., Denisov, S., Lepri, S., Livi, R., Mohanty, P. K., and Politi, A. 2007. Energy diffusion in hard-point systems. Eur. Phys. J – Spec. Top. 146: 21–35.CrossRefGoogle Scholar
Dellago, Ch., and Posch, H. A. 1995. Lyapunov exponents of systems with elastic hard collisions. Phys. Rev. E 52: 2401–2406.CrossRefGoogle ScholarPubMed
Dellago, Ch., and Posch, H. A. 1997. Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: numerical simulations. Phys. Rev. Lett. 78: 211–214.CrossRefGoogle Scholar
Dellnitz, M., and Hohmann, A. 1997. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75: 293–317.CrossRefGoogle Scholar
Derrida, B., and Gardner, E. 1984. Lyapounov exponent of the one-dimensional Anderson model: weak disorder expansions. J. Physique 45: 1283–1295.CrossRefGoogle Scholar
Derrida, B., and Hilhorst, H. J. 1983. Singular behaviour of certain infinite products of random 2 × 2 matrices. J. Phys. A – Math. Gen. 16: 2641–2654.CrossRefGoogle Scholar
Derrida, B., and Spohn, H. 1988. Polymers on disordered trees, spin glasses, and traveling waves. J. Stat. Phys. 51: 817–840.CrossRefGoogle Scholar
Derrida, B., Mecheri, K., and Pichard, J. L. 1987. Lyapounov exponents of products of random matrices: weak disorder expansion. Application to localisation. J. Physique 48: 733.CrossRefGoogle Scholar
Deutsch, J. M., and Paladin, G. 1989. Product of random matrices in a microcanonical ensemble. Phys. Rev. Lett. 62: 695–699.CrossRefGoogle Scholar
di Bernardo, M., Budd, C. J., Champneys, A.R., and Kowalczyk, P. 2008. Piecewisesmooth dynamical systems: theory and applications. Springer-Verlag, London.Google Scholar
Dieci, L., and Van Vleck, E. S. 1995. Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Appl. Numer. Math. 17: 275–291.CrossRefGoogle Scholar
Dieci, L., and Van Vleck, E.S. 2005. On the error in computing Lyapunov exponents by QR methods. Numer. Math. 101: 619–642.CrossRefGoogle Scholar
Dieci, L., Russell, R. D., and Van Vleck, E. S. 1997. On the computation of Lyapunov exponents for continuous dynamical systems. SIAM J. Numer. Anal. 34: 402–423.CrossRefGoogle Scholar
Dorfman, J. R., and van Beijeren, H. 1997. Dynamical systems theory and transport coefficients: a survey with applications to Lorentz gases. Physica A 240: 12–42.CrossRefGoogle Scholar
d'Ovidio, F., Fernandez, V., Hernandez-Garcia, E., and Lopez, C. 2004. Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys. Res. Lett. 31: L17203.CrossRefGoogle Scholar
Dressler, U. 1988. Symmetry property of the Lyapunov spectra of a class of dissipative dynamical systems with viscous damping. Phys. Rev. A 38: 2103–2109.CrossRefGoogle ScholarPubMed
Dressler, U., and Farmer, J. D. 1992. Generalized Lyapunov exponents corresponding to higher derivatives. Physica D 59: 365–377.CrossRefGoogle Scholar
Eckhardt, B., and Yao, D. 1993. Local Lyapunov exponents in chaotic systems. Physica D 65: 100–108.CrossRefGoogle Scholar
Eckmann, J.-P., and Ruelle, D. 1985. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57: 617–656.
Eckmann, J.-P., and Wayne, C. E. 1988. Liapunov spectra for infinite chains of nonlinear oscillators. J. Stat. Phys. 50: 853–878.CrossRefGoogle Scholar
Eckmann, J.-P., Forster, Ch., Posch, H. A., and Zabey, E. 2005. Lyapunov modes in harddisk systems. J. Stat. Phys. 118: 813–847.CrossRefGoogle Scholar
Ershov, S. V., and Potapov, A. B. 1998. On the concept of stationary Lyapunov basis. Physica D 118: 167–198.CrossRefGoogle Scholar
Evans, D. J., and Morris, G. 2008. Statistical mechanics of nonequilibrium liquids. 2nd edn. Cambridge University Press, Cambridge. Books Online.CrossRefGoogle Scholar
Evans, D. J., Cohen, E. G. D., and Morriss, G. P. 1990. Viscosity of a simple fluid from its maximal Lyapunov exponents. Phys. Rev. A 42: 5990–5997.CrossRefGoogle ScholarPubMed
Evers, F., and Mirlin, A. D. 2008. Anderson transitions. Rev. Mod. Phys. 80: 1355–1417.CrossRefGoogle Scholar
Family, F., and Vicsek, T. 1985. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition mode l. J. Phys. A – Math. Gen. 18: L75.CrossRefGoogle Scholar
Farmer, J. D. 1981. Spectral broadening of period-doubling bifurcation sequences. Phys. Rev. Lett. 47: 179.CrossRefGoogle Scholar
Farmer, J. D. 1982. Chaotic attractors of an infinite-dimensional dynamical system. Physica D: Nonlinear Phenomena 4: 366–393.Google Scholar
Farmer, J. D., and Sidorowich, J. J. 1987. Predicting chaotic time series. Phys. Rev. Lett. 59: 845–848.CrossRefGoogle ScholarPubMed
Feigel'man, M. V., and Tsvelik, A. M. 1982. Hidden supersymmetry of stochastic dissipative dynamics. Sov. Phys. JETP 56: 823.Google Scholar
Feudel, U., Kuznetsov, S., and Pikovsky, A. 2006. Strange nonchaotic attractors: dynamics between order and chaos in quasiperiodically forced systems.World Scientific, Hackensack, NJ.CrossRefGoogle Scholar
Feynman, R. P., and Hibbs, A. R. 2010. Quantum mechanics and path integrals. Dover, Mineola, NY.Google Scholar
Fischer, R. A. 1937. The wave of advance of advantageous genes. Ann. Eugenics 7: 353–369.Google Scholar
Francisco, G., and Matsas, G. E. A. 1988. Qualitative and numerical study of Bianchi IX models. General Relativity and Gravitation 20: 1047–1054.CrossRefGoogle Scholar
Friedman, B., Oono, Y., and Kubo, I. 1984. Universal behavior of Sinai billiard systems in the small-scatterer limit. Phys. Rev. Lett. 52: 709–712.CrossRefGoogle Scholar
Froeschle, C., Lega, E., and Gonczi, R. 1997. Fast Lyapunov indicators: application to asteroidal motion. Celest. Mech. Dyn. Astr. 67: 41–62.CrossRefGoogle Scholar
Furstenberg, H., and Kesten, H. 1960. Products of random matrices. Ann. Math. Statist. 31: 457–469.CrossRefGoogle Scholar
Gardiner, C. 2009. Stochastic methods: a handbook for the natural and social sciences. Springer-Verlag, Berlin.Google Scholar
Gaspard, P. 2005. Chaos, scattering and statistical mechanics. Cambridge University Press, Cambridge.Google Scholar
Gaspard, P., and Nicolis, G. 1990. Transport properties, Lyapunov exponents, and entropy per unit time. Phys. Rev. Lett. 65: 1693–1696.CrossRefGoogle ScholarPubMed
Geist, K., Parlitz, U., and Lauterborn, W. 1990. Comparison of different methods for computing Lyapunov exponents. Progr. Theoret. Phys. 83: 875–893.CrossRefGoogle Scholar
Gertsenshtein, M. E., and Vasiljev, V. B. 1959. Waveguides with random inhomogeneities and Brownian motion in the Lobachevsky plane. Theor. Prob. Appl. 4: 391–398.CrossRefGoogle Scholar
Giacomelli, G., Hegger, R., Politi, A., and Vassalli, M. 2000. Convective Lyapunov exponents and propagation of correlations. Phys. Rev. Lett. 85: 3616–3619.CrossRefGoogle ScholarPubMed
Ginelli, F., Livi, R., Politi, A., and Torcini, A. 2003. Relationship between directed percolation and the synchronization transition in spatially extended systems. Phys. Rev. E 67: 046217.CrossRefGoogle ScholarPubMed
Ginelli, F., Poggi, P., Turchi, A., Chate, H., Livi, R., and Politi, A. 2007. Characterizing dynamics with covariant Lyapunov vectors. Phys. Rev. Lett. 99: 130601.CrossRefGoogle ScholarPubMed
Ginelli, F., Takeuchi, K., Chate, H., Politi, A., and Torcini, A. 2011. Chaos in the Hamiltonian mean-field model. Phys. Rev. E 84: 066211.CrossRefGoogle ScholarPubMed
Ginelli, F., Chate, C., Livi, R., and Politi, A. 2013. Covariant Lyapunov vectors. J. Phys. A – Math. Theor. 46: 254005.CrossRefGoogle Scholar
Giovannini, F., and Politi, A. 1992. Generating partitions in Henon-type maps. Phys. Lett. A 161: 332–336.
Girko, V. L. 1984. The circular law. Teor. Veroyatnost. i Primenen. 29: 669–679.Google Scholar
Goldhirsch, I., Sulem, P.-L., and Orszag, S. A. 1987. Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method. Physica D 27: 311–337.CrossRefGoogle Scholar
Goldobin, D. S., and Pikovsky, A. 2004. Synchronization of periodic self-oscillations by common noise. Radiophys. Quantum El. 47: 910–915.CrossRefGoogle Scholar
Goldobin, D. S., and Pikovsky, A. 2006. Antireliability of noise-driven neurons. Phys. Rev. E 73: 061906.CrossRefGoogle ScholarPubMed
Goldobin, D. S., Teramae, J., Nakao, H., and Ermentrout, G. B. 2010. Dynamics of limitcycle oscillators subject to general noise. Phys. Rev. Lett. 105: 154101.CrossRefGoogle Scholar
Golub, G. H., and Van Loan, Ch. F. 1996. Matrix computations. Johns Hopkins University Press, Baltimore, MD.
Gorin, Th., Prosen, T., Seligman, Th. H., and Znidaric, M. 2006. Dynamics of Loschmidt echoes and fidelity decay. Phys. Rep. 435: 33–156.CrossRefGoogle Scholar
Goussev, A., Jalabert, R. A., Pastawski, H. M., and Wisniacki, D. A. 2012. Loschmidt echo. Scholarpedia 7(8): 11687.Google Scholar
Gozzi, E., and Reuter, M. 1994. Lyapunov exponents, path-integrals and forms. Chaos, solitons & fractals 4: 1117–1139.CrossRefGoogle Scholar
Graham, R. 1988. Lyapunov exponents and supersymmetry of stochastic dynamical systems. Europhys. Lett. 5: 101–106.CrossRefGoogle Scholar
Grassberger, P., and Kantz, H. 1985. Generating partitions for the dissipative Henon map. Phys. Lett. A 113: 235–238.CrossRefGoogle Scholar
Grassberger, P., and Procaccia, I. 1983. On the characterization of strange attractors. Phys. Rev. Lett. 50: 346–349.CrossRefGoogle Scholar
Grassberger, P., Badii, R., and Politi, A. 1988. Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors. J. Stat. Phys. 51: 135–178.CrossRefGoogle Scholar
Grebogi, C., Ott, E., and Yorke, J. A. 1983. Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7: 181–200.CrossRefGoogle Scholar
Gredeskul, S. A., and Freilikher, V. D. 1990. Localization and wave propagation in randomly layered media. Physics-Uspekhi 33: 134–146.Google Scholar
Gupalo, D., Kaganovich, A. S., and Cohen, E. G. D. 1994. Symmetry of Lyapunov spectrum. J. Stat. Phys. 74: 1145–1159.CrossRefGoogle Scholar
Gutkin, E. 1986. Billiards in polygons. Physica D 19: 311–333.CrossRefGoogle Scholar
Haake, F. 2010. Quantum signatures of chaos. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Habib, S., and Ryne, R. D. 1995. Symplectic calculation of Lyapunov exponents. Phys. Rev. Lett. 74: 70–73.CrossRefGoogle ScholarPubMed
Hairer, E., Lubich, Ch., and Wanner, G. 2010. Geometric numerical integration: structurepreserving algorithms for ordinary differential equations. Springer, Heidelberg.Google Scholar
Hale, J. K. 1969. Ordinary differential equations. Wiley-Interscience, New York.Google Scholar
Haller, G. 2001. Distinguished material surfaces and coherent structures in threedimensional fluid flows. Physica D 149: 248–277.CrossRefGoogle Scholar
Haller, G. 2002. Lagrangian coherent structures from approximate velocity data. Phys. Fluids 14: 1851–1861.CrossRefGoogle Scholar
Haller, G., and Yuan, G. 2000. Lagrangian coherent structures and mixing in twodimensional turbulence. Physica D 147: 352–370.CrossRefGoogle Scholar
Halpin-Healy, T., and Zhang, Y.-Ch. 1995. Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 254: 215–414.CrossRefGoogle Scholar
Hansen, K. T. 1992. Remarks on the symbolic dynamics for the Henon map. Phys. Lett. A 165: 100–104.Google Scholar
Harmer, G. P., and Abbott, D. 1999. Parrondo's paradox. Statist. Sci., 14: 206–213.Google Scholar
Hartung, F., Krisztin, T.,Walther, H.-O., and Wu, J. 2006. Functional differential equations with state-dependent delays: theory and applications. In Canada, A., Drabek, P., and Fonda, A. (eds.), Handook of differential equations, vol. 3. Amer. Math. Soc., Providence, RI, 435–546.Google Scholar
Heiligenthal, S., Dahms, Th., Yanchuk, S., Jungling, Th., Flunkert, V., Kanter, I., Scholl, E., and Kinzel, W. 2011. Strong and weak chaos in nonlinear networks with time-delayed couplings. Phys. Rev. Lett. 107: 234102.CrossRefGoogle ScholarPubMed
Henon, M. 1982. On the numerical computation of Poincare maps. Physica D 5: 412–414.CrossRefGoogle Scholar
Herrmann, H. J. 1990. Damage spreading. Physica A 168: 516–528.CrossRefGoogle Scholar
Hoover, W. G. 1991. Computational statistical mechanics. Elsevier Science, Amsterdam.Google Scholar
Hopf, E. 1950. The partial differential equation ut +uux = µuxx. Comm. Pure Appl. Math. 3: 201–230.CrossRefGoogle Scholar
Horsthemke, W., and Bach, A. 1975. Onsager-Machlup function for one-dimensional nonlinear diffusion processes. Z. Phys. B Cond. Mat. 22: 189–192.Google Scholar
Ilachinski, A. 2001. Cellular automata: a discrete universe. World Scientific, River Edge, NJ.CrossRefGoogle Scholar
Inagaki, S., and Konishi, T. 1993. Dynamical stability of a simple model similar to selfgravitating systems. Publ. Astron. Soc. Japan 45: 733–735.Google Scholar
Isopi, M., and Newman, Ch. M. 1992. The triangle law for Lyapunov exponents of large random matrices. Comm. Math. Phys. 143: 591–598.CrossRefGoogle Scholar
Izrailev, F. M., Ruffo, S., and Tessieri, L. 1998. Classical representation of the onedimensional Anderson model. J. Phys. A – Math. Gen. 31: 5263–5270.CrossRefGoogle Scholar
Izrailev, F. M., Krokhin, A. A., and Makarov, N. M. 2012. Anomalous localization in lowdimensional systems with correlated disorder. Phys. Rep. 512: 125–254.CrossRefGoogle Scholar
Jalabert, R., and Pastawski, H. 2001. Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86: 2490–2493.CrossRefGoogle ScholarPubMed
Johnson, R. A., Palmer, K. J., and Sell, G. R. 1987. Ergodic properties of linear dynamical systems. SIAM J. Math. Anal. 18: 1–33.CrossRefGoogle Scholar
Kaneko, K. 1985. Spatiotemporal intermittency in coupled map lattices. Progr. Theor. Phys. 74: 1033–1044.CrossRefGoogle Scholar
Kantz, H., and Grassberger, P. 1985. Repellers, semi-attractors and long-lived chaotic transients. Physica D 17: 75–86.CrossRefGoogle Scholar
Kantz, H., and Schreiber, Th. 2004. Nonlinear time series analysis. Cambridge University Press, Cambridge.Google Scholar
Kantz, H., Radons, G., and Yang, H. 2013. The problem of spurious Lyapunov exponents in time series analysis and its solution by covariant Lyapunov vectors. J. Phys. A –Math. Theor. 46: 254009CrossRefGoogle Scholar
Kaplan, J. L., and Yorke, J. A. 1979. Chaotic behavior of multidimensional difference equations. In Walter, H. O., and Peitgen, H.-O. (eds.), Functional differential equations and approximation of fixed points. Springer-Verlag, Berlin, 204–227.Google Scholar
Kardar, M., Parisi, G., and Zhang, Y.-Ch. 1986. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56: 889–892.CrossRefGoogle ScholarPubMed
Kargin, V. 2014. On the largest Lyapunov exponent for products of Gaussian matrices. J. Stat. Phys. 157: 70–83.CrossRefGoogle Scholar
Karrasch, D., and Haller, G. 2013. Do finite-size Lyapunov exponents detect coherent structures?Chaos 23: 043126.CrossRefGoogle ScholarPubMed
Katok, A., and Hasselblatt, B. 1995. Introduction to the modern theory of dynamical systems. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Kauffman, S. A. 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22: 437–467.CrossRefGoogle ScholarPubMed
Kenfack, J., A., Politi, A., and Torcini, A. 2013. Convective Lyapunov spectra. J. Phys. A 46: 254013.Google Scholar
Khasminskii, R. 2012. Stochastic stability of differential equations. Springer, Heidelberg. With contributions by G. N. Milstein and M. B. Nevelson.CrossRefGoogle Scholar
Kockelkoren, J. 2002. Dynamique hors d'equilibre et universalite en presence d'une quantite conservee. Ph.D. thesis, Universite Denis Diderot, Paris 7, CEA.Google Scholar
Kolmogorov, A. N., and Tikhomirov, V. M. 1961. e-entropy and e-capacity of sets in functional spaces. Amer. Math. Soc. Transl. Ser. 2 17: 277–364.Google Scholar
Kolmogorov, N., Petrovsky, I., and Piscounov, N. 1937. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. Bull. Univ. Moscow, Ser. Int. A1: 1.Google Scholar
Korabel, N., and Barkai, E. 2010. Separation of trajectories and its relation to entropy for intermittent systems with a zero Lyapunov exponent. Phys. Rev. E 82: 016209.CrossRefGoogle ScholarPubMed
Kostelich, E. J., Kan, I., Grebogi, C., Ott, E., and Yorke, J. A. 1997. Unstable dimension variability: a source of nonhyperbolicity in chaotic systems. Physica D 109: 81–90.CrossRefGoogle Scholar
Kramer, B., and MacKinnon, A. 1993. Localization: theory and experiment. Rep. Prog. Phys. 56: 1469.CrossRefGoogle Scholar
Kramer, B., MacKinnon, A., Ohtsuki, T, and Slevin, K. 1987. Finite size scaling analysis of the Anderson transition. In Abrahams, E. (ed.), 50 years of Anderson localization. World Scientific, Singapore, 347–360.Google Scholar
Krug, J., and Meakin, P. 1990. Universal finite-size effects in the rate of growth processes. J. Phys. A – Math. Gen. 23: L987.CrossRefGoogle Scholar
Kruis, H. V., Panja, D., and van Beijeren, H. 2006. Systematic density expansion of the Lyapunov exponents for a two-dimensional random Lorentz gas. J. Stat. Phys. 124: 823–842.CrossRefGoogle Scholar
Krylov, N. S. 1979. Works on the foundations of statistical physics. Princeton University Press, Princeton, N.J. Translated by A. B. Migdal, Ya. G. Sinai and Yu. L. Zeeman.With a preface by A. S. Wightman.Google Scholar
Kunze, M. 2000. Lyapunov exponents for non-smooth dynamical systems. In Kunze, M. (ed.), Non-smooth dynamical systems. Springer, Berlin and Heidelberg, 63–140.CrossRefGoogle Scholar
Kuptsov, P. V., and Kuznetsov, S. P. 2009. Violation of hyperbolicity in a diffusive medium with local hyperbolic attractor. Phys. Rev. E 80: 016205.CrossRefGoogle Scholar
Kuptsov, P. V., and Parlitz, U. 2012. Theory and computation of covariant Lyapunov vectors. J. Nonl. Sci. 22: 727–762.CrossRefGoogle Scholar
Kuptsov, P. V., and Politi, A. 2011. Large-deviation approach to space-time chaos. Phys. Rev. Lett. 107: 114101.CrossRefGoogle ScholarPubMed
Kuramoto, Y. 1975. Self-entrainment of a population of coupled nonlinear oscillators. In Araki, H. (ed.), International symposium on mathematical problems in theoretical physics. Springer, New York, 420.Google Scholar
Kuramoto, Y. 1984. Chemical oscillations, waves and turbulence. Springer, Berlin.CrossRefGoogle Scholar
Kuznetsov, S. P., and Pikovsky, A. 1986. Universality and scaling of period-doubling bifurcations in dissipative distributed medium. Physica D 19: 384–396.CrossRefGoogle Scholar
Laffargue, T., Lam, Kh.-D. N.-Th., Kurchan, J., and Tailleur, J. 2013. Large deviations of Lyapunov exponents. J. Phys. A – Math. Theor. 46: 254002.CrossRefGoogle Scholar
Lai, Y.-Ch, and Tel, T. 2011. Transient chaos: complex dynamics on finite time scales. Springer, New York.CrossRefGoogle Scholar
Lam, Kh.-D. N.-Th., and Kurchan, J. 2014. Stochastic perturbation of integrable systems: a window to weakly chaotic systems. J. Stat. Phys. 156: 619–646.CrossRefGoogle Scholar
Landau, L. D., and Lifshitz, E. M. 1958. Quantum mechanics: non-relativistic theory. Course of theoretical physics, vol. 3. Pergamon, Londo and Paris.Google Scholar
Laskar, J. 1989. A numerical experiment on the chaotic behaviour of the solar system. Nature 338: 237–238.CrossRefGoogle Scholar
Laskar, J., and Gastineau, M. 2009. Existence of collisional trajectories of Mercury, Mars and Venus with the Earth. Nature 459: 817–819.CrossRefGoogle ScholarPubMed
Latz, A., van Beijeren, H., and Dorfman, J. R. 1997. Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: kinetic theory. Phys. Rev. Lett. 78: 207–210.CrossRefGoogle Scholar
Ledrappier, F. 1981. Some relations between dimension and Lyapunov exponents. Commun. Math. Phys. 81: 229–238.CrossRefGoogle Scholar
Leimkuhler, B., and Reich, S. 2004. Simulating Hamiltonian dynamics. Cambridge University Press, Cambridge.Google Scholar
Leine, R. I. 2010. The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dynam. 59: 173–182.CrossRefGoogle Scholar
Leonov, G. A., and Kuznetsov, N. V. 2007. Time-varying lineraization and the Perron effects. Int. J. Bifurcat. Chaos 17: 1079.CrossRefGoogle Scholar
Lepri, S., Giacomelli, G., Politi, A., and Arecchi, F.T. 1994. High-dimensional chaos in delayed dynamical systems. Physica D 70: 235–249.CrossRefGoogle Scholar
Lepri, S., Politi, A., and Torcini, A. 1996. Chronotopic Lyapunov analysis. I: a detailed characterization of 1D systems. J. Stat. Phys. 82: 1429.CrossRefGoogle Scholar
Lepri, S., Politi, A., and Torcini, A. 1997. Chronotopic Lyapunov analysis. II: toward a unified approach. J. Stat. Phys. 88: 31.CrossRefGoogle Scholar
Lepri, S., Livi, R., and Politi, R. 2003. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377: 1–80.CrossRefGoogle Scholar
Letz, T., and Kantz, H. 2000. Characterization of sensitivity to finite perturbations. Phys. Rev. E 61: 2533–2538.CrossRefGoogle Scholar
Lifshits, I. M., Gredeskul, S. A., and Pastur, L. A. 1988. Introduction to the theory of disordered systems. John Wiley & Sons, New York.Google Scholar
Livi, R., Politi, A., and Ruffo, S. 1986. Distribution of characteristic exponents in the thermodynamic limit. J. Phys. A – Math. Gen 19: 2033–2040.CrossRefGoogle Scholar
Livi, R., Politi, A., Ruffo, S., and Vulpiani, A. 1987. Liapunov exponents in highdimensional symplectic dynamics. J. Stat. Phys. 46: 147–160.CrossRefGoogle Scholar
Livi, R., Politi, A., and Ruffo, S. 1992. Scaling-law for the maximal Lyapunov exponent. J. Phys. A – Math. Gen. 25: 4813–4826.CrossRefGoogle Scholar
Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20: 130–141.2.0.CO;2>CrossRefGoogle Scholar
Luccioli, S., Olmi, S., Politi, A., and Torcini, A. 2012. Collective dynamics in sparse networks. Phys. Rev. Lett. 109: 138103.CrossRefGoogle ScholarPubMed
Lyapunov, A. M. 1992. The general problem of the stability of motion. Taylor & Francis, Ltd., London. Translated from Edouard Davaux's French translation (1907) of the 1892 Russian original and edited by A. T., Fuller, with an introduction and preface by Fuller, a biography of Lyapunov by V. I. Smirnov, and a bibliography of Lyapunov's works compiled by J. F. Barrett, Lyapunov centenary issue. Reprint of Internat. J. Control 55 (1992), no. 3.Google Scholar
MacKinnon, A., and Kramer, B. 1981. One-parameter scaling of localization length and conductance in disordered systems. Phys. Rev. Lett. 47: 1546–1549.CrossRefGoogle Scholar
MacKinnon, A., and Kramer, B. 1983. The scaling theory of electrons in disordered solids: additional numerical results. Z. Phys. B Cond. Mat. 53: 1–13.CrossRefGoogle Scholar
Mainen, Z. F., and Sejnowski, T. J. 1995. Reliability of spike timing in neocortical neurons. Science 268: 1503.CrossRefGoogle ScholarPubMed
Mainieri, R. 1992. Cycle expansion for the Lyapunov exponent of a product of random matrices. Chaos 2: 91–97.CrossRefGoogle ScholarPubMed
Mallick, K., and Peyneau, P.-E. 2006. Phase diagram of the random frequency oscillator: the case of Ornstein–Uhlenbeck noise. Physica D 221: 72–83.CrossRefGoogle Scholar
Manneville, P. 1985. Liapounov exponents for the Kuramoto-Sivashinsky model. In Macroscopic modelling of turbulent flows (Nice, 1984). Springer, Berlin, 319–326.Google Scholar
Marčenko, V. A., and Pastur, L. A. 1967a. Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72: 507–536.Google Scholar
Marčenko, V. A., and Pastur, L. A. 1967b. The spectrum of random matrices. Teor. Funkci?i Funkcional. Anal. i Priložen. Vyp. 4: 122–145.Google Scholar
Marinari, E., Pagnani, P., and Parisi, G. 2000. Critical exponents of the KPZ equation via multi-surface coding numerical simulations. J. Phys. A – Math. Gen. 33: 8181.CrossRefGoogle Scholar
Markoš, P. 1993. Weak disorder expansion of Lyapunov exponents of products of random matrices: a degenerate theory. J. Stat. Phys. 70: 899–919.CrossRefGoogle Scholar
Martin, B. 2007. Damage spreading and µ-sensitivity on cellular automata. Ergodic Theory Dynam. Systems 27: 545–565.CrossRefGoogle Scholar
McNamara, S., and Mareschal, M. 2001. Origin of the hydrodynamic Lyapunov modes. Phys. Rev. E 64: 051103.CrossRefGoogle ScholarPubMed
Mehta, M. L. 2004. Random matrices. Elsevier/Academic Press, Amsterdam.Google Scholar
Mello, P. A., and Robledo, A. 1993. Strongly coupled Ising chain under a weak random field. Physica A 199: 363–386.CrossRefGoogle Scholar
Milnor, J., and Thurston, W. 1988. On iterated maps of the interval. In Dynamical systems (College Park, MD, 1986–87). Springer, Berlin.Google Scholar
Monteforte, M., and Wolf, F. 2010. Dynamical entropy production in spiking neuron networks in the balanced state. Phys. Rev. Lett. 105: 268104.CrossRefGoogle ScholarPubMed
Morton, K. W., and Mayers, D. F. 2005. Numerical solution of partial differential equations: an introduction. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Motter, A. E. 2003. Relativistic chaos is coordinate invariant. Phys. Rev. Lett. 91: 231101.CrossRefGoogle ScholarPubMed
Motter, A. E., and Saa, A. 2009. Relativistic invariance of Lyapunov exponents in bounded and unbounded systems. Phys. Rev. Lett. 102: 184101.CrossRefGoogle ScholarPubMed
Muller, P. C. 1995. Calculation of Lyapunov exponents for dynamic systems with discontinuities. Chaos Solitons Fractals 5: 1671–1681.CrossRefGoogle Scholar
Murray, C. D., and Dermott, S. F. 1999. Solar system dynamics. Cambridge University Press, Cambridge.Google Scholar
Newman, Ch. M. 1986a. The distribution of Lyapunov exponents: exact results for random matrices. Comm. Math. Phys. 103: 121–126.CrossRefGoogle Scholar
Newman, Ch. M. 1986b. Lyapunov exponents for some products of random matrices: exact expressions and asymptotic distributions. In Random matrices and their applications (Brunswick, Maine, 1984). Providence, RI, 121–141.Google Scholar
Olmi, S., Politi, A., and Torcini, A. 2012. Stability of the splay state in networks of pulsecoupled neurons. J. Math. Neurosci. 2: 12CrossRefGoogle Scholar
Oseledets, V. 2008. Oseledets theorem. Scholarpedia 3(1): 1846.CrossRefGoogle Scholar
Oseledets, V. I. 1968. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19: 197–231.Google Scholar
Paladin, G., and Vulpiani, A. 1986. Scaling law and asymptotic distribution of Lyapunov exponents in conservative dynamical systems with many degrees of freedom. J. Phys. A – Math. Gen. 19: 1881–1888.CrossRefGoogle Scholar
Paoli, P., Politi, A., and Badii, R. 1989. Long-range order in the scaling behaviour of hyperbolic dynamical systems. Physica D 36: 263–286.CrossRefGoogle Scholar
Parks, P. C. 1992. A. M. Lyapunov's stability theory–100 years on. IMA J. Math. Control Inform. 9: 275–303.CrossRefGoogle Scholar
Parrondo, J.-M. R., and Dins, L. 2004. Brownian motion and gambling: from ratchets to paradoxical games. Contemp. Phys. 45(2): 147–157.CrossRefGoogle Scholar
Pastur, L., and Figotin, A. 1992. Spectra of random and almost-periodic operators. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Patil, D. J., Hunt, B. R., Kalnay, E., Yorke, J. A., and Ott, E. 2001. Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett. 86: 5878–5881.CrossRefGoogle ScholarPubMed
Pazo, D., Lopez, J. M., and Politi, A. 2013. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos. Phys. Rev. E 87: 062909.CrossRefGoogle ScholarPubMed
Peacock, Th., and Haller, G. 2013. Lagrangian coherent structures: the hidden skeleton of fluid flows. Phys. Today 66: 41–47.CrossRefGoogle Scholar
Pecora, L. M., and Carroll, T. L. 1991. Driving systems with chaotic signals. Phys. Rev. A 44: 2374–2383.CrossRefGoogle ScholarPubMed
Pecora, L. M., and Carroll, T. L. 1998. Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80: 2109–2112.CrossRefGoogle Scholar
Pecora, L. M., and Carroll, T. L. 1999. Master stability functions for synchronized coupled systems. Int. J. Bifurcat. Chaos 9: 2315–2320.CrossRefGoogle Scholar
Pesin, Ya. B. 1977. Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32: 55.CrossRefGoogle Scholar
Pettini, M. 2007. Geometry and topology in Hamiltonian dynamics and statistical mechanics. Springer, New York.CrossRefGoogle Scholar
Pichard, J. L., and Sarma, G. 1981a. Finite-size scaling approach to Anderson localisation. J. Phys. C – Solid State 14: L127.Google Scholar
Pichard, J. L., and Sarma, G. 1981b. Finite-size scaling approach to Anderson localisation. II. Quantitative analysis and new results. J. Phys. C – Solid State 14: L617.Google Scholar
Pierrehumbert, R. T., and Yang, H. 1993. Global chaotic mixing on isentropic surfaces. J. Atmos. Sci. 50: 2462–2480.2.0.CO;2>CrossRefGoogle Scholar
Pikovsky, A. 1984a. On the interaction of strange attractors. Z. Physik B 55: 149–154.CrossRefGoogle Scholar
Pikovsky, A. 1984b. Synchronization and stochastization of nonlinear oscillations by external noise. In Sagdeev, R. Z. (ed.), Nonlinear and turbulent processes in physics, vol. 3. Harwood Acad, Chur.Google Scholar
Pikovsky, A. 1984c. Synchronization and stochastization of the ensemble of autogenerators by external noise. Radiophys. Quantum Electron. 27: 576–581.Google Scholar
Pikovsky, A. 1989. Spatial development of chaos in nonlinear media. Phys. Lett. A 137: 121–127.CrossRefGoogle Scholar
Pikovsky, A. 1991. Statistical properties of dynamically generated anomalous diffusion. Phys. Rev. A 43: 3146–3148.CrossRefGoogle ScholarPubMed
Pikovsky, A. 1993. Local Lyapunov exponents for spatiotemporal chaos. Chaos, 3: 225– 232.CrossRefGoogle ScholarPubMed
Pikovsky, A., and Feudel, U. 1995. Characterizing strange nonchaotic attractors. Chaos 5: 253–260.CrossRefGoogle ScholarPubMed
Pikovsky, A., and Grassberger, P. 1991. Symmetry breaking bifurcation for coupled chaotic attractors. J. Phys. A: Math., Gen. 24: 4587–4597.CrossRefGoogle Scholar
Pikovsky, A., and Politi, A. 1998. Dynamic localization of Lyapunov vectors in spacetime chaos. Nonlinearity 11: 1049–1062.CrossRefGoogle Scholar
Pikovsky, A., and Politi, A. 2001. Dynamic localization of Lyapunov vectors in Hamiltonian lattices. Phys. Rev. E 63: 036207.CrossRefGoogle ScholarPubMed
Pikovsky, A., Osipov, G., Rosenblum, M., Zaks, M., and Kurths, J. 1997a. Attractorrepeller collision and eyelet intermittency at the transition to phase synchronization. Phys. Rev. Lett. 79: 47–50.CrossRefGoogle Scholar
Pikovsky, A., Zaks, M., Rosenblum, M., Osipov, G., and Kurths, J. 1997b. Phase synchronization of chaotic oscillations in terms of periodic orbits. Chaos 7: 680–687.CrossRefGoogle Scholar
Pikovsky, A., Rosenblum, M. G., Osipov, G. V., and J., Kurths. 1997c. Phase synchronization of chaotic oscillators by external driving. Physica D 104: 219–238.CrossRefGoogle Scholar
Pikovsky, A., Rosenblum, M., and Kurths, J. 2001. Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Pinsky, M. A. 1986. Instability of the harmonic oscillator with small noise. SIAM J. Appl. Math. 46: 451–463.CrossRefGoogle Scholar
Pinsky, M. A., and Wihstutz, V. 1988. Lyapunov exponents of nilpotent Ito systems. Stochastics 25: 43–57.CrossRefGoogle Scholar
Pinsky, M. A., and Wihstutz, V. 1992. Lyapunov exponents and rotation numbers of linear systems with real noise. In Probability theory (Singapore, 1989). de Gruyter, Berlin, 109–119.Google Scholar
Pires, C. J. A., Saa, A., and Venegeroles, R. 2011. Lyapunov statistics and mixing rates for intermittent systems. Phys. Rev. E 84: 066210.CrossRefGoogle ScholarPubMed
Politi, A. 2014a. Probability density of the Lyapunov vector orientation. Unpublished manuscript.
Politi, A. 2014b. Stochastic fluctuations in deterministic systems. In Vulpiani, A., et al. (eds.), Large deviations in physics. Springer, Berlin and Heidelberg, 243–261.Google Scholar
Politi, A., and Torcini, A. 1992. Periodic orbits in coupled Henon maps: Lyapunov and multifractal analysis. Chaos 2: 293–300.CrossRefGoogle ScholarPubMed
Politi, A., and Torcini, A. 1994. Linear and non-linear mechanisms of information propagation. Europhys. Lett. 28: 545.CrossRefGoogle Scholar
Politi, A., and Torcini, A. 2010. Stable chaos. In Nonlinear dynamics and chaos: advances and perspectives. Springer, Berlin, 103–129.Google Scholar
Politi, A., and Witt, A. 1999. Fractal dimension of space-time chaos. Phys. Rev. Lett. 82: 3034–3037.CrossRefGoogle Scholar
Politi, A., Livi, R., Oppo, G.-L., and Kapral, R. 1993. Unpredictable behavior of stable systems. Europhys. Lett. 22: 571.CrossRefGoogle Scholar
Politi, A., Torcini, A., and Lepri, S. 1998. Lyapunov exponents from node-counting arguments. J. Phys. IV France 8(Pr6), Pr6–263–Pr6–270.CrossRefGoogle Scholar
Politi, A., Ginelli, F., Yanchuk, S., and Maistrenko, Y. 2006. From synchronization to Lyapunov exponents and back. Physica D 224: 90–101.CrossRefGoogle Scholar
Pollicott, M. 2010. Maximal Lyapunov exponents for random matrix products. Invent. Math. 181: 209–226.CrossRefGoogle Scholar
Pomeau, Y., Pumir, A., and Pelce, P. 1984. Intrinsic stochasticity with many degrees of freedom. J. Stat. Phys. 37: 39–49.CrossRefGoogle Scholar
Popovych, O. V., Maistrenko, Yu. L., and Tass, P. A. 2005. Phase chaos in coupled oscillators. Phys. Rev. E 71: 065201.CrossRefGoogle ScholarPubMed
Posch, H. A., and Hirschl, R. 2000. Simulation of billiards and of hard body fluids. In Hard ball systems and the Lorentz gas. Encyclopaedia Math. Sci., vol. 101. Springer, Berlin, 279–314.CrossRefGoogle Scholar
Pyragas, K. 1996. Weak and strong synchronization of chaos. Phys. Rev. E 54: 4508–4511.CrossRefGoogle Scholar
Pyragas, K. 1997. Conditional Lyapunov exponents from time series. Phys. Rev. E 56: 5183–5188.CrossRefGoogle Scholar
Quarteroni, A., and Valli, A. 1994. Numerical approximation of partial differential equations. Springer-Verlag, Berlin.Google Scholar
Radons, G. 2005. Disordered dynamical systems. In Radons, G.Just, W., and Hussler, P. (eds.) Collective dynamics of nonlinear and disordered systems, Springer-Verlag, Berlin271–299.CrossRefGoogle Scholar
Ramasubramanian, K., and Sriram, M. S. 2000. A comparative study of computation of Lyapunov spectra with different algorithms. Physica D 139: 72–86.CrossRefGoogle Scholar
Rangarajan, G., Habib, S., and Ryne, R. D. 1998. Lyapunov exponents without rescaling and reorthogonalization. Phys. Rev. Lett. 80: 3747–3750.CrossRefGoogle Scholar
Risken, H. 1989. The Fokker-Planck equation: methods of solution and applications. 2nd edn. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Romeiras, F. J., Bondeson, A., Ott, E., M., Antonsen, T., and Grebogi, C. 1987. Quasiperiodically forced dynamical systems with strange nonchaotic attractors. Physica D 26: 277–294.CrossRefGoogle Scholar
Rossler, O. E. 1979. An equation for hyperchaos. Phys. Lett. A 71: 155–157.CrossRefGoogle Scholar
Ruelle, D. 1979. Ergodic theory of differentiable dynamical systems. Inst. Hautes Etudes Sci. Publ. Math. 50: 27–58.CrossRefGoogle Scholar
Ruelle, D. 1982. Large volume limit of the distribution of characteristic exponents in turbulence. Comm. Math. Phys. 87: 287–302.CrossRefGoogle Scholar
Ruelle, D. 1985. Rotation numbers for diffeomorphisms and flows. Ann. Inst. H. Poincare Phys. Theor. 42: 109–115.Google Scholar
Ruffo, S. 1994. Hamiltonian dynamics and phase transition. In Transport, chaos and plasma physics. World Scientific, Singapore, 114.Google Scholar
Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., and Abarbanel, H. D. I. 1995. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51: 980–994.CrossRefGoogle ScholarPubMed
Sano, M. M., and Kitahara, K. 2001. Thermal conduction in a chain of colliding harmonic oscillators revisited. Phys. Rev. E 64: 056111.CrossRefGoogle Scholar
Sauer, T. D., Tempkin, J. A., and Yorke, J. A. 1998. Spurious Lyapunov exponents in attractor reconstruction. Phys. Rev. Lett. 81: 4341–4344.CrossRefGoogle Scholar
Schmalfus, B. 1997. The random attractor of the stochastic Lorenz system. Z. Angew. Math. Phys. 48: 951–975.Google Scholar
Shadden, Sh. C., Lekien, F., and Marsden, J. E. 2005. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in twodimensional aperiodic flows. Physica D 212: 271–304.CrossRefGoogle Scholar
Shcherbakov, P. S. 1992. Alexander Mikhailovitch Lyapunov: on the centenary of his doctoral dissertation on stability of motion. Automatica J. IFAC 28: 865–871.CrossRefGoogle Scholar
Shepelyansky, D. L. 1983. Some statistical properties of simple classically stochastic quantum systems. Physica D 8: 208–222.CrossRefGoogle Scholar
Shibata, T., Chawanya, T., and Kaneko, K. 1999. Noiseless collective motion out of noisy chaos. Phys. Rev. Lett. 82: 4424–4427.CrossRefGoogle Scholar
Shimada, I., and Nagashima, T. 1979. A numerical approach to ergodic problem of dissipative dynamical systems. Prog. Theor. Phys. 61: 1605–1616.CrossRefGoogle Scholar
Sinai, Ya. 2009. Kolmogorov-Sinai entropy. Scholarpedia 4(3): 2034.CrossRefGoogle Scholar
Sinai, Ya. G. 1996. A remark concerning the thermodynamical limit of the Lyapunov spectrum. Int. J. Bifurcat. Chaos 6: 1137–1142.CrossRefGoogle Scholar
Skokos, Ch., Bountis, T. C., and Antonopoulos, Ch. 2007. Geometrical properties of local dynamics in Hamiltonian systems: the generalized alignment index (GALI) method. Physica D 231: 30–54.CrossRefGoogle Scholar
Slevin, K., and Ohtsuki, T. 1999. Corrections to scaling at the Anderson transition. Phys. Rev. Lett. 82: 382–385.CrossRefGoogle Scholar
Smirnov, V. I. 1992. Biography of A. M. Lyapunov. International Journal of Control, 55: 775–784. Translated by J. F., Barrett from A M Lyapunov: Izbrannie Trudi, Izdat. Akad. Nauk SSSR, 1948.Google Scholar
Sommerer, J. C. 1994. Fractal tracer distributions in complicated surface flows: an application of random maps to fluid dynamics. Physica D 76: 85–98.CrossRefGoogle Scholar
Sompolinsky, H., Crisanti, A., and Sommers, H.-J. 1988. Chaos in random neural networks. Phys. Rev. Lett. 61: 259–262.CrossRefGoogle ScholarPubMed
Stockmann, H.-J. 1999. Quantum chaos: an introduction. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Stratonovich, R. L. 1967. Topics in the theory of random noise. Taylor & Francis.Google Scholar
Straube, A. V., and Pikovsky, A. 2011. Pattern formation induced by time-dependent advection. Math. Model. Nat. Phenom. 6: 138–148.CrossRefGoogle Scholar
Sussman, G. J., and Wisdom, J. 1992. Chaotic evolution of the solar system. Science 257: 56–62.CrossRefGoogle ScholarPubMed
Tailleur, J., and Kurchan, J. 2007. Probing rare physical trajectories with Lyapunov weighted dynamics. Nat. Phys. 3: 203–22207.CrossRefGoogle Scholar
Takens, F. 1981. Detecting strange attractors in turbulence. In Dynamical systems and turbulence, edited by D. A., Rand and L.-S., Young. Springer, London, 366–381.Google Scholar
Takeuchi, K. A., and Chate, H. 2013. Collective Lyapunov modes. J. Phys. A 46: 254007.CrossRefGoogle Scholar
Takeuchi, K. A., Chate, H., Ginelli, F., Politi, A., and Torcini, A. 2011a. Extensive and subextensive chaos in globally coupled dynamical systems. Phys. Rev. Lett. 107: 124101.CrossRefGoogle ScholarPubMed
Takeuchi, K. A., Yang, H.-L., Ginelli, F., Radons, G., and Chate, H. 2011b. Hyperbolic decoupling of tangent space and effective dimension of dissipative systems. Phys. Rev. E 84: 046214.CrossRefGoogle ScholarPubMed
Tanase-Nicola, S., and Kurchan, J. 2003. Statistical-mechanical formulation of Lyapunov exponents. J. Phys. A – Math. Gen. 36: 10299.CrossRefGoogle Scholar
Taylor, T. J. 1993. On the existence of higher order Lyapunov exponents. Nonlinearity 6: 369.CrossRefGoogle Scholar
Teramae, J., and Tanaka, D. 2004. Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys. Rev. Lett. 93: 204103.CrossRefGoogle Scholar
Torcini, A., Grassberger, P., and Politi, A. 1995. Error propagation in extended chaotic systems. J. Phys. A – Math. Gen. 28: 4533–4541.CrossRefGoogle Scholar
Toth, Z. and Kalnay, E. 1997. Ensemble forecasting at NCEP and the breeding method. Weather Rev. 125: 3297–3319.2.0.CO;2>CrossRefGoogle Scholar
Vallejos, R. O., and Anteneodo, C. 2012. Generalized Lyapunov exponents of the random harmonic oscillator: cumulant expansion approach. Phys. Rev. E 85: 021124.CrossRefGoogle ScholarPubMed
van Beijeren, H., and Dorfman, J. R. 1995. Lyapunov exponents and Kolmogorov-Sinai entropy for the Lorentz gas at low densities. Phys. Rev. Lett. 74: 4412–4415.CrossRefGoogle ScholarPubMed
van Saarloos, W. 1988. Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection. Phys. Rev. A 37: 211–229.CrossRefGoogle ScholarPubMed
van Saarloos, W. 1989. Front propagation into unstable states. II. Linear versus nonlinear marginal stability and rate of convergence. Phys. Rev. A 39: 6367–6390.CrossRefGoogle ScholarPubMed
Vanneste, J. 2010. Estimating generalized Lyapunov exponents for products of random matrices. Phys. Rev. E 81: 036701.CrossRefGoogle ScholarPubMed
Venegeroles, R. 2012. Thermodynamic phase transitions for Pomeau-Manneville maps. Phys. Rev. E 86: 021114.CrossRefGoogle ScholarPubMed
Viana, M. 2014. Lectures on Lyapunov exponents. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
von Bremen, H. F., Udwadia, F. E., and Proskurowski, W. 1997. An efficient QR based method for the computation of Lyapunov exponents. Physica D 101: 1–16.CrossRefGoogle Scholar
Walters, P. 1982. An introduction to ergodic theory. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Wigner, E. P. 1967. Random matrices in physics. SIAM Review 9: 1–23.CrossRefGoogle Scholar
Wolfe, C. L., and Samelson, R. M. 2007. An efficient method for recovering Lyapunov vectors from singular vectors. Tellus A 59: 355–366.CrossRefGoogle Scholar
Wolfram, S. 1986. Theory and applications of cellular automata: including selected papers, 1983–1986. World Scientific, Singapore.Google Scholar
Yanchuk, S., and Wolfrum, M. 2010. A multiple time scale approach to the stability of external cavity modes in the Lang-Kobayashi system using the limit of large delay. SIAM J. Appl. Dyn. Syst. 9: 519–535.CrossRefGoogle Scholar
Yang, H.-L., and Radons, G. 2013. Hydrodynamic Lyapunov modes and effective degrees of freedom of extended systems. J. Phys. A 46: 254015.CrossRefGoogle Scholar
Young, L.-S. 1982. Dimension, entropy, and Lyapunov exponents. Ergod. Theor. Dyn. Syst. 2: 109–124.
Yu, L., Ott, E., and Chen, Q. 1990. Transition to chaos for random dynamical systems. Phys. Rev. Lett. 65: 2935–2938.
Zanon, N., and Derrida, B. 1988. Weak disorder expansion of Liapunov exponents in a degenerate case. J. Stat. Phys. 50: 509–528.
Zaslavsky, G. M. 2007. The physics of chaos in Hamiltonian systems. Imperial College Press, London.CrossRefGoogle Scholar
Zaslavsky, G. M., and Edelman, M. A. 2004. Fractional kinetics: from pseudochaotic dynamics to Maxwell's demon. Physica D 193: 128–147.
Zhou, D., Sun, Y., Rangan, A.V., and Cai, D. 2010. Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type. J. Comput. Neurosci. 28: 229–245.
Zillmer, R., and Pikovsky, A. 2003. Multiscaling of noise-induced parametric instability. Phys. Rev. E 67: 061117.
Zillmer, R., and Pikovsky, A. 2005. Continuous approach for the random-field Ising chain. Phys. Rev. E 72: 056108.
Zillmer, R., Ahlers, V., and Pikovsky, A. 2000. Scaling of Lyapunov exponents of coupled chaotic systems. Phys. Rev. E 61: 332–341.
Zillmer, R., Ahlers, V., and Pikovsky, A. 2002. Coupling sensitivity of localization length in one-dimensional disordered systems. Europhys. Lett. 60: 889–895.
Zillmer, R., Livi, R., Politi, A., and Torcini, A. 2006. Desynchronization in diluted neural networks. Phys. Rev. E 74: 036203.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Arkady Pikovsky, Universität Potsdam, Germany, Antonio Politi, University of Aberdeen
  • Book: Lyapunov Exponents
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139343473.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Arkady Pikovsky, Universität Potsdam, Germany, Antonio Politi, University of Aberdeen
  • Book: Lyapunov Exponents
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139343473.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Arkady Pikovsky, Universität Potsdam, Germany, Antonio Politi, University of Aberdeen
  • Book: Lyapunov Exponents
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139343473.018
Available formats
×