Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-03T20:42:53.889Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 January 2015

Michel van Veenendaal
Affiliation:
Northern Illinois University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbamonte, P., Burns, C. A., Isaacs, E. D., Platzman, P. M., Miller, L. L., Cheong, S. W., and Klein, M. V. 1999. Resonant inelastic X-ray scattering from valence excitations in insulating copper oxides. Phys. Rev. Lett., 83, 860–863.CrossRefGoogle Scholar
Ament, Luuk, J. P., Ghiringhelli, Giacomo, Sala, Marco Moretti, Braicovich, Lucio, and van den Brink, Jeroen. 2009. Theoretical demonstration of how the dispersion of magnetic excitations in cuprate compounds can be determined using resonant inelastic X-ray scattering. Phys. Rev. Lett., 103, 117003.Google Scholar
Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P., and van den Brink, J. 2011. Resonant inelastic X-ray scattering studies of elementary excitations. Rev. Mod. Phys., 83, 705. And references thereinCrossRefGoogle Scholar
Anderson, P. W. 1967. Infrared catastrophe in Fermi gases with local scattering potentials. Phys. Rev. Lett., 18, 1049.CrossRefGoogle Scholar
Ballhausen, C. J. 1962. Introduction to Ligand Field Theory. McGraw-Hill.Google Scholar
Beaurepaire, E., Bulou, H., Scheuer, F., and Kapplet, J.-P. 2010. Magnetism and Synchrotron Radiation: New Trends. Springer.CrossRefGoogle Scholar
Braicovich, L.et al. 2009. Dispersion of magnetic excitations in the cuprate La2CuO4 and CaCuO2 compounds measured using resonant X-ray scattering. Phys. Rev. Lett., 102, 167401.CrossRefGoogle ScholarPubMed
Braicovich, L., van den Brink, J., Bisogni, V., Sala, M., Moretti, Ament, L. J. P., Brookes, N. B., De Luca, G. M., Salluzzo, M., Schmitt, T., Strocov, V. N., and Ghiringhelli, G. 2010. Magnetic excitations and phase separation in the underdoped La2–xSrxCuO4 superconductor measured by resonant inelastic X-ray scattering. Phys. Rev. Lett., 104, 077002.CrossRefGoogle ScholarPubMed
Brink, D. M., and Satchler, G. R. 1968. Angular Momentum. Clarendon Press, Oxford.Google Scholar
Carra, P., Thole, B. T., Altarelli, M., and Wang, X. 1993. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett., 70, 694.CrossRefGoogle ScholarPubMed
Condon, E. U., and Shortley, G. H. 1935. Angular Momentum. Cambridge University Press.Google Scholar
Cowan, R. D. 1981. The Theory of Atomic Structure and Spectra. University of California Press.Google Scholar
de Groot, F., and Kotani, A. 1983. Core Level Spectroscopy of Solids. CRC Press.Google Scholar
de Groot, F. M. F., Fuggle, J. C., Thole, B. T., and Sawatzky, G. A. 1990. 2p X-ray absorption of 3d transition-metal compounds: An atomic multiplet description including the crystal field. Phys. Rev. B, 42, 5459.CrossRefGoogle ScholarPubMed
Doniach, S., and Sondheimer, E. H. 1974. Green's Functions for Solid State Physicists. Imperial College Press.Google Scholar
Feldkamp, L. A., and Davis, L. C. 1980. Asymptotic theory and core level X-ray photoemission spectra. Phys. Rev. B, 22(Nov), 4994.CrossRefGoogle Scholar
Ghiringhelli, G., Brookes, N. B., Annese, E., Berger, H., Dallera, C., Grioni, M., Perfetti, L., Tagliaferri, A., and Braicovich, L. 2004. Low energy electronic excitations in the layered cuprates studied by copper L3 resonant inelastic X-ray scattering. Phys. Rev. Lett., 92, 117406.CrossRefGoogle ScholarPubMed
Gordon, R. A., Seidler, G. T., Fister, T. T., Haverkort, M. W., Sawatzky, G. A., Tanaka, A., and Sham, T. K. 2008. High multipole transitions in NIXS: Valence and hybridization in 4f systems. Europhys. Lett., 81, 26004.CrossRefGoogle Scholar
Griffith, J. S. 1961. Multiplets of Transition-Metal Ions in Crystals. Cambridge University Press.Google Scholar
Gunnarsson, O., and Schönhammer, K. 1983. Electron spectroscopies for Ce compounds in the impurity model. Phys. Rev. B, 28, 4315.CrossRefGoogle Scholar
Hasan, M. Z., Montano, P. A., Isaacs, E. D., Shen, Z.-X., Eisaki, H., Sinha, S. K., Islam, Z., Motoyama, N., and Uchida, S. 2002. Momentum-resolved charge excitations in a prototype one-dimensional Mott insulator. Phys. Rev. Lett., 88, 177403.CrossRefGoogle Scholar
Haverkort, M. W. 2010. Theory of resonant inelastic X-ray scattering by collective magnetic excitations. Phys. Rev. Lett., 105, 167404.CrossRefGoogle ScholarPubMed
Haverkort, M. W., Tanaka, A., Tjeng, L. H., and Sawatzky, G. A. 2007. Nonresonant inelastic X-ray scattering involving excitonic excitations: The examples of NiO and CoO. Phys. Rev. Lett., 99, 257401.CrossRefGoogle ScholarPubMed
Hubbard, J. 1963. Electron correlations in narrow energy bands. Proc. of the Royal Society of London, 276, 238.CrossRefGoogle Scholar
Kim, Y. J., Hill, J. P., Burns, C. A., Wakimoto, S., Birgeneau, R. J., Casa, D., Gog, T., and Venkataraman, C. T. 2002. Resonant inelastic X-ray scattering study of charge excitations in La2CuO4. Phys. Rev. Lett., 89, 177003.CrossRefGoogle Scholar
Kim, Young-June, Hill, J. P., Benthien, H., Essler, F. H. L., Jeckelmann, E., Choi, H. S., Noh, T. W., Motoyama, N., Kojima, K. M., Uchida, S., Casa, D., and Gog, T. 2004. Resonant inelastic X-ray scattering of the holon-antiholon continuum in SrCuO2. Phys. Rev. Lett., 92, 137402.CrossRefGoogle ScholarPubMed
Kittel, C. 1963. Quantum Theory of Solids. John Wiley & Sons.Google Scholar
Kotani, A., and Shin, S. 2001. Resonant inelastic X-ray scattering spectra for electrons in solids. Rev. Mod. Phys., 73, 203. And references therein.CrossRefGoogle Scholar
Larson, B. C., Ku, Wei, Tischler, J. Z., Lee, Chi-Cheng, Restrepo, O. D., Eguiluz, A. G., Zschack, P., and Finkelstein, K. D. 2007. Nonresonant inelastic X-ray scattering and energy-resolved Wannier function investigation of d-d excitations in NiO and CoO. Phys. Rev. Lett., 99, 026401.CrossRefGoogle ScholarPubMed
Luo, J., Trammell, G. T., and Hannon, J. P. 1993. Scattering operator for elastic and inelastic resonant X-ray scattering. Phys. Rev. Lett., 71, 287.CrossRefGoogle ScholarPubMed
Mahan, G. D. 1967. Excitons in metals: Infinite hole mass. Phys. Rev., 163, 612.CrossRefGoogle Scholar
Mahan, G. D. 1981. Many-Particle Physics. Kluwer Academic/Plenum Publishers.Google Scholar
Nozières, P., and De Dominicis, C. T. 1969. Singularities in the X-ray absorption and emission of metals. III. One-body theory exact solution. Phys. Rev., 178, 1097.CrossRefGoogle Scholar
Schülke, W. 2007. Electron Dynamics by Inelastic X-Ray Scattering. Oxford University Press, Oxford.Google Scholar
Slater, J. C., and Koster, G. F. 1954. Simplified LCAO method for the periodic potential problem. Phys. Rev., 94, 1498.CrossRefGoogle Scholar
Sugano, S., Tanabe, Y., and Kamimura, H. 1970. Multiplets of Transition-Metal Ions in Crystals. Academic Press.Google Scholar
Thole, B. T., Carra, P., Sette, F., and van der Laan, G. 1992. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett., 68, 1943.CrossRefGoogle ScholarPubMed
Thole, B. T., and van der Laan, G. 1988. Branching ratio in X-ray absorption spectroscopy. Phys.Rev.B, 38, 3158.CrossRefGoogle ScholarPubMed
van den Brink, J., and van Veenendaal, M. 2006. Correlation functions measured by indirect resonant inelastic X-ray scattering. Europhys. Lett., 73, 121.CrossRefGoogle Scholar
van der Laan, G., Westra, C., Haas, C., and Sawatzky, G. A. 1981. Satellite structure in photoelectron and Auger spectra of copper dihalides. Phys.Rev.B, 23, 4369.CrossRefGoogle Scholar
van Veenendaal, Michel. 2006. Polarization dependence of L- and M -edge resonant inelastic X-ray scattering in transition-metal compounds. Phys. Rev. Lett., 96, 117404.CrossRefGoogle Scholar
van Veenendaal, M. A., and Sawatzky, G. A. 1993. Nonlocal screening effects in 2p X-ray photoemission spectroscopy core-level line shapes of transition metal compounds. Phys. Rev. Lett., 70, 2459.CrossRefGoogle ScholarPubMed
van Veenendaal, M. A., Alders, D., and Sawatzky, G. A. 1995. Influence of superexchange on Ni 2p X-ray-absorption spectroscopy in NiO. Phys. Rev. B, 51, 13966.CrossRefGoogle ScholarPubMed
Varshalovich, D. A., Moskalev, A. N., and Khersonskii, V. K. 1960. Mathematical Apparatus of the Theory of Angular Momentum. World Scientific, Singapore.Google Scholar
Yutsis, A. P., Levinson, I. B., and Vanagas, V. V. 1988. Quantum Theory of Angular Momentum. Israel Program for Scientific Translations.Google Scholar
Zaanen, J., Sawatzky, G. A., and Allen, J. W. 1985. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett., 55, 418.CrossRefGoogle ScholarPubMed
Zaanen, J., Westra, C., and Sawatzky, G. A. 1986. Determination of the electronic structure of transition-metal compounds: 2p X-ray photoemission spectroscopy of the nickel dihalides. Phys. Rev. B, 33, 8060.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Michel van Veenendaal, Northern Illinois University
  • Book: Theory of Inelastic Scattering and Absorption of X-rays
  • Online publication: 05 January 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139520010.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Michel van Veenendaal, Northern Illinois University
  • Book: Theory of Inelastic Scattering and Absorption of X-rays
  • Online publication: 05 January 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139520010.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Michel van Veenendaal, Northern Illinois University
  • Book: Theory of Inelastic Scattering and Absorption of X-rays
  • Online publication: 05 January 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139520010.012
Available formats
×