Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-14T16:21:53.670Z Has data issue: false hasContentIssue false

11 - From General Relativity to Quantum Gravity

from Part Four - Beyond Einstein

Published online by Cambridge University Press:  05 June 2015

Abhay Ashtekar
Affiliation:
The Pennsylvania State University
Martin Reuter
Affiliation:
University of Mainz
Carlo Rovelli
Affiliation:
Université de Marseille
Abhay Ashtekar
Affiliation:
Pennsylvania State University
Beverly K. Berger
Affiliation:
Formerly Program Director for Gravitational Physics, National Science Foundation
James Isenberg
Affiliation:
University of Oregon
Malcolm MacCallum
Affiliation:
University of Bristol
Get access

Summary

Introduction

The necessity of reconciling general relativity (GR) with quantum physics was recognized by Einstein [1] already in 1916 when he wrote:

“Nevertheless, due to the inner-atomic movement of electrons, atoms would have to radiate not only electro-magnetic but also gravitational energy, if only in tiny amounts. As this is hardly true in Nature, it appears that quantum theory would have to modify not only Maxwellian electrodynamics, but also the new theory of gravitation.”

Yet, almost a century later, we still do not have a satisfactory reconciliation. Why is the problem so difficult? An obvious response is that this is because there are no observations to guide us. However, this cannot be the entire story because, if there are no observational constraints, one would expect an overabundance of theories, not scarcity!

The viewpoint in approaches discussed in this Chapter is that the primary obstacle is rather that, among fundamental forces of Nature, gravity is special: it is encoded in the very geometry of space-time. This is a central feature of GR, a crystallization of the equivalence principle that lies at the heart of the theory. Therefore, one argues, it should be incorporated at a fundamental level in a viable quantum theory. The perturbative treatments which dominated the field since the 1960s ignored this aspect of gravity. They assumed that the underlying spacetime can be taken to be a continuum, endowed with a smooth background geometry, and the quantum gravitational field can be treated just like any other quantum field on this background. But the resulting quantum GR turned out to be non- renormalizable; the strategy failed by its own criteria. The new strategy is to free oneself of the background spacetime that seemed indispensable for formulating and addressing physical questions; the goal is to lift this anchor and learn to sail the open seas. This task requires novel mathematical techniques and conceptual frameworks.

Type
Chapter
Information
General Relativity and Gravitation
A Centennial Perspective
, pp. 553 - 611
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., Einstein, Sitzungsber. Preuss. Akad. Wiss. 688 (1916); G. E., Gorelick, in Studies in the history of general relativity, edited by J., Eisenstaedt and A. J., Kox (Birkhauser, Boston, 1992).Google Scholar
[2] A., Ashtekar and J., Lewandowski, Class. Quant. Grav. 21 R53–R152 (2004).
[3] C., Rovelli, Quantum gravity (Cambridge University Press, Cambridge, 2004).Google Scholar
[4] T., Thiemann, Introduction to modern canonical quantum general relativity (Cambridge University Press, Cambridge, 2007).Google Scholar
[5] F., Hellmann et al. eds. Proceedings of the Quantum Gravity and Quantum Geometry School, Zakopane, PoS (QGQGS) (2011), http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=140.
[6] A., Perez, Living Rev. Rel. 16 3 (2013).
[7] M., Niedermaier and M., Reuter, Living Rev. Rel. 9 5 (2006).
[8] M., Reuter and F., Saueressig, New. J. Phys. 14 055022 (2012).
[9] R., Percacci, in Approaches to quantum gravity, D., Oriti ed (Cambridge University Press, Cambridge, 2009), arXiv:0709.38 51.Google Scholar
[10] J., AmbjÜrnA., GörlichJ., Jurkiewicz and R., Loll, Phys. Rep. 519 127 (2012).
[11] R., Percacci, arXiv:1110.638 9; P., DonaA., EichhornR., Percacci, arXiv: 1311.2898.
[12] A., Ashtekar and P., Singh, Class. Quant. Grav. 28 213008 (2011).
[13] J. F., BarberoJ., Lewandowski and E. J. S., Villasenor, in Proceedings of the 3rd Quantum Gravity and Quantum Geometry School, PoS (QGQGS) (2011), http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=140.
[14] J. F., Donoghue, Phys. Rev. Lett. 72 2996 (1994); C. P., Burgess, Living Rev. Rel. 7 5 (2004).
[15] R. A., Porto and I. Z., Rothstein, Phys. Rev. D78 044013 (2008), D81 029902 (2010).
[16] K., Wilson and J., Kogut, Phys. Rep. 12 75 (1974).
[17] K., Gawedzki and A., Kupiainen, Phys. Rev. Lett. 55 363 (1985).
[18] M., Niedermaier, Phys.Rev. Lett. 103 101303 (2009); Nucl. Phys. B833 226 (2010).
[19] J., LewandowskiA., OkolowH., Sahlmann and T., Thiemann, Commun. Math. Phys. 267 703–733 (2006).
[20] C., Fleischhack, Commun. Math. Phys. 285 67–140 (2009).
[21] J. A., Wheeler, in Battelle rencontres, edited by J. A., Wheeler and C. M., DeWitt, (W. A. Benjamin, New York, 1972).Google Scholar
[22] S., Weinberg, in General relativity, an Einstein centenary survey, Edited by S. W., Hawking and W., Israel (Cambridge University Press, Cambridge, 1979).Google Scholar
[23] M., Reuter, Phys. Rev. D57 971–985 (1998).
[24] J., Ambjørn and R., Loll, Nucl. Phys. B536 407–434 (1998).
[25] B. S., DeWitt, The global approach to quantum field theory (Oxford University Press, Oxford, 2003).Google Scholar
[26] C., Wetterich, Phys. Lett. B301 (1993) 90; M. Reuter and C. Wetterich, Nucl. Phys. B417 181 (1994).
[27] E., Manrique and M., Reuter, Phys. Rev. D70 025008 (2009).
[28] M., Reuter and F., Saueressig, Phys. Rev. D65 065016 (2002).
[29] O., Lauscher and M., Reuter, Phys. Rev. D65 025013 (2002).
[30] O., Lauscher and M., Reuter, Phys. Rev. D66 025026 (2002); Class. Quant. Grav. 19 482 (2002).
[31] A., CodelloR., Percacci and C., Rahmede, Ann. Phys. 324 414 (2009).
[32] G., 't Hooft and M. J. G., Veltman, Ann. Inst. Henri Poincare Phys. Theor. A20 69 (1974); M. H., Goroff and A., Sagnotti, Nucl. Phys. B266 709 (1986).
[33] M., Reuter and H., Weyer, Phys. Rev. D80 025001 (2009).
[34] M., DemmelF., Saueressig and O., Zanusso, JHEP 1406 026 (2014) and references therein.
[35] E., Manrique and M., Reuter, Annals ofPhysics 325 785 (2010) E., ManriqueM., Reuter and F., Saueressig, Annals of Physics 326 440 (2011); Annals of Physics 326 463 (2011).
[36] D., Becker and M., Reuter, JHEP 07 172 (2012).
[37] M., Reuter and F., Saueressig, Phys. Rev. D66 125001 (2002).
[38] A., CodelloR., Percacci and C., Rahmede, Int. J. Mod. Phys. A23 143 (2007); P., Machado and F., Saueressig, Phys. Rev. D77 124045 (2007).
[39] J., AmbjørnJ., Jurkiewicz and R., Loll, Nucl. Phys. B610 347 (2001); Phys. Rev. D72 064014 (2005).
[40] J., AmbjørnA., GörlichJ., Jurkiewicz and R., Loll, Phys. Rev. Lett. 100 091304 (2008); Phys. Rev. D78 063544 (2008).
[41] O., Lauscher and M., Reuter, JHEP 10 050 (2005).
[42] M., Reuter and F., Saueressig, JHEP 1112 012 (2011).
[43] S., Rechenberger and F., Saueressig, JHEP 1303 010 (2013).
[44] P., Horava, Phys. Rev. D79 084008 (2009).
[45] A., Ashtekar, Phys. Rev. Lett. 57 2244-2247 (1986); Phys. Rev. D36 1587-1603 (1987).
[46] A., AshtekarJ., Romano and R. S., Tate, Phys. Rev. D40 2572–2587 (1989).
[47] A., Ashtekar, Lectures on non-perturbative canonical gravity, Notes prepared in collaboration with R. S. Tate (World Scientific, Singapore, 1991).Google Scholar
[48] N., BodendorferT., Thiemann and A., Thurn, Class. Quant. Grav. 30 045001 (2013), 30 045002 (2013), 30 045003 (2013), 30 045004 (2013).
[49] N., BodendorferT., Thiemann and A., Thurn, Phys. Lett. B711 205–211 (2012); Class. Quant. Grav. 30 045006 (2013), 30 045007 (2013).
[50] H. J., Matschull, Class. Quant. Grav. 13 765–782 (1996).
[51] E., Witten, Commun. Math. Phys. 80 381–402 (1981).
[52] A., Ashtekar and G. T., Horowitz, J. Math. Phys. 25 1473–1480 (1984).
[53] J. F., Barbero, Phys. Rev. D51 5507–5510 (1996).
[54] G., ImmirziNucl. Phys. Proc. Suppl. 57 65–72 (1997).
[55] T., Thiemann, Phys. Lett. B380 257–264 (1996); Class. Quant. Grav. 15 839-873 (1998), 15875-905 (1998), 15 1207-1247 (1998), 15 1281-1314 (1998).
[56] J., Samuel, Class. Quant. Grav. 17 L141–L148 (2000).
[57] S., Holst, Phys. Rev. D53 5966–5969 (1996); S., Mercuri, Phys. Rev. D77 024036 (2008); G., DateR., Kaul and S., Sengupta, Phys. Rev. D79 044008(2009).
[58] R., Rovelli and L., Smolin, Nucl. Phys. B331 80–152 (1990).
[59] A., Ashtekar and C. J., Isham, Class. Quant. Grav. 9 1433–1467 (1990).
[60] A., Ashtekar and J., Lewandowski, J. Geo. Phys. 17 191–230 (1995).
[61] K., Giesel and H., Sahlmann, in Proceedings of the 3rd Quantum Gravity and Quantum Geometry School, PoS (QGQGS) (2011), http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=140.
[62] G. M., Emch, Algebraic methods in statistical mechanics and quantum field theory (Wiley-Interscience, New York, 1972).Google Scholar
[63] L., Garding and A. S., Wightman, Proc. Nat. Acad. Sci. U.S.A. 40 622–626 (1956); R., Haag, Danske Vid. Selsk. Mat.-fys. Medd. 29 No.12 (1955).
[64] I. E., Segal, Illinois J. Math. 6 500–523 (1962).
[65] H., NicolaiK., Peeters and M., Zamaklar, Class. Quant. Grav. 22 R193 (2005).
[66] A., Ashtekar, Gen. Rel. Grav. 41 1927–1943 (2009); International loop quantum gravity seminar, http://relativity.phys.lsu.edu/ilqgs/ashtekar022707.pdf.
[67] C., Rovelli and L., Smolin, Phys. Rev. D52 5743–5759 (1995).
[68] J. C., Baez, In The interface of knots and physics edited by L., Kauffman (American Mathematical Society, Providence, RI, 1996).Google Scholar
[69] C., Rovelli and L., Smolin, Nucl. Phys. B442 593–622 (1995); Erratum: Nucl. Phys. B456 753 (1995).
[70] A., AshtekarJ., LewandowskiD., MarolfJ., Mourao and T., Thiemann, J. Math. Phys. 36 6456–6493 (1995).
[71] A., Ashtekar and J., Lewandowski, Class. Quant. Grav. 14 A55–A81 (1997).
[72] S., FrittelliL., Lehner and C., RovelliClass. Quant. Grav. 13 2921–2932 (1996).
[73] A., Ashtekar and J., LewandowskiAdv. Theor. Math. Phys. 1 388–429 (1997).
[74] K., Giesel and T., Thiemann, Class. Quant. Grav. 23 5667–5692 (2006), 23 5693-5772 (2006).
[75] J., Brunnemann and D., Rideout, Class. Quant. Grav. 25 065002 (2008), 27 205800 (2010); J., Brunnemann, in Proceedings ofthe 3rd Quantum Gravity and Quantum Geometry School, PoS (QGQGS) (2011), http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=140.
[76] A., Ashtekar and J., Lewandowski, in Knots and quantum gravity edited by J. C., Baez (Oxford University Press, Oxford, 1994).Google Scholar
[77] J. C., BaezLett. Math. Phys. 31 213–223 (1994).
[78] L., Freidel and S., Speziale, Phys. Rev. D82 084040 (2010).
[79] R., Penrose, in Quantum Theory and beyond ed T., Bastin (Cambridge University Press, Cambridge, 1971).Google Scholar
[80] R., Loll, Phys. Rev. Lett. 75 3048 (1995).
[81] D., Giulini and D., Marolf, Class. Quant. Grav. 16 2479–2488 (1999), 16 2489-2505 (1999); A., AshtekarL., Bombelli and A., Corichi, Phys. Rev. D72 025008 (2005).
[82] W., Thirring and H., Narnhofer, Rev. Math. Phys. Special Issue 1 197–211 (1992).Google Scholar
[83] R., GambiniJ., LewandowskiD., Marolf and J., Pullin, Int. J. Mod. Phys. D7 97–109 (1998).
[84] C., Tomlin and M., Varadarajan, Phys. Rev. D87 044039 (2013); M., Varadarajan, Phys. Rev. D87 044040 (2013).
[85] A., HendersonA., Laddha and C., Tomlin, Phys. Rev. D88 044028 (2013), 88 044029 (2013); A., Laddha, arXiv: 1401.0931.
[86] A., Laddha and M., Varadarajan, Phys. Rev. D78 044008 (2008), 83 025019 (2011); A., Laddha and V., Bonzom, SIGMA 8 50 (2012).
[87] K., GieselT., Thiemann, Class. Quant. Grav. 27 175009 (2010); M., DomagalaK., GieselW., Kaminski and J., Lewandowski, Phys. Rev. D82 104038 (2010).
[88] T., Pawlowski and V., Husain, Phys. Rev. Lett. 108 141301 (2012).
[89] M. P., Reisenberger and C., Rovelli, Phys. Rev. D56 3490–3508 (1997).
[90] J. C., Baez, Class. Quant. Grav. 15 1827–1858 (1998).
[91] E., BianchiM., HanE., MagliaroC., PeriniC., Rovelli and W., Wieland, Class. Quant. Grav. 30 235023 (2013).
[92] J., EngleE., LivineR., Pereira and C., Rovelli, Nucl. Phys. B799 136–149 (2008).
[93] L. Freidel, L. and K., Krasnov, Class. Quant. Grav. 25 125018 (2008).CrossRef
[94] E., Livine, and S., Speziale, Phys. Rev. D76 84028 (2007).
[95] W., KamińskiM., Kisielowski and L., Lewandowski, Class. Quant. Grav. 27 95006 (2010).
[96] A., Baratin and D., Oriti, Phys. Rev. D85 044003 (2012).
[97] Y., Ding, and C., Rovelli, Class. Quant. Grav. 27 205003 (2010).
[98] J., Baez, An introduction to Spinfoam models of BF theory and quantum gravity, in Geometry and quantum physics, proceedings of the 38th Internationale Universitaa'tswochen fur Kern-und Teilchenphysick, H., GaustererL., Pittner and H., Grosse eds. Lecture Notes in Physics|vol. 543, pp. 25–94.
[99] G., Ponzano and T., Regge, Semi-classical limit of Racah coefficients, in Spectroscopic and group theoretic methods in physics, F., Blochet al. eds. (North Holland, Amsterdam, 1968).Google Scholar
[100] T., Regge, Nuovo Cimento 19 558–571 (1961).
[101] R. M., Williams, Class. Quant. Grav. 3 853–869 (1986).
[102] J. W., Barrett, Class. Quant. Grav. 4 1565–1576 (1987).
[103] D., Oriti, arXiv:gr-qc/0607032.
[104] A., AshtekarM., Campiglia and A., Henderson, Class. Quant. Grav. 27 135020 (2010).
[105] J., BarrettR., DowdallW., FairbairnF., Hellmann and R., Pereira, Class. Quant. Grav. 27 165009 (2010).
[106] H., Haggard, PhD Thesis, http://bohr.physics.berkeley.edu/hal/pubs/Thesis/ (2011).
[107] H. W., Hamber and R. M., Williams, Phys. Lett. B157 368 (1985).
[108] H. W., Hamber, Nucl. Phys. B400 347–389 (1993).
[109] H. W., Hamber, Quantum gravitation: the Feynman path integral approach (Springer, Berlin, 2009).Google Scholar
[110] E., Buffenoir, and P., Roche, Commun. Math. Phys. 207 499–555 (1999).
[111] K., Noui and P., Roche, Class. Quant. Grav. 20 3175–3214 (2003).
[112] W., Fairbairn and C., Meusburger, J. Math. Phys. 53 22501 (2012).
[113] M., Han, Phys. Rev. D84 64010 (2011).
[114] Y., Ding and M., Han, arXives:1103.1597.
[115] C., Rovelli, in Quantum gravity and quantum cosmology, G., CalcagniL., PapantonopoulosG., Siopsis and N., Tsamis. Lecture Notes in Physics Vol.863, pp. 57–66 (Springer, Berlin, 2013).Google Scholar
[116] B., BahrB., Dittrich and S., Steinhaus, Phys. Rev. D83 105026 (2011).
[117] T., KrajewskiJ., MagnenV., RivasseauA. Tanasa, Adrian and P., Vitale, Phys. Rev. D82 124069 (2010).
[118] A., Bonanno and M., Reuter, Phys. Rev. D65 043508 (2002).
[119] A., Bonanno and M., Reuter, JCAP 0708 024 (2007).
[120] A., Bonanno and M., Reuter, Phys. Rev. D62 043008 (2000).
[121] A., Bonanno and M., Reuter, Phys. Rev. D73 083005 (2006).
[122] M., Bojowald, Loop quantum cosmology. Living Rev. Rel. 8 11 (2005).Google Scholar
[123] A., BarrauT., CailleteauJ., Grain and J., Mielczarek, Class. Quant. Grav. 31 053001 (2014).
[124] I., AgulloA., Ashtekar and W., Nelson, Phys. Rev. Lett. 109 251301 (2012); Phys. Rev. D87 043507 (2013), Class. Quant. Grav. 30 085014 (2013).
[125] M., Fernández-MéndezG. A., Mena Marugan, and J., Olmedo, Phys. Rev. D86 024003 (2012).
[126] L., LinseforsT., CailleteauA., Barrau and J., Grain, Phys. Rev. D87 123509 (2013); L., Linsefors and A., Barrau, Quant. Grav. 31 015018 (2014).
[127] S. W., Hawking and G. F. R., Ellis, Large scale structure ofspace-time (Cambridge University Press, Cambridge, 1973).Google Scholar
[128] A., BordeA., Guth and A., Vilenkin, Phys. Rev. Lett. 90 151301 (2003).
[129] A., AshtekarT. T., Pawlowski and P., Singh, Phys. Rev. Lett. 96 141301 (2006); Phys. Rev. D74 084003 (2006).
[130] D., Craig and P., Singh, Phys. Rev. D82 123526 (2010).
[131] M., Bojowald, Phys. Rev. Lett. 86 5227–5230 (2001).
[132] A., Ashtekar and M., Campiglia, Class. Quant. Grav. 29 242001 (2012).
[133] A., Ashtekar, Gen. Rel. Grav. 41 707–741 (2009).
[134] A., AshtekarT. T., PawlowskiP., Singh, and K., Vandersloot, Phys. Rev. D75 024035 (2007); L., SzulcW., Kaminski and J., Lewandowski, Class. Quant. Grav. 24 2621 (2007).
[135] A., AshtekarA., Corichi and P., Singh, Phys. Rev. D77 024046 (2008).
[136] D., Craig and P., Singh, Class. Quant. Grav. 30 205008 (2013).
[137] V., Taveras, Phys. Rev. D78 064072 (2008).
[138] E., Bentivegna and T. T., Pawlowski, Phys. Rev. D77 124025 (2008); T., Pawlowski and A., Ashtekar, Phys. Rev. D85 064001 (2012).
[139] A., Ashtekar and E., Wilson-Ewing, Phys. Rev. D79 083535 (2009); D80 123532 (2009).
[140] E., Wilson-Ewing, Phys. Rev. D82 043508 (2010).
[141] M., Martín-BenitoL. J., Garay and G. A., Mena Marugán, Phys. Rev. D78 083516 (2008); D., BrizuelaG. A., Mena Marugán and T., Pawlowski, Class. Quant. Grav. 27 052001 (2010); M., Martin-BenitoG. A., Mena MarugánE., Wilson-Ewing, Phys. Rev. D82 084012 (2010).
[142] P., Singh, Class. Quant. Grav. 26 125005 (2009).
[143] T., CailleteauP., Singh and K., Vandersloot, Phys. Rev. D80 124013 (2009); E., Wilson-Ewing, JCAP 1303 026 (2013); P., Singh and B., Gupt, Phys. Rev. D89 063520 (2014). arXiv:1309. 2732.
[144] L., Parker, Phys.Rev. Lett. 21 562 (1968); Phys. Rev. D183 1057 (1969).
[145] R., Holman and A., Tolley, JCAP 0805 001 (2008); I., Agullo and L., Parker, Phys. Rev. D 83 063526 (2011); Gen. Rel. Grav. 43 2541 - 2545 (2011). J., Ganc, Phys. Rev.D 84 063514 (2011).
[146] A., AshtekarW., Kaminski and J., Lewandowski, Phys. Rev. D79 064030 (2009).
[147] A., Ashtekar and D., Sloan, Gen. Rel. Grav. 43 3619–3656 (2011).
[148] J., Ganc and E., Komatsu, Phys. Rev. D86 023518 (2012); I., Agullo and S., Shandera, JCAP 1209 007 (2012).
[149] J. D., Bekenstein, phys. Rev. D7 2333–2346 (1973); D9 3292-3200 (1974).
[150] S. W., Hawking, Nature 248 30–31 (1974); Commun. Math. Phys. 43 199-220 (1975).
[151] A., Ashtekar and B., Krishnan, Living Rev. Rel. 7 10 (2004).
[152] A., AshtekarC., Beetle and J., Lewandowski, Phys. Rev. D64 044016 (2001).
[153] A., AshtekarJ., BaezA., Corichi and K., Krasnov, Phys. Rev. Lett. 80 904–907 (1998); A., AshtekarJ., BaezA., Corichi and K., Krasnov, Adv. Theor. Math. Phys. 4 1-95 (2000).
[154] A., AshtekarJ., EngleT., Pawłowski and C., Van Den Broeck, Class. Quant. Grav. 21 2549–2570 (2005); A., AshtekarJ., Engle and C., Van Den Broeck, Class. Quant. Grav. 22 L27-L34 (2005).
[155] M., Domagała and J., Lewandowski, Class. Quant. Grav. 21 5233 (2004); I., AgulloJ. F., Bar-bero G., E. F., BorjaJ., Diaz-Polo, and E. J. S., Villasenor, Phys. Rev. Lett. 100 211301 (2008); Phys. Rev. D82 084029 (2010).
[156] A., Ghosh, and A., Perez, Phys. Rev. Lett. 107 241301 (2011); E., FroddenA., Ghosh and A., Perez, Phys. Rev. D87 121503 (2013); A., GhoshK., Noui and A., Perez arXiv:13 09.4 563; E., Bianchi and A., Satz, Phys. Rev. D12 12403 (2013).
[157] W., Unruh, Phys. Rev. D14 870 (1976).
[158] R., Gambini and J., Pullin, Phys.Rev. Lett. 110 211301 (2013); Class. Quant. Grav. 31 115003 (2014); arXiv:1312.5512; R., GambiniJ., Olmedo and J., Pullin, arXiv:1310.5996.
[159] M., Bojowald and R., Swiderski, Class. Quant. Grav. 23 2129–154 (2006).
[160] W. G., Unruh and R., Schutzhold, Phys. Rev. D71 024028 (2005); D78 041504 (2008); T., Jacobson and D., Mattingly, D61 024017 (2000).
[161] A., Wightman, Phys. Rev. 101 860 (1959).
[162] E., Bianchi and Y., Ding, Phys. Rev. D86 104040 (2012).
[163] E., BianchiE., Magliaro and C., Perini, Nucl. Phys. B822 245–269 (2009).
[164] C., Rovelli and M., Zhang, Class. Quant. Grav. 28 175010 (2011).
[165] M., Han, Phys. Rev. D89, 124001 (2014).
[166] A., Riello, Phys. Rev. D88 24011 (2013).
[167] I., KhavkineR., Loll and P., Reska, Class. Quant. Grav. 27 185025 (2010).
[168] S., Chakraborty and P., Peldan, Phys. Rev. Lett. 73 1195–1198 (1994).
[169] U., Harst and M., Reuter, JHEP 1105 119 (2011).
[170] R., Percacci and D., Perini, Phys. Rev D68 044018 (2003).
[171] M., Shaposhnikov and C., Wetterich, Phys. Lett. B683 196 (2010).
[172] M., Reuter and J., Schwindt, JHEP 01 070 (2006); JHEP 01 049 (2007).
[173] O., Lauscher and M., Reuter, JHEP 10 050 (2005).
[174] M., Reuter and F., Saueressig, JHEP 12 012 (2011).
[175] A., Sen, JHEP 04 156 (2013); arXiv:1402.0109.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×