Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-01T16:47:33.786Z Has data issue: false hasContentIssue false

3 - Applications of geometric discrepancy in numerical analysis and statistics

Published online by Cambridge University Press:  18 December 2014

Josef Dick
Affiliation:
The University of New South Wales, Sydney
Gerhard Larcher
Affiliation:
Johannes Kepler Universität Linz
Friedrich Pillichshammer
Affiliation:
Johannes Kepler Universität Linz
Arne Winterhof
Affiliation:
Austrian Academy of Sciences, Linz
Chaoping Xing
Affiliation:
Nanyang Technological University, Singapore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] C., Aistleitner and J., Dick, Functions of bounded variation, signed measures, and a general Koksma–Hlawka inequality. Submitted 2014, available at http://arxiv.org/pdf/1406.0230.pdf.
[2] C., Aistleitner and M., Weimar, Probabilistic star discrepancy bounds for double infinite random matrices. In: J., Dick, F. Y., Kuo, G. W., Peters and I. H., Sloan (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 271–287. Springer-Verlag, Heidelberg, 2013.
[3] C., Aistleitner, J. S., Brauchart and J., Dick, Point sets on the sphere S2 with small spherical cap discrepancy. Discrete Comput. Geom. 48, 990–1024, 2012.Google Scholar
[4] F., Barekat and R., Caflisch, Simulation with fluctuating and singular rates. Preprint, available at http://arxiv.org/pdf/1310.4555.pdf.
[5] J., Beck, Sums of distances between points on a sphere an application of the theory of irregularities of distribution to discrete geometry. Mathematika 31, 33–41, 1984.Google Scholar
[6] J., Beck, On the discrepancy of convex plane sets. Monatsh. Math. 105, 91–106, 1988.Google Scholar
[7] J., Beck and W. W. L., Chen, Irregularities of Distribution. Cambridge Tracts in Mathematics, volume 89. Cambridge University Press, Cambridge, 2008.
[8] D., Bilyk and M. T., Lacey, On the small ball inequality in three dimensions. Duke Math. J. 143, 81–115, 2008.Google Scholar
[9] D., Bilyk, M. T., Lacey and A., Vagharshakyan, On the small ball inequality in all dimensions. J. Funct. Anal. 254, 2470–2502, 2008.Google Scholar
[10] D., Bilyk, X., Ma, J., Pipher and C., Spencer, Directional discrepancy in two dimensions. Bull. London Math. Soc. 43, 1151–1166, 2011.Google Scholar
[11] J. S., Brauchart and J., Dick, A simple proof of Stolarsky's invariance principle. Proc. Am. Math. Soc. 141, 2085–2096, 2013.Google Scholar
[12] P. O., Chelson, Quasi-random techniques for Monte Carlo methods. PhD Dissertation, Claremont Graduate School, Claremont, CA, 1976.
[13] W. W. L., Chen and M. M., Skriganov, Explicit constructions in the classical mean squares problem in irregularities of point distribution. J. Reine Angew. Math. 545, 67–95, 2002.Google Scholar
[14] S., Chen, J., Dick and A. B., Owen, Consistency of Markov chain quasi-Monte Carlo on continuous state spaces. Ann. Stat. 39, 673–701, 2011.Google Scholar
[15] L., Devroye, Non-Uniform Random Variate Generation. Springer, New York, 1986.
[16] J., Dick, Discrepancy bounds for infinite-dimensional order two digital sequences over F2. J. Number Theory 136, 204–232, 2014.Google Scholar
[17] J., Dick and F., Pillichshammer, Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, 2010.
[18] J., Dick and F., Pillichshammer, Optimal L2 discrepancy bounds for higher order digital sequences over the finite field F2. Acta Arith. 162, 65–99, 2014.Google Scholar
[19] J., Dick, D., Rudolf and H., Zhu, Discrepancy bounds for uniformly ergodic Markov chain quasi-Monte Carlo., Submitted, 2013.
[20] M., Drmota, Irregularities of distribution and convex sets. Österreichisch-Ungarisch-Slowakisches Kolloquium über Zahlentheorie (Maria Trost, 1992). Grazer Math. Ber., 318, pp. 9–16. Karl-Franzens-Univ. Graz, Graz, 1993.
[21] M., Drmota and R. F., Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Mathematics, volume 1651. Springer-Verlag, Berlin, 1997.
[22] H., Faure, Discrépance de suites associées à un système de numération (en dimension s). Acta Arith. 41, 337–351, 1982.Google Scholar
[23] P. J., Grabner and R. F., Tichy, Spherical designs, discrepancy and numerical integration. Math. Comp. 60, 327–336, 1993.Google Scholar
[24] G., Halász, On Roth's method in the theory of irregularities of point distributions. Recent Progress in Analytic Number Theory (Durham, 1979), volume 2, pp. 79–94. Academic Press, London, 1981.Google Scholar
[25] J. H., Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90, 1960.Google Scholar
[26] J. M., Hammersley, Monte Carlo methods for solving multivariable problems. Ann. N. Y. Acad. Sci. 86, 844–874, 1960.Google Scholar
[27] F. J., Hickernell, A generalized discrepancy and quadrature error bound. Math. Comp. 67, 299–322, 1998.Google Scholar
[28] E., Hlawka, Funktionen von beschränkter Variation in der Theorie der Gleichverteilung (German). Ann. Mat. Pura Appl. 54, 325–333, 1961.Google Scholar
[29] W., Hörmann, J., Leydold and G., Derflinger, Automatic nonuniform random variate generation. Statistics and Computing. Springer-Verlag, Berlin, 2004.
[30] J. F., Koksma, Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo 1, Mathematica. 11, 7–11, 1942.Google Scholar
[31] L., Kuipers and H., Niederreiter, Uniform Distribution of Sequences. Dover, New York, 1974.
[32] F. Y., Kuo, W. T. M., Dunsmuir, I. H., Sloan, M. P., Wand and R. S., Womersley, Quasi-Monte Carlo for highly structured generalised response models. Methodol. Comput. Appl. Probab. 10, 239–275, 2008.Google Scholar
[33] M., Laczkovich, Discrepancy estimates for sets with small boundary. Stud. Sci. Math. Hung. 30, 105–109, 1995.Google Scholar
[34] P., L'Ecuyer, Ch., Lécot and A., L'Archevêque-Gaudet, On array-RQMC for Markov chains: mapping alternatives and convergence rates. In: P., L'Ecuyer and A. B., Owen (eds.), Monte Carlo and quasi-Monte Carlo Methods 2008, pp. 485–500. Springer, Berlin, 2009.
[35] M. B., Levin, Discrepancy estimates of completely uniformly distributed and pseudorandom number sequences. Int. Math. Res. Notices, 1231–1251, 1999.Google Scholar
[36] A., Lubotzky, R., Phillips and P., Sarnak, Hecke operators and distributing points on the sphere. I. Frontiers of the mathematical sciences 1985 (New York, 1985). Commum. Pure Appl. Math. 39, S149–S186, 1986.
[37] A., Lubotzky, R., Phillips and P., Sarnak, Hecke operators and distributing points on S2. II. Commum. Pure Appl. Math. 40, 401–420, 1987.Google Scholar
[38] J., Matoušek, Geometric Discrepancy. An illustrated guide. Algorithms and Combinatorics, volume 18. Springer-Verlag, Berlin, 1999.
[39] W. J., Morokoff and R. E., Caflisch, Quasi-Monte Carlo integration. J. Comput. Phys. 122, 218–230, 1995.Google Scholar
[40] B., Moskowitz and R. E., Caflisch, Smoothness and dimension reduction in quasi-Monte Carlo methods. Math. Comput. Modell. 23, 37–54, 1996.Google Scholar
[41] R., Mück and W., Philipp, Distances of probability measures and uniform distribution mod 1. Math. Z. 142, 195–202, 1975.Google Scholar
[42] H., Niederreiter, Discrepancy and convex programming. Ann. Mat. Pura Appl. 93, 89–97, 1972.Google Scholar
[43] H., Niederreiter, Methods for estimating discrepancy. Applications of Number Theory to Numerical Analysis (Proc. Symp., Univ. Montreal, Montreal, 1971), pp. 203–236. Academic Press, New York, 1972.
[44] H., Niederreiter, Low-discrepancy and low-dispersion sequences. J. Number Theory 30, 51–70, 1988.Google Scholar
[45] H., Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics, volume 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
[46] H., Niederreiter and J. M., Wills, Diskrepanz und Distanz von Maßen bezüglich konvexer und Jordanscher Mengen (German). Math. Z. 144, 125–134, 1975.Google Scholar
[47] H., Niederreiter and C. P., Xing, Low-discrepancy sequences and global function fields with many rational places. Finite Fields Appl. 2, 241–273, 1996.Google Scholar
[48] H., Niederreiter and C. P., Xing, Rational Points on Curves over Finite Fields: Theory and Applications. London Mathematical Society Lecture Note Series, volume 285. Cambridge University Press, Cambridge, 2001.
[49] C., Robert and G., Casella, Monte Carlo Statistical Methods, second edition. Springer-Verlag, New York, 2004.
[50] M., Rosenblatt, Remarks on a multivariate transformation. Ann. Math. Stat. 23, 470–472, 1952.Google Scholar
[51] K. F., Roth, On irregularities of distribution. Mathematika 1, 73–79, 1954.Google Scholar
[52] W. M., Schmidt, Irregularities of distribution IV. Invent. Math. 7, 55–82, 1969.Google Scholar
[53] W. M., Schmidt, On irregularities of distribution IX. Acta Arith. 27, 385–396, 1975.Google Scholar
[54] W. M., Schmidt, Irregularities of distribution X. Number Theory and Algebra, pp. 311–329. Academic Press, New York, 1977.
[55] I. E., Shparlinski, On a completely uniform distribution. Comput. Math. Math. Phys. 19, 249–253, 1979.Google Scholar
[56] M. M., Skriganov, Harmonic analysis on totally disconnected groups and irregularities of point distributions. J. Reine Angew. Math. 600, 25–49, 2006.Google Scholar
[57] I. H., Sloan and H., Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals?J. Complexity 14, 1–33, 1998.Google Scholar
[58] I. M., Sobol’, Distribution of points in a cube and approximate evaluation of integrals (Russian). Ž. Vyčisl. Mat. Mat. Fiz. 7, 784–802, 1967.Google Scholar
[59] J., Spanier and E., Maize, Quasi-random methods for estimating integrals using relatively small samples. SIAM Rev. 36, 18–44, 1994.Google Scholar
[60] K. B., Stolarsky, Sums of distances between points on a sphere II. Proc. Am. Math. Soc. 41, 575–582, 1973.Google Scholar
[61] W., Stute, Convergence rates for the isotrope discrepancy. Ann. Probab. 5, 707–723, 1977.Google Scholar
[62] X., Wang, Improving the rejection sampling method in quasi-Monte Carlo methods. J. Comput. Appl. Math. 114, 231–246, 2000.Google Scholar
[63] C. P., Xing and H., Niederreiter, A construction of low-discrepancy sequences using global function fields. Acta Arith. 73, 87–102, 1995.Google Scholar
[64] S. C., Zaremba, La discrépance isotrope et l'intégration numérique. Ann. Mat. Pura Appl. 87, 125–135, 1970.Google Scholar
[65] H., Zhu and J., Dick, A discrepancy bound for a deterministic acceptance-rejection sampler. Electron. J. Stat. 8, 678–707, 2014.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×