Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-22T15:43:15.469Z Has data issue: false hasContentIssue false

1 - Molecular biology and high-throughput sequencing

from Part I - Preliminaries

Published online by Cambridge University Press:  05 May 2015

Veli Mäkinen
Affiliation:
University of Helsinki
Djamal Belazzougui
Affiliation:
University of Helsinki
Fabio Cunial
Affiliation:
University of Helsinki
Alexandru I. Tomescu
Affiliation:
University of Helsinki
Get access

Summary

In this chapter we give a minimalistic, combinatorial introduction to molecular biology, omitting the description of most biochemical processes and focusing on inputs and outputs, abstracted as mathematical objects. Interested readers might find it useful to complement our abstract exposition with a molecular biology textbook, to understand the chemical foundations of what we describe.

DNA, RNA, proteins

Life consists of fundamental units, called cells, that interact to form the complex, emergent behavior of a colony or of a multicellular organism. Different parts of a multicellular organism, like organs and tissues, consist of specialized cells that behave and interact in different ways. For example, muscle cells have a fundamentally different function and structure from brain cells. To understand such differences, one should look inside a cell.

A cell is essentially a metabolic network consisting of a mixture of molecules that interact by means of chemical reactions, with new “output” molecules constantly produced from “input” molecules. A set of reactions that are connected by their input and output products is called pathway. Each reaction is facilitated or hindered by a specific set of molecules, called enzymes, whose regulation affects the status of the entire network inside a cell. Enzymes are a specific class of proteins, linear chains of smaller building blocks (called amino acids) which can fold into complex three dimensional structures. Most proteins inside a human cell consist of amino acids taken from a set of 20 different types, each with peculiar structural and chemical properties.

The environment in which a cell is located provides input molecules to its metabolic network, which can be interpreted as signals to activate specific pathways. However, the cell can also regulate its own behavior using a set of instructions stored inside itself, which essentially specify how to assemble new proteins, and at what rate. In extreme simplification, this “program” is immutable, but it is executed dynamically, since the current concentration of proteins inside a cell affects which instructions are executed at the next time point. The conceptual network that specifies which proteins affect which instruction is called the regulation network.

Type
Chapter
Information
Genome-Scale Algorithm Design
Biological Sequence Analysis in the Era of High-Throughput Sequencing
, pp. 3 - 9
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×