Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T17:36:53.866Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2016

Debbie Guatelli-Steinberg
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Switek, B. Written in Stone: The Hidden Secrets of Fossils and the Story of Life on Earth. London: Icon Books; 2011.
2. Hsu, K-T. The path to Steno's synthesis on the animal origin of glossopetrae. Geological Society of America Memoirs. 2009;203:93–106.Google Scholar
3. Morello N., Steno The fossils, the rocks, and the calendar of the Earth. Special Papers Geological Society of America. 2006;411:81.Google Scholar
4. Freller, T. “Lingue di seripi”, “serpents’ tongues” and “glossopetrae.” Highlights from the history of popular “cult” medicine in early modern times. Sudhoffs Archiv. 1997;81:62–83.Google Scholar
5. Rudwick, MJS. The Meaning of Fossils: Episodes in the History of Paleontology. Chicago: University of Chicago Press; 1985.
6. Scott, GR, Turner, CGI. The Anthropology of Modern Human Teeth: Dental Morphology and Its Variation in Recent Human Populations. Cambridge: Cambridge University Press; 1997.
7. Ayala, FJ, Valentine, JW. The Theory and Process of Organic Evolution. Menlo Park: Benjamin Cummings; 1979.
8. Dawkins, R, Wong, Y. The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution. Boston: Houghton Mifflin; 2005.
9. Tobin, A, Dusheck, J. Asking about Life: Florence, KY: Cengage Learning; 2004.
10. Langergraber, KE, Prüfer, K, Rowney, C, Boesch, C, Crockford, C, Fawcett, K, et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proceedings of the National Academy of Sciences. 2012;109:15716–15721.Google Scholar
11. Dart, RA. The Taungs skull. Nature. 1925;116:462.Google Scholar
12. McKee, JK, McGraw, WS, Poirier, FE. Understanding Human Evolution. Upper Saddle River, NJ: Pearson Prentice Hall; 2005.
13. Conroy, GC, Pontzer, H. Reconstructing Human Origins: A Modern Synthesis: New York: WW Norton; 2012.
14. Gibbons, A. The First Human: The Race to Discover Our Earliest Ancestors: New York: Anchor Books; 2007.
15. Cartmill, M, Smith, FH. The Human Lineage: Hoboken, NJ: John Wiley & Sons; 2009.
16. Wolpoff, MH, Hawks, J, Senut, B, Pickford, M, Ahern, J. An ape or the ape: is the Toumaï cranium TM 266 a hominid? PaleoAnthropology. 2006;2006:36–50.Google Scholar
17. Brunet, M, Guy, F, Pilbeam, D, Mackaye, HT, Likius, A, Ahounta, D, et al. A new hominid from the Upper Miocene of Chad, Central Africa. Nature. 2002;418:145–151.Google Scholar
18. Wood, B, Harrison, T. The evolutionary context of the first hominins. Nature. 2011;470:347–352.Google Scholar
19. White, TD, Asfaw, B, Beyene, Y, Haile-Selassie, Y, Lovejoy, CO, Suwa, G, et al. Ardipithecus ramidus and the paleobiology of early hominids. Science. 2009;326:64–86.Google Scholar
20. Leakey, MG, Feibel, CS, McDougall, I, Walker, A. New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature. 1995;376:565–571.Google Scholar
21. Leakey, MG, Feibel, CS, McDougall, I, Ward, C, Walker, A. New specimens and confirmation of an early age for Australopithecus anamensis. Nature. 1998;393:62–66.Google Scholar
22. Kimbel, WH, Delezene, LK. “Lucy” redux: a review of research on Australopithecus afarensis. American Journal of Physical Anthropology. 2009;140(S49):2–48.Google Scholar
23. Kimbel, WH, Lockwood, CA, Ward, CV, Leakey, MG, Rak, Y, Johanson, DC. Was Australopithecus anamensis ancestral to A. afarensis? A case of anagenesis in the hominin fossil record. Journal of Human Evolution. 2006;51:134–152.Google Scholar
24. Ward, CV, Leakey, MG, Walker, A. Morphology of Australopithecus anamensis from Kanapoi and Allia Bay, Kenya. Journal of Human Evolution. 2001;41:255–368.Google Scholar
25. Beynon, AD, Wood, BA. Variations in enamel thickness and structure in East African hominids. American Journal of Physical Anthropology. 1986;70:177–193.Google Scholar
26. Leakey, MG, Spoor, F, Brown, FH, Gathogo, PN, Kiarie, C, Leakey, LN, et al. New hominin genus from eastern Africa shows diverse middle Pliocene lineages. Nature. 2001;410:433–440.Google Scholar
27. White, T. Early hominids – diversity or distortion? Science. 2003;299:1994.Google Scholar
28. Brunet, M, Beauvilain, A, Coppens, Y, Heintz, E, Moutaye, AHE, Pilbeam, D. The first australopithecine 2,500 kilometres west of the Rift Valley (Chad). Nature. 1995;378:273–275.Google Scholar
29. Haile-Selassie, Y, Gibert, L, Melillo, SM, Ryan, TM, Alene, M, Deino, A, et al. New species from Ethiopia further expands Middle Pliocene hominin diversity. Nature. 2015;521:483–488.Google Scholar
30. Spoor, F. Palaeoanthropology: The middle Pliocene gets crowded. Nature. 2015;521:432–433.Google Scholar
31. Harmand, S, Lewis, JE, Feibel, CS, Lepre, CJ, Prat, S, Lenoble, A, et al. 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature. 2015;521:310–315.Google Scholar
32. Asfaw, B, White, T, Lovejoy, O, Latimer, B, Simpson, S, Suwa, G. Australopithecus garhi: a new species of early hominid from Ethiopia. Science. 1999;284:629–635.Google Scholar
33. Aiello, L, Dean, C. An Introduction to Human Evolutionary Anatomy. New York: Academic Press; 1990.
34. Johanson, D, White, T. A systematic assessment of early African hominids. Science. 1979;203:321–330.Google Scholar
35. Delezene, LK, Zolnierz, MS, Teaford, MF, Kimbel, WH, Grine, FE, Ungar, PS. Premolar microwear and tooth use in Australopithecus afarensis. Journal of Human Evolution. 2013;65:282–293.Google Scholar
36. Berger, LR, Ruiter, DJ de, Churchill, SE, Schmid, P, Carlson, KJ, Dirks, PH, et al. Australopithecus sediba: a new species of Homo-like australopith from South Africa. Science. 2010;328:195–204.Google Scholar
37. Kivell, TL, Kibii, JM, Churchill, SE, Schmid, P, Berger, LR. Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science. 2011;333:1411–1417.Google Scholar
38. Kibii, JM, Churchill, SE, Schmid, P, Carlson, KJ, Reed, ND, Ruiter, DJ De, et al. A partial pelvis of Australopithecus sediba. Science. 2011;333:1407–1411.Google Scholar
39. Broom, R. The Pleistocene anthropoid apes of South Africa. Nature. 1938;142:377–379.Google Scholar
40. Morell, V. Ancestral Passions: The Leakey Family and the Quest for Humankind's Beginnings. New York: Simon and Schuster; 1995.
41. Wood, B, Wood, C, Konigsberg, L. Paranthropus boisei: an example of evolutionary stasis? American Journal of Physical Anthropology. 1994;95:117–136.Google Scholar
42. Constantino, PJ, Lucas, PW, Lee, JJW, Lawn, BR. The influence of fallback foods on great ape tooth enamel. American Journal of Physical Anthropology. 2009;140:653–660.Google Scholar
43. Strait, DS, Grine, FE. Inferring hominoid and early hominid phylogeny using craniodental characters: the role of fossil taxa. Journal of Human Evolution. 2004;47:399–452.Google Scholar
44. González-José, R, Escapa, I, Neves, WA, Cúneo, R, Pucciarelli, HM. Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution. Nature. 2008;453:775–778.Google Scholar
45. Irish, JD, Guatelli-Steinberg, D, Legge, SS, Ruiter, DJ de, Berger, LR. News and views: Response to “Non-metric dental traits and hominin phylogeny” by Carter et al., with additional information on the Arizona State University Dental Anthropology System and phylogenetic “place” of Australopithecus sediba. Journal of Human Evolution. 2014;69:129–134.Google Scholar
46. Irish, JD, Guatelli-Steinberg, D, Legge, SS, Ruiter, DJ de, Berger, LR. Dental morphology and the phylogenetic “place” of Australopithecus sediba. Science. 2013;340(6129).Google Scholar
47. Wood, B, Collard, M. The human genus. Science. 1999;284:65–71.Google Scholar
48. Robinson, JT. Prehominid dentition and hominid evolution. Evolution. 1954:324–334.
49. Robinson, JT. Adaptive radiation in the australopithecines and the origin of man. African Ecology and Human Evolution. 1963;36:385–416.Google Scholar
50. Dart, RA. The first australopithecine fragment from the Makapansgat pebble culture stratum. Nature. 1955;176:170.Google Scholar
51. Brain, CK. The Hunters or the Hunted? Chicago: University of Chicago Press; 1981.
52. Wrangham, RW, Jones, JH, Laden, G, Pilbeam, D, Conklin‐Brittain, N. The raw and the stolen. Current Anthropology. 1999;40:567–594.Google Scholar
53. Aiello, LC, Wheeler, P. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Current Anthropology. 1995;36: 199–221.Google Scholar
54. Navarrete, A, Schaik, CP van, Isler, K. Energetics and the evolution of human brain size. Nature. 2011;480:91–93.Google Scholar
55. Tanner, N, Zihlman, A. Women in evolution. Part I: Innovation and selection in human origins. Signs. 1976;1:585–608.Google Scholar
56. O'Connell, JF, Hawkes, K, Lupo, KD, Jones, NB. Male strategies and Plio-Pleistocene archaeology. Journal of Human Evolution. 2002;43:831–872.Google Scholar
57. Wrangham, RW. The cooking enigma. In Ungar, PS, editor. Evolution of the Human Diet: The Known, the Unknown, and the Unknowable. Oxford: Oxford University Press. 2006; 308–323.
58. Strait, DS, Constantino, P, Lucas, PW, Richmond, BG, Spencer, MA, Dechow, PC, et al. Viewpoints: diet and dietary adaptations in early hominins: the hard food perspective. American Journal of Physical Anthropology. 2013;151:339–355.Google Scholar
59. Daegling, DJ, Judex, S, Ozcivici, E, Ravosa, MJ, Taylor, AB, Grine, FE, et al. Viewpoints: feeding mechanics, diet, and dietary adaptations in early hominins. American Journal of Physical Anthropology. 2013;151:356–371.Google Scholar
60. Mittermeier, R, E, Louis Jr, Richardson, M, Schwitzer, C, Langrand, O, Rylands, A, et al. Lemurs of Madagascar, Tropical Field Guide Series. Conservation International, Arlington, VA. 2010.
61. Kay, RF. The nut‐crackers – a new theory of the adaptations of the Ramapithecinae. American Journal of Physical Anthropology. 1981;55:141–151.Google Scholar
62. Lambert, JE, Chapman, CA, Wrangham, RW, Conklin‐Brittain, NL. Hardness of cercopithecine foods: implications for the critical function of enamel thickness in exploiting fallback foods. American Journal of Physical Anthropology. 2004;125:363–368.Google Scholar
63. Dumont, ER. Enamel thickness and dietary adaptation among extant primates and chiropterans. Journal of Mammalogy. 1995, 76:1127–1136.Google Scholar
64. Martin, LB, Olejniczak, AJ, Maas, MC. Enamel thickness and microstructure in pitheciin primates, with comments on dietary adaptations of the middle Miocene hominoid Kenyapithecus. Journal of Human Evolution. 2003;45:351–367.Google Scholar
65. Liem, KF. Adaptive significance of intra-and interspecific differences in the feeding repertoires of cichlid fishes. American Zoologist. 1980;20:295–314.Google Scholar
66. McGraw, WS, Vick, AE, Daegling, DJ. Dietary variation and food hardness in sooty mangabeys (Cercocebus atys): implications for fallback foods and dental adaptation. American Journal of Physical Anthropology. 2014;154:413–423.Google Scholar
67. Pampush, JD, Duque, AC, Burrows, BR, Daegling, DJ, Kenney, WF, McGraw, WS. Homoplasy and thick enamel in primates. Journal of Human Evolution. 2013;64:216–224.Google Scholar
68. Lucas, PW, Omar, R, Al-Fadhalah, K, Almusallam, AS, Henry, AG, Michael, S, et al. Mechanisms and causes of wear in tooth enamel: implications for hominin diets. Journal of the Royal Society Interface. 2013;10:2012.0923.Google Scholar
69. Xia, J, Zheng, J, Huang, D, Tian, ZR, Chen, L, Zhou, Z, et al. New model to explain tooth wear with implications for microwear formation and diet reconstruction. Proceedings of the National Academy of Sciences. 2015;112:10669–10672.Google Scholar
70. Ungar, PS. Mammal Teeth: Origin, Evolution, and Diversity: Baltimore: Johns Hopkins University Press; 2010.
71. Teaford, MF. What do we know and not know about diet and enamel structure. In Ungar, PS, editor. Evolution of the Human Diet: The Known, the Unknown and the Unknowable. 2007;56–76.
72. Bibi, F, Souron, A, Bocherens, H, Uno, K, Boisserie, J-R. Ecological change in the lower Omo Valley around 2.8 Ma. Biology Letters. 2013;9:2012.0890.Google Scholar
73. Teaford, M. Scanning electron microscope diagnosis of wear patterns versus artifacts on fossil teeth. Scanning Microscroscopy. 1988;2:1167–1175.Google Scholar
74. Hillson, S. Dental Anthropology. Cambridge: Cambridge University Press; 1996.
75. Ungar, PS, Brown, CA, Bergstrom, TS, Walker, A. Quantification of dental microwear by tandem scanning confocal microscopy and scale‐sensitive fractal analyses. Scanning. 2003;25:185–193.Google Scholar
76. Scott, RS, Ungar, PS, Bergstrom, TS, Brown, CA, Grine, FE, Teaford, MF, et al. Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature. 2005;436:693–695.Google Scholar
77. Scott, RS, Teaford, MF, Ungar, PS. Dental microwear texture and anthropoid diets. American Journal of Physical Anthropology. 2012;147:551–579.Google Scholar
78. Teaford, MF, Oyen, OJ. In vivo and in vitro turnover in dental microwear. American Journal of Physical Anthropology. 1989;80:447–460.Google Scholar
79. Grine, FE. Dental evidence for dietary differences in Australopithecus and Paranthropus: a quantitative analysis of permanent molar microwear. Journal of Human Evolution. 1986;15:783–822.Google Scholar
80. Daegling, DJ, Grine, FE. Terrestrial foraging and dental microwear in Papio ursinus. Primates. 1999;40:559–572.Google Scholar
81. Constantino, PJ, Lee, JJ-W, Chai, H, Zipfel, B, Ziscovici, C, Lawn, BR, et al. Tooth chipping can reveal the diet and bite forces of fossil hominins. Biology Letters. 2010;6:826–829.Google Scholar
82. Constantino, PJ, Lee, JJW, Gerbig, Y, Hartstone‐Rose, A, Talebi, M, Lawn, BR, et al. The role of tooth enamel mechanical properties in primate dietary adaptation. American Journal of Physical Anthropology. 2012;148:171–177.Google Scholar
83. Sponheimer, M, Alemseged, Z, Cerling, TE, Grine, FE, Kimbel, WH, Leakey, MG, et al. Isotopic evidence of early hominin diets. Proceedings of the National Academy of Sciences. 2013;110:10513–10518.Google Scholar
84. Grine, FE, Sponheimer, M, Ungar, PS, Lee‐Thorp, J, Teaford, MF. Dental microwear and stable isotopes inform the paleoecology of extinct hominins. American Journal of Physical Anthropology. 2012;148:285–317.Google Scholar
85. Sponheimer, M, Loudon, J, Codron, D, Howells, M, Pruetz, JD, Codron, J, et al. Do “savanna” chimpanzees consume C 4 resources? Journal of Human Evolution. 2006;51:128–133.Google Scholar
86. Sponheimer, M, Lee-Thorp, J, Ruiter, D de, Codron, D, Codron, J, Baugh, AT, et al. Hominins, sedges, and termites: new carbon isotope data from the Sterkfontein valley and Kruger National Park. Journal of Human Evolution. 2005;48:301–312.Google Scholar
87. Cerling, TE, Levin, NE, Quade, J, Wynn, JG, Fox, DL, Kingston, JD, et al. Comment on the paleoenvironment of Ardipithecus ramidus. Science. 2010;328:1105.Google Scholar
88. Cerling, TE, Manthi, FK, Mbua, EN, Leakey, LN, Leakey, MG, Leakey, RE, et al. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proceedings of the National Academy of Sciences. 2013;110:10501–10506.Google Scholar
89. Suwa, G, Kono, RT, Simpson, SW, Asfaw, B, Lovejoy, CO, White, TD. Paleobiological implications of the Ardipithecus ramidus dentition. Science. 2009;326:69–99.Google Scholar
90. Ungar, PS, Scott, RS, Grine, FE, Teaford, MF. Molar microwear textures and the diets of Australopithecus anamensis and Australopithecus afarensis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365:3345–3354.Google Scholar
91. Maas, MC, Dumont, ER. Built to last: the structure, function, and evolution of primate dental enamel. Evolutionary Anthropology. 1999;8:133–152.Google Scholar
92. Lee-Thorp, J, Likius, A, Mackaye, HT, Vignaud, P, Sponheimer, M, Brunet, M. Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad. Proceedings of the National Academy of Sciences. 2012;109:20369–20372.Google Scholar
93. Dominy, NJ. Hominins living on the sedge. Proceedings of the National Academy of Sciences. 2012;109:20171–20172.Google Scholar
94. Wynn, JG, Sponheimer, M, Kimbel, WH, Alemseged, Z, Reed, K, Bedaso, ZK, et al. Diet of Australopithecus afarensis from the Pliocene Hadar formation, Ethiopia. Proceedings of the National Academy of Sciences. 2013;110:10495–10500.Google Scholar
95. Cerling, TE, Mbua, E, Kirera, FM, Manthi, FK, Grine, FE, Leakey, MG, et al. Diet of Paranthropus boisei in the early Pleistocene of East Africa. Proceedings of the National Academy of Sciences. 2011;108:9337–9341.Google Scholar
96. McKee, JK, Thackeray, JF, Berger, LR. Faunal assemblage seriation of southern African Pliocene and Pleistocene fossil deposits. American Journal of Physical Anthropology. 1995;96:235–250.Google Scholar
97. Reed, KE. Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution. 1997;32:289–322.Google Scholar
98. McKee, J.The autocatalytic nature of hominid evolution in African Plio-Pleistocene environments. In Bromage, T and Schrenk, F, editors. African Biogeography, Climate Change, and Human Evolution. New York: Oxford University Press. 1999; 57–75.
99. Lee-Thorp, JA, Sponheimer, M, Luyt, J. Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. Journal of Human Evolution. 2007;53:595–601.Google Scholar
100. Bamford, M. Pliocene fossil woods from an early hominid cave deposit, Sterkfontein, South Africa. South African Journal of Science. 1999;95:231–237.Google Scholar
101. Benefit, B, Diet, McCrossin M., species diversity and distribution of African fossil baboons. Kroeber Anthropological Society Papers. 1990;71:79–93.Google Scholar
102. Lee-Thorp, JA, Sponheimer, M, Passey, BH, Ruiter, DJ de, Cerling, TE. Stable isotopes in fossil hominin tooth enamel suggest a fundamental dietary shift in the Pliocene. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365:3389–3396.Google Scholar
103. Sponheimer, M, Passey, BH, Ruiter, DJ de, Guatelli-Steinberg, D, Cerling, TE, Lee-Thorp, JA. Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science. 2006;314:980–982.
104. Sillen, A. Strontium-calcium ratios (Sr/Ca) of Australopithecus robustus and associated fauna from Swartkrans. Journal of Human Evolution. 1992;23:495–516.Google Scholar
105. Sponheimer, M, Ruiter, D de, Lee-Thorp, J, Späth, A. Sr/Ca and early hominin diets revisited: new data from modern and fossil tooth enamel. Journal of Human Evolution. 2005;48:147–156.Google Scholar
106. Balter, V, Braga, J, Télouk, P, Thackeray, JF. Evidence for dietary change but not landscape use in South African early hominins. Nature. 2012;489:558–560.Google Scholar
107. Lee-Thorp, J. The demise of “Nutcracker Man.” Proceedings of the National Academy of Sciences. 2011;108:9319–9320.Google Scholar
108. Ungar, PS, Grine, FE, Teaford, MF. Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS One. 2008;3:e2044.Google Scholar
109. Brul, EL. Du Early hominid feeding mechanisms. American Journal of Physical Anthropology. 1977;47:305–320.Google Scholar
110. Cowlishaw, G, Dunbar, RI. Primate Conservation Biology. Chicago: University of Chicago Press; 2000.
111. Macho, GA. Baboon feeding ecology informs the dietary niche of Paranthropus boisei. PLoS One. 2014;9:e84942.Google Scholar
112. Stewart, KM. Environmental change and hominin exploitation of C4-based resources in wetland/savanna mosaics. Journal of Human Evolution. 2014;77:1–16.Google Scholar
113. Backwell, LR, d'Errico, F. Evidence of termite foraging by Swartkrans early hominids. Proceedings of the National Academy of Sciences. 2001;98:1358–1363.Google Scholar
114. Lesnik, JJ. Termites in the hominin diet: A meta-analysis of termite genera, species and castes as a dietary supplement for South African robust australopithecines. Journal of Human Evolution. 2014;71:94–104.Google Scholar
115. Darwin, C. The Descent of Man and Selection in Relation to Sex. London: John Murray; 1871.
116. Bateman, AJ. Intra-sexual selection in Drosophila. Heredity (Edinb). 1948;2(Pt. 3):349–368.Google Scholar
117. Robert, T. Parental investment and sexual selection. In Campbell, B, editor. Sexual Selection and the Descent of Man. Chicago: Aldine. 1972;136–179.
118. Plavcan, JM, Schaik, CP van, Kappeler, PM. Competition, coalitions and canine size in primates. Journal of Human Evolution. 1995;28:245–276.Google Scholar
119. Dixson, AF. Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes and Human Beings, Oxford: Oxford University Pres; 2012.
120. Lovejoy, CO. The origin of man. Science. 1981;21:341–350.Google Scholar
121. Lovejoy, CO. Reexamining human origins in light of Ardipithecus ramidus. Science. 2009;326:74–e8.Google Scholar
122. Lucas, P, Corlett, R, Luke, D. Sexual dimorphism of tooth size in anthropoids. Human Evolution. 1986;1:23–39.Google Scholar
123. Lucas, P. An analysis of canine size and jaw shape in some Old and New World non‐human primates. Journal of Zoology. 1981;195:437–448.Google Scholar
124. Hylander, WL. Functional links between canine height and jaw gape in catarrhines with special reference to early hominins. American Journal of Physical Anthropology. 2013;150:247–259.Google Scholar
125. Mayr, E. Cause and effect in biology. Science 1961;134:1501–1506.Google Scholar
126. Plavcan, JM. Sexual Dimorphism in the Dentition of Extant Anthropoid Primates. Ann Arbor: University Microfilms; 1990.
127. Plavcan, JM. Inferring social behavior from sexual dimorphism in the fossil record. Journal of Human Evolution. 2000;39:327–344.Google Scholar
128. Plavcan, JM. Sexual dimorphism in primate evolution. American Journal of Physical Anthropology. 2001;116(S33):25–53.Google Scholar
129. Kelley, J. Phylogeny and sexually dimorphic characters: canine reduction in Ouranopithecus. In Bonis, L De, Koufos, GD, and Andrews, , editors. Hominoid Evolution and Climatic Change in Europe: Volume 2: Phylogeny of the Neogene Hominoid Primates of Eurasia. Cambridge: Cambridge University Press. 2001; 269–283.
130. Clutton-Brock, TH, Harvey, PH, Rudder, B. Sexual dimorphism, socionomic sex ratio and body weight in primates. Nature. 1977;269:797–800.Google Scholar
131. Harvey, PH, Kavanagh, M, Clutton-Brock, T. Canine tooth size in female primates. Nature. 1978;276:817–818.Google Scholar
132. Leutenegger, W, Cheverud, J. Correlates of sexual dimorphism in primates: ecological and size variables. International Journal of Primatology. 1982;3:387–402.Google Scholar
133. Cheverud, JM, Dow, MM, Leutenegger, W. The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism in body weight among primates. Evolution. 1985;39:1335–1351.Google Scholar
134. Rensch, B. The laws of evolution. In Tax, S, editor. Evolution after Darwin, Vol. 1. Chicago: Chicago University Press. 1960; 95–116.
135. Gingerich, PD, Smith, BH. Allometric scaling in the dentition of primates and insectivores. In Jungers, WL, editor. Size and Scaling in Primate Biology. New York: Plenum. 1984; 257–272.
136. Plavcan, JM, Schaik, CP. van Canine dimorphism. Evolutionary Anthropology. 1993;2:208–214.Google Scholar
137. Leutenegger, W, Kelly, JT. Relationship of sexual dimorphism in canine size and body size to social, behavioral, and ecological correlates in anthropoid primates. Primates. 1977;18:117–136.Google Scholar
138. Plavcan, JM, Schaik, CP. van Intrasexual competition and canine dimorphism in anthropoid primates. American Journal of Physical Anthropology. 1992;87:461–477.Google Scholar
139. Plavcan, JM, Schaik, CP. Van Interpreting hominid behavior on the basis of sexual dimorphism. Journal of Human Evolution. 1997;32:345–374.Google Scholar
140. Dobson, SD. Letter to the editor: canine displays are not aggressive signals: a comment on Plavcan and Ruff (2008). American Journal of Physical Anthropology. 2010;143:325–326.Google Scholar
141. McGraw, WS, Plavcan, JM, Adachi-Kanazawa, K. Adult female Cercopithecus diana employ canine teeth to kill another adult female C. diana. International Journal of Primatology. 2002;23:1301–1308.Google Scholar
142. Milton, K. Multimale mating and absence of canine tooth dimorphism in woolly spider monkeys (Brachyteles arachnoides). American Journal of Physical Anthropology. 1985;68:519–523.Google Scholar
143. Strier, KB. Causes and consequences of nonaggression in the woolly spider monkey, or muriqui (Brachyteles arachnoides). In Silverberg, J and Gray, J, editors. Aggression and Peacefulness in Humans and other Primates. New York: Oxford University Press. 1992; 100–115.
144. Kay, RF, Plavcan, JM, Glander, KE, Wright, PC. Sexual selection and canine dimorphism in New World monkeys. American Journal of Physical Anthropology. 1988;77:385–397.Google Scholar
145. Thorén, S, Lindenfors, P, Kappeler, PM. Phylogenetic analyses of dimorphism in primates: evidence for stronger selection on canine size than on body size. American Journal of Physical Anthropology. 2006;130:50–59.Google Scholar
146. Plavcan, JM. Understanding dimorphism as a function of changes in male and female traits. Evolutionary Anthropology. 2011;20:143–155.Google Scholar
147. Greenfield, LO. Relative canine size, behavior and diet in male ceboids. Journal of Human Evolution. 1992;23:469–480.Google Scholar
148. Kinzey, WG. Dietary and dental adaptations in the Pitheciinae. American Journal of Physical Anthropology. 1992;88:499–514.Google Scholar
149. Greenfield, LO. Origin of the human canine: a new solution to an old enigma. American Journal of Physical Anthropology. 1992;35(S15):153–185.Google Scholar
150. Greenfield, LO. Canine tip wear in male and female anthropoids. American Journal of Physical Anthropology. 1998;107:87–96.Google Scholar
151. Plavcan, JM, Kelley, J. Evaluating the “dual selection” hypothesis of canine reduction. American Journal of Physical Anthropology. 1996;99:379–388.Google Scholar
152. Alvesalo, L, Varrela, J. Permanent tooth sizes in 46, XY females. American Journal of Human Genetics. 1980;32:736.Google Scholar
153. Alvesalo, L, Tammisalo, E, Hakola, P. Enamel thickness in 47, XYY males’ permanent teeth. Annals of Human Biology. 1985;12:421–427.Google Scholar
154. Zingeser, M, Phoenix, C. Metric characteristics of the canine dental complex in prenatally androgenized female rhesus monkeys (Macaca mulatta). American Journal of Physical Anthropology. 1978;49(2):187–192.Google Scholar
155. Ribeiro, D, Brook, A, Hughes, T, Sampson, W, Townsend, G. Intrauterine hormone effects on tooth dimensions. Journal of Dental Research. 2013:0022034513484934.
156. Heikkinen, T, Harila, V, Tapanainen, JS, Alvesalo, L. Masculinization of the eruption pattern of permanent mandibular canines in opposite sex twin girls. American Journal of Physical Anthropology. 2013;151:566–572.Google Scholar
157. Schwartz, GT, Dean, C. Ontogeny of canine dimorphism in extant hominoids. American Journal of Physical Anthropology. 2001;115:269–283.Google Scholar
158. Guatelli-Steinberg, D, Ferrell, RJ, Hubbard, A, Schmidt, S, Talabere, T. Sexual dimorphism in lateral enamel formation in Cercocebus and Papio: time vs. rate. American Journal of Physical Anthropology. 2009;140: 216–233.Google Scholar
159. Schwartz, GT, Miller, ER, Gunnell, GF. Developmental processes and canine dimorphism in primate evolution. Journal of Human Evolution. 2005;48:97–103.Google Scholar
160. Kelley, J. Sex determination in Miocene catarrhine primates. American Journal of Physical Anthropology. 1995;96:391–417.Google Scholar
161. Kelley, J, Plavcan, JM. A simulation test of hominoid species number at Lufeng, China: implications for the use of the coefficient of variation in paleotaxonomy. Journal of Human Evolution. 1998;35:577–596.Google Scholar
162. Fleagle, JG. Primate Adaptation and Evolution, San Diego: Academic Press; 2013.
163. Bonis, L De, Koufos, GD. The face and the mandible of Ouranopithecus macedoniensis: description of new specimens and comparisons. Journal of Human Evolution. 1993;24:469–491.Google Scholar
164. Begun, DR, Nargolwalla, MC, European, Kordos L. Miocene hominids and the origin of the African ape and human clade. Evolutionary Anthropology. 2012;21:10–23.Google Scholar
165. Daegling, DJ, McGraw, WS, Ungar, PS, Pampush, JD, Vick, AE, Bitty, EA. Hard-object feeding in sooty mangabeys (Cercocebus atys) and interpretation of early hominin feeding ecology. PLoS One. 2011;6:e23095.Google Scholar
166. Ward, CV, Plavcan, JM, Manthi, FK. Anterior dental evolution in the Australopithecus anamensis–afarensis lineage. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365:3333–3344.Google Scholar
167. Manthi, FK, Plavcan, JM, Ward, CV. New hominin fossils from Kanapoi, Kenya, and the mosaic evolution of canine teeth in early hominins. South African Journal of Science. 2012;108:1–9.Google Scholar
168. Plavcan, JM. Sexual size dimorphism, canine dimorphism, and male-male competition in primates. Human Nature. 2012;23:45–67.Google Scholar
169. Jolly, CJ. The seed-eaters: a new model of hominid differentiation based on a baboon analogy. Man. 1970:5–26.
170. Jungers, WL. On canine reduction in early hominids. Current Anthropology. 1978;19:155–156.Google Scholar
171. Gantt, DG. Patterns of dental wear and the role of the canine in Cercopithecinae. American Journal of Physical Anthropology. 1979;51:353–359.Google Scholar
172. Kay, RF. Mastication, Molar Tooth Structure and Diet in Primates. Ph.D. Dissertation, Yale University, 1973.
173. Delezene, LK. Modularity of the anthropoid dentition: implications for the evolution of the hominin canine honing complex. Journal of Human Evolution. 2015;86:1–12.Google Scholar
174. Reno, PL, Meindl, RS, McCollum, MA, Lovejoy, CO. The case is unchanged and remains robust: Australopithecus afarensis exhibits only moderate skeletal dimorphism: a reply to Plavcan et al. (2005). Journal of Human Evolution. 2005;49:279–288.Google Scholar
175. Plavcan, JM, Lockwood, CA, Kimbel, WH, Lague, MR, Harmon, EH. Sexual dimorphism in Australopithecus afarensis revisited: how strong is the case for a human-like pattern of dimorphism? Journal of Human Evolution. 2005;48:313–320.Google Scholar
176. McLean, CY, Reno, PL, Pollen, AA, Bassan, AI, Capellini, TD, Guenther, C, et al. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature. 2011;471:216–219.Google Scholar
177. Antón, SC, Potts, R, Aiello, LC. Evolution of early Homo: an integrated biological perspective. Science. 2014;345:1236828.Google Scholar
178. Weston, EM, Friday, AE, Johnstone, RA, Schrenk, F. Wide faces or large canines? The attractive versus the aggressive primate. Proceedings of the Royal Society of London B: Biological Sciences. 2004;271(Suppl 6):S416–S419.Google Scholar
179. Dobzhansky, TG. Mankind Evolving: The Evolution of the Human Species. New Haven and London: Yale University Press;1962.
180. Bogin, BA. Evolutionary hypotheses for human childhood. American Journal of Physical Anthropology. 1997; 104(S25): 63–89.Google Scholar
181. Leigh, SR. Evolution of human growth. Evolutionary Anthropology. 2001;10:223–236.Google Scholar
182. Charnov, EL, Berrigan, D. Why do female primates have such long lifespans and so few babies? Or life in the slow lane. Evolutionary Anthropology. 1993;1:191–194.Google Scholar
183. Janson, CH, Schaik, CP. van Ecological risk aversion in juvenile primates: slow and steady wins the race. In Pereira, ME and Fairbanks, L, editors. Juvenile Primates: Life history, Development, and Behavior. New York: Oxford University Press.1993; 57–74.
184. Leigh, SR. Ontoaenetic correlates of diet in anthropoid primates. American Journal of Physical Anthropology. 1994;94:499–522.Google Scholar
185. Kuzawa, CW, Chugani, HT, Grossman, LI, Lipovich, L, Muzik, O, Hof, PR, et al. Metabolic costs and evolutionary implications of human brain development. Proceedings of the National Academy of Sciences. 2014;111:13010–13015.Google Scholar
186. Leigh, SR, Blomquist, GE. Life history. In Bearder, SK, Campbell, C, and MaKinnon, K, Panger, M, Bearder, SK, and Panger, M, editors. Primates in Perspective. New York: Oxford University Press. 2007; 396–407.
187. Deaner, RO, Barton, RA, Schaik, CP. van Primate brains and life histories: renewing the connection. In Kappeler, PM and Pereira, MA, editors. Primate Life Histories and Socioecology. Chicago: University of Chicago Press. 2003;233–265.
188. Sacher, GA, Staffeldt, EF. Relation of gestation time to brain weight for placental mammals: implications for the theory of vertebrate growth. American Naturalist. 1974;108:593–615.Google Scholar
189. Harvey, PH, Clutton-Brock, TH. Life history variation in primates. Evolution. 1985;39:559–581.Google Scholar
190. Smith, BH. Dental development as a measure of life history in primates. Evolution. 1989;43:683–688.Google Scholar
191. Smith, BH. Life history and the evolution of human maturation. Evolutionary Anthropology. 1992;1:134–142.Google Scholar
192. Dean, MC, Lucas, VS. Dental and skeletal growth in early fossil hominins. Annals of Human Biology. 2009;36:545–561.Google Scholar
193. Dart, RA. The infancy of Australopithecus. In The Robert Broom Commemorative Volume Special Publication of The Royal Society of South Africa, Cape Town; 142–153. 1948.
194. Bower, B. Hominid headway. Science News. 1987:408–409.
195. Smith, BH. Dental development in Australopithecus and early Homo. Nature. 1986;323:327–330.Google Scholar
196. Smith, TM, Tafforeau, P, Cabec, A Le, Bonnin, A, Houssaye, A, Pouech, J, et al. Dental ontogeny in pliocene and early pleistocene hominins. PLoS One. 2015;10:e0118118.Google Scholar
197. Schultz, AH. Eruption and decay of the permanent teeth in primates. American Journal of Physical Anthropology. 1935;19:489–581.Google Scholar
198. Anemone, RL, Mooney, MP, Siegel, MI. Longitudinal study of dental development in chimpanzees of known chronological age: implications for understanding the age at death of Plio-Pleistocene hominids. American Journal of Physical Anthropology. 1996;99:119–133.Google Scholar
199. Schultz, AH. Age Changes in Primates and their Modification in Man. Oxford: Pergamon Press; 1960.
200. Smith, BH. Dental development and the evolution of life history in Hominidae. American Journal of Physical Anthropology. 1991;86:157–174.Google Scholar
201. Harvey, PH, Read, AF, Promislow, DE. Life history variation in placental mammals: unifying the data with theory. In Harvey, PH and Partridge, L, editors. Oxford Surveys in Evolutionary Biology. 1989;6:15–31.Google Scholar
202. Robson, SL, Wood, B. Hominin life history: reconstruction and evolution. Journal of Anatomy. 2008;212:394–425.Google Scholar
203. Kelley, J, Schwartz, GT. Life-history inference in the early hominins Australopithecus and Paranthropus. International Journal of Primatology. 2012;33:1332–1363.Google Scholar
204. Smith, TM, Machanda, Z, Bernard, AB, Donovan, RM, Papakyrikos, AM, Muller, MN, et al. First molar eruption, weaning, and life history in living wild chimpanzees. Proceedings of the National Academy of Sciences. 2013;110:2787–2791.Google Scholar
205. Humphrey, LT. Weaning behaviour in human evolution. Seminars in Cell and Developmental Biology; 2010: 21: 453–461.Google Scholar
206. Macho, GA. Primate molar crown formation times and life history evolution revisited. American Journal of Primatology. 2001;55:189–201.Google Scholar
207. Kelley, J, Schwartz, GT. Dental development and life history in living African and Asian apes. Proceedings of the National Academy of Sciences. 2010;107:1035–1040.Google Scholar
208. Dean, MC. Tooth microstructure tracks the pace of human life-history evolution. Proceedings of the Royal Society of London B: Biological Sciences. 2006;273:2799–2808.Google Scholar
209. Hogg, RT, Walker, RS. Life‐History Correlates of Enamel Microstructure in Cebidae (Platyrrhini, Primates). The Anatomical Record. 2011;294:2193–2206.Google Scholar
210. Asper, H. von Uber die “Braune Retzinusgsche Parallelstreifung” im schmelz der menschlichen Zahne. Schweiz V Schr Zahnheilk. 1916;26:275–314.Google Scholar
211. Gysi, A. Metabolism in adult enamel. Dental Digest. 1931;37:661–668.Google Scholar
212. Mimura, F. The periodicity of growth lines seen in enamel. Kobyo-shi. 1939;13:454–455.Google Scholar
213. Bromage, TG. Enamel incremental periodicity in the pig-tailed macaque: a polychrome fluorescent labeling study of dental hard tissues. American Journal of Physical Anthropology. 1991;86:205–214.Google Scholar
214. Lacruz, RS, Hacia, JG, Bromage, TG, Boyde, A, Lei, Y, Xu, Y, et al. The circadian clock modulates enamel development. Journal of Biological Rhythms. 2012;27:237–245.Google Scholar
215. Dean, MC. Growth layers and incremental markings in hard tissues; a review of the literature and some preliminary observations about enamel structure in Paranthropus boisei. Journal of Human Evolution. 1987;16:157–172.Google Scholar
216. FitzGerald, CM. Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study. Journal of Human Evolution. 1998;35:371–386.Google Scholar
217. Reid, DJ, Dean, MC. Variation in modern human enamel formation times. Journal of Human Evolution. 2006;50:329–346.Google Scholar
218. Halberg, F. Biological rhythms. In Hedlund, LW, Franz, JM, and Kenny, AD, editors. Biological Rhythms and Endocrine Function. New York: Plenum Press. 1975; 1–41.
219. Appenzeller, O, Gunga, H-C, Qualls, C, Furlan, R, Porta, A, Lucas, S, et al. A hypothesis: autonomic rhythms are reflected in growth lines of teeth in humans and extinct archosaurs. Autonomic Neuroscience. 2005;117:115–159.Google Scholar
220. Bromage, T, Lacruz, R, Hogg, R, Goldman, H, McFarlin, S, Warshaw, J, et al. Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history. Calcified Tissue International. 2009;84:388–404.Google Scholar
221. Bromage, TG, Hogg, RT, Lacruz, RS, Hou, C. Primate enamel evinces long period biological timing and regulation of life history. Journal of Theoretical Biology. 2012;305:131–144.Google Scholar
222. Mann, AE. Some Paleodemographic Aspects of the South African Australopithecines. Dept. of Anthropology, University of Pennsylvania; 1975.
223. Bromage, TG, Dean, MC. Re-evaluation of the age at death of immature fossil hominids. Nature. 1985;317:525–527.Google Scholar
224. Beynon, A, Wood, B. Patterns and rates of enamel growth in the molar teeth of early hominids. Nature. 1987;326:493–496.Google Scholar
225. Beynon, AD, Dean, MC. Distinct dental development patterns in early fossil hominids. Nature. 1988;335:509–514.Google Scholar
226. Dean, C, Leakey, MG, Reid, D, Schrenk, F, Schwartz, GT, Stringer, C, et al. Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature. 2001;414:628–631.Google Scholar
227. Lacruz, RS, Rozzi, FR, Bromage, TG. Variation in enamel development of South African fossil hominids. Journal of Human Evolution. 2006;51:580–590.Google Scholar
228. Broom, R, Robinson, J. Eruption of the permanent teeth in the South African fossil ape-men. Nature. 1951;167:443.Google Scholar
229. Dean, M. The eruption pattern of the permanent incisors and first permanent molars in Australopithecus (Paranthropus) robustus. American Journal of Physical Anthropology. 1985;67:251–257.Google Scholar
230. Conroy, GC. Alleged synapomorphy of the M1/I1 eruption pattern in robust australopithecines and Homo: evidence from high‐resolution computed tomography. American Journal of Physical Anthropology. 1988;75:487–492.Google Scholar
231. Conroy, GC, Vannier, MW. Dental development in South African australopithecines. Part II: Dental stage assessment. American Journal of Physical Anthropology. 1991;86:137–156.Google Scholar
232. Conroy, GC, Vannier, MW. Dental development of the Taung skull from computerized tomography. Nature. 1987;329:625–627.Google Scholar
233. Mann, A, Lampl, M, Monge, J. Patterns of ontogeny in human evolution: evidence from dental development. American Journal of Physical Anthropology. 1990;33(S11):111–150.Google Scholar
234. Beynon, A, Dean, M. Hominid dental development. Nature. 1991;351:196.Google Scholar
235. Macho, GA, Wood, BA. The role of time and timing in hominid dental evolution. Evolutionary Anthropology. 1995;4:17–31.Google Scholar
236. Dean, M, Reid, D. Perikymata spacing and distribution on hominid anterior teeth. American Journal of Physical Anthropology. 2001;116:209–215.Google Scholar
237. Phillips‐Conroy, JE, Jolly, CJ. Dental eruption schedules of wild and captive baboons. American Journal of Primatology. 1988;15:17–29.Google Scholar
238. Thompson, JL, Krovitz, GE, Nelson, AJ. Patterns of Growth and Development in the genus Homo: Cambridge: Cambridge University Press; 2003.
239. Godfrey, LR, Samonds, KE, Jungers, WL, Sutherland, MR. Dental development and primate life histories. In Kappeler, PM and Pereira, ME, editors. Primate Life histories and Socioecology. Chicago: University of Chicago Press. 2003;177–203.
240. The, Montagu A. “Cerebral Rubicon”: brain size and the achievement of hominid status. American Anthropologist. 1961;63:377–378.Google Scholar
241. Collard, M, Wood, B. Defining the Genus Homo. In Henke, W, Rothe, H, and Tattersall, I, editors. Handbook of Paleoanthropology. Berlin Heidelberg: Springer. 2007; 1575–1610.
242. Kimbel, WH, Walter, RC, Johanson, DC, Reed, KE, Aronson, JL, Assefa, Z, et al. Late Pliocene Homo and Oldowan tools from the Hadar Formation (Kada Hadar Member), Ethiopia. Journal of Human Evolution. 1996;31:549–561.Google Scholar
243. Kimbel, WH, Johanson, DC, Rak, Y. Systematic assessment of a maxilla of Homo from Hadar, Ethiopia. American Journal of Physical Anthropology. 1997;103:235–262.Google Scholar
244. Villmoare, B, Kimbel, WH, Seyoum, C, Campisano, CJ, DiMaggio, EN, Rowan, J, et al. Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science. 2015;347:1352–1355.Google Scholar
245. Johanson, DC, Masao, FT, Eck, GG, White, TD, Walter, RC, Kimbel, WH, et al. New partial skeleton of Homo habilis from Olduvai Gorge, Tanzania. Nature. 1987;327:205–209.Google Scholar
246. Schrenk, F, Bromage, TG, Betzler, CG, Ring, U, Juwayeyi, YM. Oldest Homo and Pliocene biogeography of the Malawi rift. Nature. 1993;365:833–836.Google Scholar
247. Wood, B. Koobi Fora Research Project, Vol. 4. Oxford: Clarendon; 1991.
248. Blumenschine, RJ, Peters, CR, Masao, FT, Clarke, RJ, Deino, AL, Hay, RL, et al. Late Pliocene Homo and hominid land use from western Olduvai Gorge, Tanzania. Science. 2003;299:1217–1221.Google Scholar
249. Leakey, MG, Spoor, F, Dean, MC, Feibel, CS, Anton, SC, Kiarie, C, et al. New fossils from Koobi Fora in northern Kenya confirm taxonomic diversity in early Homo. Nature. 2012;488:201–204.
250. Beurton, PJ. Ernst Mayr through time on the biological species concept–a conceptual analysis. Theory in Biosciences. 2002;121:81–98.Google Scholar
251. Wood, B, Collard, M. The changing face of genus Homo. Evolutionary Anthropology. 1999;8:195–207.Google Scholar
252. Tobias, PV. The species Homo habilis: example of a premature discovery. Annales Zoologici Fennici. 1991;28:371–380.Google Scholar
253. Antón, SC. Natural history of Homo erectus. American Journal of Physical Anthropology. 2003;122(S37):126–170.Google Scholar
254. Brain, CK, Sillent, A. Evidence from the Swartkrans cave for the earliest use of fire. Nature. 1988;336:464–466.Google Scholar
255. Alperson-Afil, N, Goren-Inbar, N. Out of Africa and into Eurasia with controlled use of fire: evidence from Gesher Benot Ya'Aqov, Israel. Archaeology, Ethnology and Anthropology of Eurasia. 2006;28:63–78.Google Scholar
256. Berna, F, Goldberg, P, Horwitz, LK, Brink, J, Holt, S, Bamford, M, et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proceedings of the National Academy of Sciences. 2012;109:E1215–E1220.Google Scholar
257. Mayr, E, editor, Taxonomic categories in fossil hominids. Cold Spring Harbor Symposia on Quantitatve Biology. 1950;15:109–118.Google Scholar
258. Black, D. On a lower molar hominid tooth from the Chou Kou Tien deposit. Geological Survey of China; 1927.
259. Black, D. The brain cast of Sinanthropus–a review. Journal of Comparative Neurology. 1933;57:361–368.Google Scholar
260. Carter, K, Worthington, S. Morphologic and demographic predictors of third molar agenesis a systematic review and meta-analysis. Journal of Dent Research. 2015:0022034515581644.
261. Woo, J-K. Mandible of the Sinanthropus–type discovered at Lantien, Shensi–Sinanthropus lantianensis. Vertebrata PalAsiatica. 1964;1:1–17.Google Scholar
262. Frayer, DW, Wolpoff, MH, Thorne, AG, Smith, FH, Pope, GG. Theories of modern human origins: the paleontological test. American Anthropologist. 1993;95:14–50.Google Scholar
263. Crummett, TL. The Evolution of Shovel Shaping: Regional and Temporal Variations in Human Incisor Morphology. University of Michigan; 1994.
264. Crummett, T. The three dimensions of shovel-shaping. Aspects of Dental Biology: Palaeontology, Anthropology and Evolution International Institute for the Study of Man, Florence. 1995:305–313.
265. Blumberg, JE, Hylander, WL, Goepp, RA. Taurodontism: a biometric study. American Journal of Physical Anthropology. 1971;34:243–255.Google Scholar
266. Swisher, C, Rink, W, Antón, SC, Schwarcz, HP, Curtis, GH, Widiasmoro, AS. Latest Homo erectus of Java: potential contemporaneity with Homo sapiens in southeast Asia. Science. 1996;274:1870–1874.Google Scholar
267. Asfaw, B, Gilbert, WH, Beyene, Y, Hart, WK, Renne, PR, WoldeGabriel, G, et al. Remains of Homo erectus from Bouri, Middle Awash, Ethiopia. Nature. 2002;416:317–320.Google Scholar
268. Lordkipanidze, D, León, MSP de, Margvelashvili, A, Rak, Y, Rightmire, GP, Vekua, A, et al. A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science. 2013;342:326–331.Google Scholar
269. Rightmire, GP, Lordkipanidze, D, Vekua, A. Anatomical descriptions, comparative studies and evolutionary significance of the hominin skulls from Dmanisi, Republic of Georgia. Journal of Human Evolution. 2006;50:115–141.Google Scholar
270. Castro, JB De, Arsuaga, JL, Carbonell, E, Rosas, A, Martınez, I, Mosquera, M. A hominid from the Lower Pleistocene of Atapuerca, Spain: possible ancestor to Neandertals and modern humans. Science. 1997;276(5317):1392–1395.Google Scholar
271. Carbonell, E, Castro, JMB de, Parés, JM, Pérez-González, A, Cuenca-Bescós, G, Ollé, A, et al. The first hominin of Europe. Nature. 2008;452:465–469.Google Scholar
272. Castro, J Bermúdez de, Martinon‐Torres, M, Carbonell, E, Sarmiento, S, Rosas, A, Made, J Van der, et al. The Atapuerca sites and their contribution to the knowledge of human evolution in Europe. Evolutionary Anthropology. 2004;13:25–41.Google Scholar
273. Castro, JMB de, Rosas, A, Nicolás, E. Dental remains from Atapuerca-TD6 (Gran Dolina site, Burgos, Spain). Journal of Human Evolution. 1999;37:523–566.Google Scholar
274. Stringer, C. The status of Homo heidelbergensis (Schoetensack 1908). Evolutionary Anthropology. 2012;21:101–107.Google Scholar
275. Castro, JB. de Dental remains from Atapuerca/Ibeas (Spain) II. Morphology. Journal of Human Evolution. 1988;17:279–304.Google Scholar
276. Rightmire, GP. Human evolution in the Middle Pleistocene: the role of Homo heidelbergensis. Evolutionary Anthropology. 1998;6:218–227.Google Scholar
277. Wolpoff, MH. Cranial remains of middle Pleistocene European hominids. Journal of Human Evolution. 1980;9:339–358.Google Scholar
278. Arsuaga, J, Martínez, I, Arnold, L, Aranburu, A, Gracia-Téllez, A, Sharp, W, et al. Neandertal roots: cranial and chronological evidence from Sima de los Huesos. Science. 2014;344:1358–1363.Google Scholar
279. Green, RE, Krause, J, Briggs, AW, Maricic, T, Stenzel, U, Kircher, M, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–722.Google Scholar
280. Endicott, P, Ho, SY, Stringer, C. Using genetic evidence to evaluate four palaeoanthropological hypotheses for the timing of Neanderthal and modern human origins. Journal of Human Evolution. 2010;59:87–95.Google Scholar
281. Tattersall, I. The Last Neanderthal: The Rise, Success, and Mysterious Extinction of Our Closest Human Relatives. Boulder, CO: Westview Press; 1999.
282. Wolpoff, MH, Caspari, R. Race and Human Evolution. New York: Simon and Schuster; 1997.
283. Wolpoff, MH. The Krapina dental remains. American Journal of Physical Anthropology. 1979;50:67–113.Google Scholar
284. Bailey, SE. Dental morphological affinities among late Pleistocene and recent humans. Dental Anthropology. 2000;14:1–8.Google Scholar
285. Bailey, SE. A closer look at Neanderthal postcanine dental morphology: the mandibular dentition. The Anatomical Record. 2002;269:148–156.Google Scholar
286. Brace, CL, Hinton, RJ, Brown, T, Green, R, Harris, EF, Jacobson, A, et al. Oceanic tooth-size variation as a reflection of biological and cultural mixing [and comments and reply]. Current Anthropology. 1981;22:549–569.Google Scholar
287. Demes, B. Another look at an old face: biomechanics of the Neanderthal facial skeleton reconsidered. Journal of Human Evolution. 1987;16:297–303.Google Scholar
288. Clement, AF, Hillson, SW, Aiello, LC. Tooth wear, Neanderthal facial morphology and the anterior dental loading hypothesis. Journal of Human Evolution. 2012;62:367–376.Google Scholar
289. Antón, S. Mechanical and other perspectives on Neandertal craniofacial morphology. In: Integrative Paths to the Past: Palaeoanthropological Advances in Honor of F Clark Howell. Englewood Cliffs, NJ: Prentice Hall. 1994:677–695.
290. O'Connor, CF, Franciscus, RG, Holton, NE. Bite force production capability and efficiency in Neanderthals and modern humans. American Journal of Physical Anthropology. 2005;127:129–151.Google Scholar
291. Bailey, SE. A morphometric analysis of maxillary molar crowns of Middle-Late Pleistocene hominins. Journal of Human Evolution. 2004;47:183–198.Google Scholar
292. Gorjanovic-Kramberger, K. Die Kronen und Wurzeln der Mahlzähne des Homo primigenius und ihre genetische Bedeutung. 1907.
293. Xing, S, Martinón‐Torres, M, Castro, JM Bermúdez de, Wu, X, Liu, W. Hominin teeth from the early Late Pleistocene site of Xujiayao, Northern China. American Journal of Physical Anthropology. 2015;156:224–240.Google Scholar
294. Callaway, E. Neanderthals made some of Europe's oldest art. Nature. 2014;29:2.Google Scholar
295. Hublin, J-J, Spoor, F, Braun, M, Zonneveld, F, Condemi, S. A late Neanderthal associated with Upper Palaeolithic artefacts. Nature. 1996;381:224–226.Google Scholar
296. Benazzi, S, Douka, K, Fornai, C, Bauer, CC, Kullmer, O, Svoboda, J, et al. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature. 2011;479:525–528.Google Scholar
297. Zilhão, J. Neandertals and moderns mixed, and it matters. Evolutionary Anthropology. 2006;15(5):183–195.Google Scholar
298. McDougall, I, Brown, FH, Fleagle, JG. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature. 2005;433:733–736.Google Scholar
299. Bailey, SE, Hublin, JJ. What does it mean to be dentally “modern”? In Scott, JR and Irish, JD, editors. Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press. 2013; 222–248.
300. Reich, D, Green, RE, Kircher, M, Krause, J, Patterson, N, Durand, EY, et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010;468:1053–1060.
301. Brown, P, Sutikna, T, Morwood, MJ, Soejono, RP, Saptomo, EW, Due, RA. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature. 2004;431:1055–1061.Google Scholar
302. Roberts, RG, Westaway, KE, Zhao, J-x, Turney, CS, Bird, MI, Rink, WJ, et al. Geochronology of cave deposits at Liang Bua and of adjacent river terraces in the Wae Racang valley, western Flores, Indonesia: a synthesis of age estimates for the type locality of Homo floresiensis. Journal of Human Evolution. 2009;57:484–502.Google Scholar
303. Hershkovitz, I, Kornreich, L, Laron, Z. Comparative skeletal features between Homo floresiensis and patients with primary growth hormone insensitivity (Laron Syndrome). American Journal of Physical Anthropology. 2007;134:198–208.Google Scholar
304. Aiello, LC. Five years of Homo floresiensis. American Journal of Physical Anthropology. 2010;142:167–179.Google Scholar
305. Brown, P, Maeda, T. Liang Bua Homo floresiensis mandibles and mandibular teeth: a contribution to the comparative morphology of a new hominin species. Journal of Human Evolution. 2009;57:571–596.Google Scholar
306. Argue, D, Morwood, M, Sutikna, T, Saptomo, E. Homo floresiensis: a cladistic analysis. Journal of Human Evolution. 2009;57:623–639.Google Scholar
307. Morwood, MJ, Jungers, WL. Conclusions: implications of the Liang Bua excavations for hominin evolution and biogeography. Journal of Human Evolution. 2009;57:640–648.Google Scholar
308. Baab, KL, McNulty, KP, Harvati, K. Homo floresiensis contextualized: a geometric morphometric comparative analysis of fossil and pathological human samples. PLoS One. 2013;8:e69119.Google Scholar
309. Wolpoff, MH, Wu, X, Thorne, AG. Modern Homo sapiens origins: a general theory of hominid evolution involving the fossil evidence from East Asia. In Smith, FH and Spencer, F, editors. The Origins of Modern Humans: A World Survey of the Fossil Evidence. New York: Alan R. Liss. 1984; 411–483.
310. Wolpoff, MH. Paleoanthropology. Boston: McGraw-Hill; 1999.
311. Wolpoff, MH, Hawks, J, Multiregional, Caspari R., not multiple origins. American Journal of Physical Anthropology. 2000;112:129–136.Google Scholar
312. Cann, RL, Stoneking, M, Wilson, A. Mitochondrial DNA and human evolution. Nature. 1987;325:31–36.Google Scholar
313. Cann, HM, Toma, C De, Cazes, L, Legrand, M-F, Morel, V, Piouffre, L, et al. A human genome diversity cell line panel. Science. 2002;296:261.Google Scholar
314. Vigilant, L, Stoneking, M, Harpending, H, Hawkes, K, Wilson, AC. Africa populations and the evolution of human mitochondrial DNA. Science. 1991;253:1503–1507.Google Scholar
315. Liu, H, Prugnolle, F, Manica, A, Balloux, F. A geographically explicit genetic model of worldwide human-settlement history. The American Journal of Human Genetics. 2006;79:230–237.Google Scholar
316. Weaver, TD, Roseman, CC, Stringer, CB. Close correspondence between quantitative- and molecular-genetic divergence times for Neandertals and modern humans. Proceedings of the National Academy of Sciences. 2008;105:4645–4649.Google Scholar
317. Reyes-Centeno, H, Ghirotto, S, Détroit, F, Grimaud-Hervé, D, Barbujani, G, Harvati, K. Genomic and cranial phenotype data support multiple modern human dispersals from Africa and a southern route into Asia. Proceedings of the National Academy of Sciences. 2014;111:7248–7253.Google Scholar
318. Relethford, J. Genetic evidence and the modern human origins debate. Heredity. 2008;100:555–563.Google Scholar
319. Ramachandran, S, Deshpande, O, Roseman, CC, Rosenberg, NA, Feldman, MW, Cavalli-Sforza, LL. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proceedings of the National Academy of Sciences. 2005;102:15942–15947.Google Scholar
320. Templeton, A. Out of Africa again and again. Nature. 2002;416:45–51.Google Scholar
321. Eriksson, A, Manica, A. Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proceedings of the National Academy of Sciences. 2012;109:13956–13960.Google Scholar
322. Prüfer, K, Racimo, F, Patterson, N, Jay, F, Sankararaman, S, Sawyer, S, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014;505:43–49.Google Scholar
323. Meyer, M, Fu, Q, Aximu-Petri, A, Glocke, I, Nickel, B, Arsuaga, J-L, et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature. 2014;505:403–406.Google Scholar
324. Organ, C, Nunn, CL, Machanda, Z, Wrangham, RW. Phylogenetic rate shifts in feeding time during the evolution of Homo. Proceedings of the National Academy of Sciences. 2011;108:14555–14559.Google Scholar
325. Ungar, PS. Dental evidence for the reconstruction of diet in African early Homo. Current Anthropology. 2012;53(S6):S318–S329.Google Scholar
326. Brace, CL, Rosenberg, KR, Hunt, KD. Gradual change in human tooth size in the late Pleistocene and post-Pleistocene. Evolution. 1987;41:705–720.Google Scholar
327. Pobiner, B. Evidence for meat-eating by early humans. Nature Education Knowledge. 2013;4(6):1.Google Scholar
328. Domínguez-Rodrigo, M, Pickering, TR, Semaw, S, Rogers, MJ. Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: implications for the function of the world's oldest stone tools. Journal of Human Evolution. 2005;48:109–121.Google Scholar
329. Potts, R, Shipman, P. Cutmarks made by stone tools on bones from Olduvai Gorge, Tanzania. Nature. 1981;291:577–580.Google Scholar
330. Shipman, P, Fisher, DC, Rose, JJ. Mastodon butchery: microscopic evidence of carcass processing and bone tool use. Paleobiology. 1984;10:358–365.Google Scholar
331. Shipman, P. Studies of hominid–Faunal interactions at Olduvai Borge. Journal of Human Evolution. 1986;15:691–706.Google Scholar
332. Ferraro, JV, Plummer, TW, Pobiner, BL, Oliver, JS, Bishop, LC, Braun, DR, et al. Earliest archaeological evidence of persistent hominin carnivory. PLoS One. 2013; e62174.
333. Joordens, JC, d'Errico, F, Wesselingh, FP, Munro, S, Vos, J De, Wallinga, J, et al. Homo erectus at Trinil on Java used shells for tool production and engraving. Nature. 2015;518:228–231.Google Scholar
334. Skinner, MM, Alemseged, Z, Gaunitz, C, Hublin, J-J. Enamel thickness trends in Plio-Pleistocene hominin mandibular molars. Journal of Human Evolution. 2015; 85: 35–45.Google Scholar
335. Pickering, TR, Domínguez-Rodrigo, M, Heaton, JL, Yravedra, J, Barba, R, Bunn, HT, et al. Taphonomy of ungulate ribs and the consumption of meat and bone by 1.2-million-year-old hominins at Olduvai Gorge, Tanzania. Journal of Archaeological Science. 2013;40:1295–1309.Google Scholar
336. Tobias, PV. Olduvai Gorge volume 4: The Skulls, Endocasts and Teeth of Homo Habilis. Cambridge: Cambridge University Press; 1991.
337. Ungar, P. Dental topography and diets of Australopithecus afarensis and early Homo. Journal of Human Evolution. 2004;46:605–622.Google Scholar
338. Ungar, PS, Sponheimer, M. The diets of early hominins. Science. 2011;334:190–193.Google Scholar
339. Ungar, PS, Grine, FE, Teaford, MF. Diet in early Homo: a review of the evidence and a new model of adaptive versatility. Annual Review of Anthropology. 2006;35:209–228.Google Scholar
340. Potts, R. Environmental and behavioral evidence pertaining to the evolution of early Homo. Current Anthropology. 2012;53(S6):S299–S317.Google Scholar
341. Spoor, F, Gunz, P, Neubauer, S, Stelzer, S, Scott, N, Kwekason, A, et al. Reconstructed Homo habilis type OH 7 suggests deep-rooted species diversity in early Homo. Nature. 2015;519:83–86.Google Scholar
342. McHenry, HM, Coffing, K. Australopithecus to Homo: transformations in body and mind. Annual Review of Anthropology. 2000:29:125–146.Google Scholar
343. Smith, TM, Olejniczak, AJ, Zermeno, JP, Tafforeau, P, Skinner, MM, Hoffmann, A, et al. Variation in enamel thickness within the genus Homo. Journal of Human Evolution. 2012;62:395–411.Google Scholar
344. Eng, CM, Lieberman, DE, Zink, KD, Peters, MA. Bite force and occlusal stress production in hominin evolution. American Journal of Physical Anthropology. 2013;151:544–557.Google Scholar
345. Stedman, HH, Kozyak, BW, Nelson, A, Thesier, DM, Su, LT, Low, DW, et al. Myosin gene mutation correlates with anatomical changes in the human lineage. Nature. 2004;428:415–418.Google Scholar
346. Darwin, C. On the Origin of Species by Means of Natural Selection. London: Murray. 1859.
347. Lahti, DC, Johnson, NA, Ajie, BC, Otto, SP, Hendry, AP, Blumstein, DT, et al. Relaxed selection in the wild. Trends in Ecology and Evolution. 2009;24:487–496.Google Scholar
348. Brace, CL. The probable mutation effect. American Naturalist. 1964:98: 453–455.Google Scholar
349. Kieser, JA. Human Adult Odontometrics: The Study of Variation in Adult Tooth Size. Cambridge: Cambridge University Press; 1990.
350. McKee, JK. A genetic model of dental reduction through the probable mutation effect. American Journal of Physical Anthropology. 1984;65:231–241.Google Scholar
351. Workman, MS, Leamy, LJ, Routman, EJ, Cheverud, JM. Analysis of quantitative trait locus effects on the size and shape of mandibular molars in mice. Genetics. 2002;160:1573–1586.Google Scholar
352. Polychronis, G, Halazonetis, DJ. Shape covariation between the craniofacial complex and first molars in humans. Journal of Anatomy. 2014;225:220–231.Google Scholar
353. Wolff, J. Das gesetz der transformation der knochen. DMW-Deutsche Medizinische Wochenschrift. 1892;19:1222–1224.Google Scholar
354. Corruccini, RS, Beecher, RM. Occlusal variation related to soft diet in a nonhuman primate. Science. 1982;218:74–76.Google Scholar
355. Calcagno, JM, Gibson, KR. Human dental reduction: natural selection or the probable mutation effect. American Journal of Physical Anthropology. 1988;77:505–517.Google Scholar
356. Walker, A, Leakey, RE. The Nariokotome Homo Erectus. Skeleton: Harvard University Press; 1993.
357. Lordkipanidze, D, Vekua, A, Ferring, R, Rightmire, GP, Agusti, J, Kiladze, G, et al. Anthropology: the earliest toothless hominin skull. Nature. 2005;434:717–718.Google Scholar
358. Castro, JMB de, Nicolas, ME. Posterior dental size reduction in hominids: the Atapuerca evidence. American Journal of Physical Anthropology. 1995;96:335–356.Google Scholar
359. Pérez‐Pérez, A, Castro, J Bermúdez de, Arsuaga, JL. Nonocclusal dental microwear analysis of 300,000‐year‐old Homo heilderbergensis teeth from Sima de los Huesos (Sierra de Atapuerca, Spain). American Journal of Physical Anthropology. 1999;108:433–457.Google Scholar
360. Jernvall, J, Jung, HS. Genotype, phenotype, and developmental biology of molar tooth characters. American Journal of Physical Anthropology. 2000;113(S31):171–190.Google Scholar
361. Hunter, JP, Guatelli-Steinberg, D, Weston, TC, Durner, R, Betsinger, TK. Model of tooth morphogenesis predicts carabelli cusp expression, size, and symmetry in humans. PLoS One. 2010;5(7):e11844.Google Scholar
362. Moormann, SM, Guatelli-Steinberg, D, Hunter, JP. Metmerism, morphogenesis and the expression of Carabelli and other dental traits in humans. American Journal of Physical Anthropology. 2012;150:400–408.Google Scholar
363. Gómez-Robles, A, Castro, JMB de, Martinón-Torres, M, Prado-Simón, L, Arsuaga, JL. A geometric morphometric analysis of hominin upper second and third molars, with particular emphasis on European Pleistocene populations. Journal of Human Evolution. 2012;63:512–526.Google Scholar
364. Dirks, W, Bowman, JE. Life history theory and dental development in four species of catarrhine primates. Journal of Human Evolution. 2007;53:309–320.Google Scholar
365. Hawkes, K, O'Connell, JF, Jones, NB, Alvarez, H, Charnov, EL. Grandmothering, menopause, and the evolution of human life histories. Proceedings of the National Academy of Sciences. 1998;95:1336–1339.Google Scholar
366. Burkart, JM, Hrdy, SB, Schaik, CP. van Cooperative breeding and human cognitive evolution. Evolutionary Anthropology. 2009;18:175–186.Google Scholar
367. Burkart, J, Allon, O, Amici, F, Fichtel, C, Finkenwirth, C, Heschl, A, et al. The evolutionary origin of human hyper-cooperation. Nature Communications. 2014;5.
368. Dean, MC. Retrieving chronological age from dental remains of early fossil hominins to reconstruct human growth in the past. Philosophical Transactions of the Royal Society B. 2010;365:3397–3410.Google Scholar
369. Dean, MC, Liversidge, HM. Age estimation in fossil hominins: comparing dental development in early Homo with modern humans. Annals of Human Biology. 2015;42:413–427.Google Scholar
370. Caspari, R, Lee, S-H. Older age becomes common late in human evolution. Proceedings of the National Academy of Sciences U S A. 2004;101:10895–10900.Google Scholar
371. Miles, A. The dentition in the assessment of individual age in skeletal material. In Dental Anthropology: Volume V: Society for the Study of Human Biology. Oxford: Pergamon Press. 1963; 191–209.
372. Lacruz, RS, Dean, MC, Ramirez‐Rozzi, F, Bromage, TG. Megadontia, striae periodicity and patterns of enamel secretion in Plio‐Pleistocene fossil hominins. Journal of Anatomy. 2008;213:148–158.Google Scholar
373. Smith, BH, Crummett, TL, Brandt, KL. Ages of eruption of primate teeth: a compendium for aging individuals and comparing life histories. American Journal of Physical Anthropology. 1994;37(S19):177–231.Google Scholar
374. Dean, MC, Smith, BH. Growth and Development of the Nariokotome Youth, KNM-WT 15000. In Grine, F, Fleagle, J, Leakey, R, editors.The First Humans – Origin and Early Evolution of the Genus Homo. Vertebrate Paleobiology and Paleoanthropology. Netherlands: Springer. 2009; 101–120.
375. Nissen, HW, Riesen, AH. The eruption of the permanent dentition of chimpanzee. American Journal of Physical Anthropology. 1964;22(3):285–294.Google Scholar
376. Tanner, JM. Growth at Adolescence. Springfield: Thomas; 1962.
377. Castro, JMB de, Martinón-Torres, M, Prado, L, Gómez-Robles, A, Rosell, J, López-Polín, L, et al. New immature hominin fossil from European Lower Pleistocene shows the earliest evidence of a modern human dental development pattern. Proceedings of the National Academy of Sciences. 2010;107:11739–11744.Google Scholar
378. Hrdy, SB. Evolutionary context of human development: the cooperative breeding model. In Hrdy, SB, editor. Family Relationships: An Evolutionary Perspective. New York: Oxford University Press. 2007; 39–68.
379. Piperata, BA. Variation in maternal strategies during lactation: the role of the biosocial context. American Journal of Human Biology. 2009;21:817–827.Google Scholar
380. Valeggia, C, Ellison, PT. Lactational amenorrhoea in well-nourished Toba women of Formosa, Argentina. Journal of Biosocial Science. 2004;36:573–595.Google Scholar
381. Piperata, BA, Guatelli-Steinberg, D. Offsetting the costs of reproduction: the role of social support in human evolution. American Journal of Physical Anthropology. 2011;144(S52):239.Google Scholar
382. Gurven, M, Walker, R. Energetic demand of multiple dependents and the evolution of slow human growth. Proceedings of the Royal Society of London B: Biological Sciences. 2006;273:835–841.Google Scholar
383. Hamilton, WD. The moulding of senescence by natural selection. Journal of Theoretical Biology. 1966;12:12–45.Google Scholar
384. Langen, TA. Prolonged offspring dependence and cooperative breeding in birds. Behavioral Ecology. 2000;11:367–377.Google Scholar
385. Aiello, LC, Wells, JC. Energetics and the evolution of the genus Homo. Annual Review of Anthropology. 2002:323–338.
386. Isler, K, Schaik, CP. van How our ancestors broke through the gray ceiling. Current Anthropology. 2012;53(S6):S453–S465.Google Scholar
387. Cuozzo, FP, Sauther, ML. Severe wear and tooth loss in wild ring-tailed lemurs (Lemur catta): a function of feeding ecology, dental structure, and individual life history. Journal of Human Evolution. 2006;51:490–505.Google Scholar
388. Krings, M, Stone, A, Schmitz, RW, Krainitzki, H, Stoneking, M, Pääbo, S. Neandertal DNA sequences and the origin of modern humans. Cell. 1997;90:19–30.Google Scholar
389. Higham, T, Douka, K, Wood, R, Ramsey, CB, Brock, F, Basell, L, et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature. 2014;512:306–309.Google Scholar
390. Gómez-Robles, A, Martinón-Torres, M, Castro, JB De, Margvelashvili, A, Bastir, M, Arsuaga, JL, et al. A geometric morphometric analysis of hominin upper first molar shape. Journal of Human Evolution. 2007;53:272–285.Google Scholar
391. Martinón-Torres, M, Castro, JB De, Gómez-Robles, A, Arsuaga, JL, Carbonell, E, Lordkipanidze, D, et al. Dental evidence on the hominin dispersals during the Pleistocene. Proceedings of the National Academy of Sciences. 2007;104:13279–13282.Google Scholar
392. Bocquet-Appel, J-P, Degioanni, A. Neanderthal demographic estimates. Current Anthropology. 2013;54(S8):S202–S213.Google Scholar
393. Weaver, TD, Roseman, CC, Stringer, CB. Were neandertal and modern human cranial differences produced by natural selection or genetic drift? Journal of Human Evolution. 2007;53:135–145.Google Scholar
394. Stringer, C, Humphrey, L, Compton, T. Cladistic analysis of dental traits in recent humans using a fossil outgroup. Journal of Human Evolution. 1997;32:389–402.Google Scholar
395. Brace, CL. Refocusing on the Neanderthal problem. American Anthropologist. 1962;64: 729–741.Google Scholar
396. Brace, CL, Nelson, H, Korn, N. Atlas of Fossil Man. New York: Holt, Rinehart and Winston; 1971.
397. Xing, S, Martinón-Torres, M, Castro, JMB de, Zhang, Y, Fan, X, Zheng, L, et al. Middle Pleistocene hominin teeth from Longtan Cave, Hexian, China. PLoS One. 2014;9(12):e114265.Google Scholar
398. Gómez-Robles, A, Castro, JMB de, Arsuaga, J-L, Carbonell, E, Polly, PD. No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans. Proceedings of the National Academy of Sciences. 2013;110:18196–18201.Google Scholar
399. Shea, JJ. Spear points from the Middle Paleolithic of the Levant. Journal of Field Archaeology. 1988;15:441–450.Google Scholar
400. Jacob-Friesen, K. Eiszeitliche elefantenjäger in der Lüneburger Heide. Jahrbuch des Römisch-Germanischen Zentralmuseums Mainz. 1956;3:1–22.Google Scholar
401. Boëda, E, Geneste, J-M, Griggo, C, Mercier, N, Muhesen, S, Reyss, J, et al. A Levallois point embedded in the vertebra of a wild ass (Equus africanus): hafting, projectiles and Mousterian hunting weapons. Antiquity. 1999;73:394–402.Google Scholar
402. Richards, MP, Pettitt, PB, Trinkaus, E, Smith, FH, Paunović, M, Karavanić, I. Neanderthal diet at Vindija and Neanderthal predation: the evidence from stable isotopes. Proceedings of the National Academy of Sciences. 2000;97: 7663–7666.Google Scholar
403. Richards, MP, Trinkaus, E. Isotopic evidence for the diets of European Neanderthals and early modern humans. Proceedings of the National Academy of Sciences. 2009;106:16034–16039.Google Scholar
404. Bocherens, H, Drucker, DG, Billiou, D, Patou-Mathis, M, Vandermeersch, B. Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: review and use of a multi-source mixing model. Journal of Human Evolution. 2005;49:71–87.Google Scholar
405. O'Connell, TC, Hedges, RE. Investigations into the effect of diet on modern human hair isotopic values. American Journal of Physical Anthropology. 1999;108:409–425.Google Scholar
406. Bocherens, H. Neanderthal dietary habits: review of the isotopic evidence. In Hublin, J-J and Richards, MP, editors. The Evolution of Hominin Diets. Dordrecht: Springer. 2009; 241–250.
407. Stiner, MC, Munro, ND. Approaches to prehistoric diet breadth, demography, and prey ranking systems in time and space. Journal of Archaeological Method and Theory. 2002;9:181–214.Google Scholar
408. Kuhn, S, Stiner, M. What's a Mother to Do? Current Anthropology. 2006;47:953–981.
409. Hardy, BL, Moncel, M-H. Neanderthal use of fish, mammals, birds, starchy plants and wood 125–250,000 years ago. PLoS One. 2011;6(8):e23768.Google Scholar
410. Blasco, R, Peris, JF. Middle Pleistocene bird consumption at level XI of Bolomor cave (Valencia, Spain). Journal of Archaeological Science. 2009;36:2213–2223.Google Scholar
411. Henry, AG, Brooks, AS, Piperno, DR. Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proceedings of the National Academy of Sciences. 2011;108:486–491.Google Scholar
412. Hardy, K, Buckley, S, Collins, MJ, Estalrrich, A, Brothwell, D, Copeland, L, et al. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften. 2012;99:617–626.Google Scholar
413. Newton, PN, Nishida, T. Possible buccal administration of herbal drugs by wild chimpanzees, Pan troglodytes. Animal Behaviour. 1990;39:798–801.Google Scholar
414. Fiorenza, L, Benazzi, S, Tausch, J, Kullmer, O, Bromage, TG, Schrenk, F. Molar macrowear reveals Neanderthal eco-geographic dietary variation. PLoS One. 2011;6(3):e14769.Google Scholar
415. Zaatari, S El, Grine, FE, Ungar, PS, Hublin, J-J. Ecogeographic variation in Neandertal dietary habits: evidence from occlusal molar microwear texture analysis. Journal of Human Evolution. 2011;61:411–424.Google Scholar
416. Bar‐Yosef, O. Eat what is there: Hunting and gathering in the world of Neanderthals and their neighbours. International Journal of Osteoarchaeology. 2004;14:333–342.Google Scholar
417. Ungar, PS, Fennell, KJ, Gordon, K, Trinkaus, E. Neandertal incisor beveling. Journal of Human Evolution. 1997;32:407–421.Google Scholar
418. Molnar, S. Tooth wear and culture: a survey of tooth functions among some prehistoric populations. Current Anthropology. 1972; 13:511–526.Google Scholar
419. Heim, J-L. Les Hommes Fossiles de la Ferrassie. 1. Le Gisement, Les Squelettes Adultes (Crâne et Squelette du Tronc). Masson; 1976.
420. Trinkaus, E. The Shanidar Neandertals. New York: Academic Press; 1983.
421. Fox, CL, Frayer, DW. Non‐dietary Marks in the Anterior Dentition of the Krapina Neanderthals. International Journal of Osteoarchaeology. 1997;7:133–149.Google Scholar
422. Krueger, K, Ungar, P. Incisor microwear textures of five bioarcheological groups. International Journal of Osteoarchaeology. 2010;20:549–560.Google Scholar
423. Krueger, KL. Reconstructing diet and behavior in bioarchaeological groups using incisor microwear texture analysis. Journal of Archaeological Science: Reports. 2015;1:29–37.Google Scholar
424. Krueger, KL, Ungar, PS, Guatelli-Steinberg, D, Hublin, JJ, , A. P-P, Trinkaus, E. Anterior dental microwear textures show environment-driven variability in Neandertal beahvior (in review). Journal of Human Evolution.
425. Lumley, M-A. de L'Homme de l'Hortus. Etude Quaternary. 1973;2:311–550.Google Scholar
426. Brace, CL. Egg on the face, f in the mouth, and the overbite. American Anthropologist. 1986; 88:695–697.Google Scholar
427. Lozano-Ruiz, M, Castro, JB De, Martinón-Torres, M, Sarmiento, S. Cutmarks on fossil human anterior teeth of the Sima de los Huesos site (Atapuerca, Spain). Journal of Archaeological Science. 2004;31:1127–1135.Google Scholar
428. Lozano, M, Castro, JMB de, Carbonell, E, Arsuaga, JL. Non-masticatory uses of anterior teeth of Sima de los Huesos individuals (Sierra de Atapuerca, Spain). Journal of Human Evolution. 2008;55:713–728.Google Scholar
429. Lozano, M, Mosquera, M, Castro, JMB de, Arsuaga, JL, Carbonell, E. Right handedness of Homo heidelbergensis from Sima de los Huesos (Atapuerca, Spain) 500,000 years ago. Evolution and Human Behavior. 2009;30:369–376.Google Scholar
430. Frayer, DW, Lozano, M, Castro, JM Bermúdez de, Carbonell, E, Arsuaga, JL, Radovčić, J, et al. More than 500,000 years of right-handedness in Europe. Laterality: asymmetries of body. Brain and Cognition. 2012;17:51–69.Google Scholar
431. Benítez-Burraco, A, Longa, VM. Right-handedness, lateralization and language in Neanderthals: a comment on Frayer et al. (2010). Journal of Anthropological Science. 2012;90:187–192.Google Scholar
432. D'Anastasio, R, Wroe, S, Tuniz, C, Mancini, L, Cesana, DT, Dreossi, D, et al. Micro-biomechanics of the Kebara 2 hyoid and its implications for speech in Neanderthals. PLoS One. 2013: e82261.
433. Volpato, V, Macchiarelli, R, Guatelli-Steinberg, D., Fiore, I, Bondioli, L., Frayer, D W. Hand to mouth in a Neandertal: right-handedness in Regourdou 1. PloS One. 2013;7(8): e43949.Google Scholar
434. Estalrrich, A, Rosas, A. Handedness in Neandertals from the El Sidrón (Asturias, Spain): evidence from instrumental striations with ontogenetic inferences. PLoS One. 2013;8(5):e62797.Google Scholar
435. Froehl, A, Churchill, S. Energetic competition between Neandertals and anatomically modern humans. PaleoAnthropology. 2009;96:116.Google Scholar
436. Goodman, AH, Rose, JC. Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. American Journal of Physical Anthropology. 1990;33(S11):59–110.Google Scholar
437. Barrett, CK, Guatelli-Steinberg, D, Sciulli, PW. Revisiting dental fluctuating asymmetry in neandertals and modern humans. American Journal of Physical Anthropology. 2012;149:193–204.Google Scholar
438. Goodman, AH, Martinez, C, Chavez, A. Nutritional supplementation and the development of linear enamel hypoplasias in children from Tezonteopan, Mexico. The American Journal of Clinical Nutrition. 1991;53:773–781.Google Scholar
439. Guatelli-Steinberg, D, Benderlioglu, Z. Brief communication: Linear enamel hypoplasia and the shift from irregular to regular provisioning in Cayo Santiago rhesus monkeys (Macaca mulatta). American Journal of Physical Anthropology. 2006;131:416–419.Google Scholar
440. Smith, TM, Tafforeau, P, Reid, DJ, Pouech, J, Lazzari, V, Zermeno, JP, et al. Dental evidence for ontogenetic differences between modern humans and Neanderthals. Proceedings of the National Academy of Sciences. 2010;107:20923–20928.Google Scholar
441. Hillson, S, Bond, S. Relationship of enamel hypoplasia to the pattern of tooth crown growth: A discussion. American Journal of Physical Anthropology. 1997;104:89–103.Google Scholar
442. Guatelli-Steinberg, D, Larsen, CS, Hutchinson, DL. Prevalence and the duration of linear enamel hypoplasia: a comparative study of Neandertals and Inuit foragers. Journal of Human Evolution. 2004;47:65–84.Google Scholar
443. León, MS Ponce de, Golovanova, L, Doronichev, V, Romanova, G, Akazawa, T, Kondo, O, et al. Neanderthal brain size at birth provides insights into the evolution of human life history. Proceedings of the National Academy of Sciences. 2008;105(37):13764–13768.Google Scholar
444. Rozzi, FV Ramirez, Bermúdez de Castro JM. Surprisingly rapid growth in Neanderthals. Nature. 2004;428:936–939.Google Scholar
445. Guatelli-Steinberg, D, Reid, DJ, Bishop, TA, Larsen, CS. Anterior tooth growth periods in Neandertals were comparable to those of modern humans. Proceedings of the National Academy of Sciences. 2005;102:14197–14202.Google Scholar
446. Macchiarelli, R, Bondioli, L, Debenath, A, Mazurier, A, Tournepiche, J-F, Birch, W, et al. How Neanderthal molar teeth grew. Nature. 2006;444:748–751.Google Scholar
447. Smith, TM, Toussaint, M, Reid, DJ, Olejniczak, AJ, Hublin, J-J. Rapid dental development in a middle Paleolithic Belgian Neanderthal. Proceedings of the National Academy of Sciences. 2007;104:20220–20225.Google Scholar
448. Smith, TM, Harvati, K, Olejniczak, AJ, Reid, DJ, Hublin J-J, Panagopoulou E. Brief communication: dental development and enamel thickness in the Lakonis Neanderthal molar. American Journal of Physical Anthropology. 2009;138:112–118.Google Scholar
449. Smith, TM, Tafforeau, P, Reid, DJ, Pouech, J, Lazzari, V, Zermeno, JP, et al. Dental evidence for ontogenetic differences between modern humans and Neanderthals. Proceedings of the National Academy of Sciences U S A. 2010;107:20923–20928.Google Scholar
450. Tompkins, RL. Relative dental development of Upper Pleistocene hominids compared to human population variation. American Journal of Physical Anthropology. 1996;99:103–118.Google Scholar
451. Shackelford, LL, Harris, AE Stinespring, Konigsberg, LW. Estimating the distribution of probable age-at-death from dental remains of immature human fossils. American Journal of Physical Anthropology. 2012;147:227–253.Google Scholar
452. Thompson, JL, Nelson, AJ. The place of Neandertals in the evolution of hominid patterns of growth and development. Journal of Human Evolution. 2000;38:475–495.Google Scholar
453. Martín-González, JA, Mateos, A, Goikoetxea, I, Leonard, WR, Rodríguez, J. Differences between Neandertal and modern human infant and child growth models. Journal of Human Evolution. 2012;63:140–149.Google Scholar
454. Trinkaus, E. Late Pleistocene adult mortality patterns and modern human establishment. Proceedings of the National Academy of Sciences. 2011;108:1267–1271.Google Scholar
455. Hutchinson, Dale L., Larsen, Clark Spencer, Choi, Inui. Stressed to the max? Physiological perturbation in the Krapina Neandertals. Current Anthropology. 1997;38:904–914.Google Scholar
456. Lavelle, C, Moore, W. The incidence of agenesis and polygenesis in the primate dentition. American Journal of Physical Anthropology. 1973;38:671–679.Google Scholar
457. Weaver, TD, Roseman, CC. New developments in the genetic evidence for modern human origins. Evolutionary Anthropology. 2008;17:69–90.Google Scholar
458. Lahr, MM, Foley, R. Multiple dispersals and modern human origins. Evolutionary Anthropology. 1994;3:48–60.Google Scholar
459. Reyes-Centeno, H, Hubbe, M, Hanihara, T, Stringer, C, Harvati, K. Testing modern human out-of-Africa dispersal models and implications for modern human origins. Journal of Human Evolution. 2015;87:95–106.Google Scholar
460. Rasmussen, M, Guo, X, Wang, Y, Lohmueller, KE, Rasmussen, S, Albrechtsen, A, et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science. 2011;334:94–98.Google Scholar
461. Hubbard, AR, Guatelli‐Steinberg, D, Irish, JD. Do nuclear DNA and dental nonmetric data produce similar reconstructions of regional population history? An example from modern coastal Kenya. American Journal of Physical Anthropology. 2015;157:295–304.Google Scholar
462. Turner, CG. Pleistocene, Late and Holocene population history of East Asia based on dental variation. American Journal of Physical Anthropology. 1987;73:305–321.Google Scholar
463. Turner, CG. The dental bridge between Australia and Asia: following Macintosh into the East Asian hearth of humanity. Archaeology in Oceania. 1992;27:143–152.Google Scholar
464. Irish, JD. Ancestral dental traits in recent Sub-Saharan Africans and the origins of modern humans. Journal of Human Evolution. 1998;34:81–98.Google Scholar
465. Liu, W, Jin, C-Z, Zhang, Y-Q, Cai, Y-J, Xing, S, Wu, X-J, et al. Human remains from Zhirendong, South China, and modern human emergence in East Asia. Proceedings of the National Academy of Sciences. 2010;107:19201–19206.Google Scholar
466. Bae, CJ, Wang, W, Zhao, J, Huang, S, Tian, F, Shen, G. Modern human teeth from Late Pleistocene Luna Cave (Guangxi, China). Quaternary International. 2014;354:169–83.Google Scholar
467. Shen, G, Wu, X, Wang, Q, Tu, H, Feng, Y-x, Zhao, J-x. Mass spectrometric U-series dating of Huanglong Cave in Hubei Province, central China: evidence for early presence of modern humans in eastern Asia. Journal of Human Evolution. 2013;65:162–167.Google Scholar
468. Liu, W. The dental continuity of humans in China from Pleistocene to Holocene, and the origins of Mongoloids. Proceedings of the 30th International Geological Congress. 1997;21:24–32.Google Scholar
469. Hrdlička, A. Shovel‐shaped teeth. American Journal of Physical Anthropology. 1920;3:429–465.Google Scholar
470. Smith, TM, Tafforeau, P, Reid, DJ, Grün, R, Eggins, S, Boutakiout, M, et al. Earliest evidence of modern human life history in North African early Homo sapiens. Proceedings of the National Academy of Sciences. 2007;104:6128–6133.Google Scholar
471. Hublin, J-J. Northwestern African Middle Pleistocene hominids and their bearing on the emergence of Homo sapiens. Human Roots. 2001:99–121.
472. Hublin, J-J. Recent human evolution in northwestern Africa. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 1992;337:185–191.Google Scholar
473. Trinkaus, E, Athreya, S, Churchill, S, Demeter, F, Henneberg, M, Kondo, O, et al. Modern human versus Neandertal evolutionary distinctiveness. Current Anthropology. 2006;47:597–620.Google Scholar
474. Guatelli-Steinberg, D, Reid, DJ. Brief communication: the distribution of perikymata on Qafzeh anterior teeth. American Journal of Physical Anthropology. 2010;141:152–157.Google Scholar
475. Macchiarelli, R, Bondioli, L. Post-Pleistocene reductions in human dental structure: a reappraisal in terms of increasing population density. Human Evolution. 1986;1:405–417.Google Scholar
476. y'Edynak, G. Culture, diet, and dental reduction in Mesolithic forager-fishers of Yugoslavia. Current Anthropology. 1978; 19:616–618.Google Scholar
477. Friedewald, VE, Kornman, KS, Beck, JD, Genco, R, Goldfine, A, Libby, P, et al. The American Journal of Cardiology and Journal of Periodontology editors’ consensus: periodontitis and atherosclerotic cardiovascular disease. Journal of Periodontology. 2009;80:1021–1032.Google Scholar
478. Saini, R, Saini, S, Saini, SR. Periodontal diseases: a risk factor to cardiovascular disease. Annals of Cardiac Anaesthesia. 2010;13:159.Google Scholar
479. Pereira, TV, Salzano, FM, Mostowska, A, Trzeciak, WH, Ruiz-Linares, A, Chies, JA, et al. Natural selection and molecular evolution in primate PAX9 gene, a major determinant of tooth development. Proceedings of the National Academy of Sciences. 2006;103:5676–5681.Google Scholar
480. Brook, A. A unifying aetiological explanation for anomalies of human tooth number and size. Archives of Oral Biology. 1984;29:373–378.Google Scholar
481. Kavanagh, KD, Evans, AR, Jernvall, J. Predicting evolutionary patterns of mammalian teeth from development. Nature. 2007;449:427–432.Google Scholar
482. Bernal, V, Gonzalez, PN, Perez, SI. Developmental processes, evolvability, and dental diversification of New World monkeys. Evolutionary Biology. 2013;40:532–541.Google Scholar
483. Castro, JMB. De Third molar agenesis in human prehistoric populations of the Canary Islands. American Journal of Physical Anthropology. 1989;79:207–215.Google Scholar
484. Grine, F, Gwinnett, A, Oaks, J. Early hominid dental pathology: interproximal caries in 1.5 million-year-old Paranthropus robustus from Swartkrans. Archives of Oral Biology. 1990;35:381–386.Google Scholar
485. Trinkaus, E, Smith, RJ, Lebel, S. Dental caries in the Aubesier 5 Neandertal primary molar. Journal of Archaeological Science. 2000;27:1017–1021.Google Scholar
486. Lukacs, JR. Oral health in past populations: context, concepts and controversies. In Grauer, A, editor. A Companion to Paleopathology. Chichester UK: Wiley-Blackwell. 2012; 553–581.
487. Gilmore, CC. A comparison of antemortem tooth loss in human hunter‐gatherers and non‐human catarrhines: implications for the identification of behavioral evolution in the human fossil record. American Journal of Physical Anthropology. 2013;151:252–264.Google Scholar
488. Cohen, MN, Armelagos, GJ. Paleopathology at the origins of agriculture: editor's summation. In Cohen, MN and Aremelagos, GJ, editors. Paleopathology at the Origis of Agriculture. New York: Academic Press. 1984; 585–601.
489. Lukacs, JR. Dental paleopathology and agricultural intensification in South Asia: New evidence from Bronze Age Harappa. American Journal of Physical Anthropology. 1992;87:133–150.Google Scholar
490. Kelley, MA, Levesque, DR, Weidl, E. Contrasting patterns of dental disease in five early northern Chilean groups. In Kelley, MA and Larsen, CS, editors. Advances in Dental Anthropology. New York: Wiley-Liss. 1991; 203–213.
491. Beckett, S, Lovell, NC. Dental disease evidence for agricultural intensification in the Nubian C? Group. International Journal of Osteoarchaeology. 1994;4:223–239.Google Scholar
492. Adler, CJ, Dobney, K, Weyrich, LS, Kaidonis, J, Walker, AW, Haak, W, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics. 2013;45:450–455.Google Scholar
493. Seiler, R, Spielman, AI, Zink, A, Rühli, F. Oral pathologies of the Neolithic Iceman, c.3,300 BC. European Journal of Oral Science. 2013:1–5.
494. Humphrey, LT, Groote, I De, Morales, J, Barton, N, Collcutt, S, Ramsey, CB, et al. Earliest evidence for caries and exploitation of starchy plant foods in Pleistocene hunter-gatherers from Morocco. Proceedings of the National Academy of Sciences. 2014;111:954–959.Google Scholar
495. Oxenham, M, Tayles, N. Bioarchaeology of Southeast Asia. Cambridge: Cambridge University Press; 2006.
496. Lukacs, JR. Fertility and agriculture accentuate sex differences in dental caries rates. Current Anthropology. 2008;49:901–914.Google Scholar
497. Larsen, CS. Biological changes in human populations with agriculture. Annual Review of Anthropology. 1995;24:185–213.Google Scholar
498. Lukacs, JR, Largaespada, LL. Explaining sex differences in dental caries prevalence: saliva, hormones, and “life‐history” etiologies. American Journal of Human Biology 2006;18:540–555.Google Scholar
499. Muhler, JC, Shafer, WG. Experimental dental caries VII. The effect of various androgens and estrogens on dental caries in the rat. Journal of Dental Research. 1955;34(5):661–665.Google Scholar
500. Laine, M, Tenovuo, J, Lehtonen, O-P, Ojanotko-Harri, A, Vilja, P, Tuohimaa, P. Pregnancy-related changes in human whole saliva. Archives of Oral Biology. 1988;33:913–917.Google Scholar
501. Salvolini, E, Giorgio, R, Curatola, A, Mazzanti, L, Fratto, G. Biochemical modifications of human whole saliva induced by pregnancy. British Journal of Obstetrics and Gynecology. 1998;105:656–660.Google Scholar
502. Christensen, K, Gaist, D, Jeune, B, Vaupel, JW. “A tooth per child?The Lancet. 1998;352:1387.Google Scholar
503. Gibbons, A. An evolutionary theory of dentistry. Science. 2012:336.
504. Corruccini, RS. Anthropological aspects of orofacial and occlusal variations and anomalies. In Kelley, MA and Larsen, CS, editors. Advances in Dental Anthropology. New York: Wiley-Liss. 1991:295–323.
505. Potts, R. Environmental hypotheses of hominin evolution. American Journal of Physical Anthropology. 1998;107(S27):93–136.Google Scholar
506. Guatelli-Steinberg, D. Macroscopic and microscopic analyses of linear enamel hypoplasia in Plio-Pleistocene South African hominins with respect to aspects of enamel development and morphology. American Journal of Physical Anthropology. 2003;120:309–322.Google Scholar
507. Guatelli-Steinberg, D. Analysis and significance of linear enamel hypoplasia in Plio-Pleistocene hominins. American Journal of Physical Anthropology. 2004;123:199–215.Google Scholar
508. Guatelli-Steinberg, D. Recent Studies of Dental Development in Neandertals: Implications for Neandertal Life Histories. Evolutionary Anthropology. 2009;18:9–20.Google Scholar
509. Liu, W, Martinón-Torres, M, Cai, Y-j, Xing, S, Tong, H-w, Pei, S-w, et al. The earliest unequivocally modern humans in southern China. Nature. 2015; 526:696–699.Google Scholar
510. Berger, LR, Hawks, J, Ruiter, DJ de, Churchill, SE, Schmid, P, Delezene, LK, et al. Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa. eLife. 2015:4.
511. Hlusko, LJ. Integrating the genotype and phenotype in hominid paleontology. Proceedings of the National Academy of Sciences U S A. 2004;101:2653–2657.Google Scholar
512. Humphrey, LT, Dean, MC, Jeffries, TE, Penn, M. Unlocking evidence of early diet from tooth enamel. Proceedings of the National Academy of Sciences. 2008;105:6834–6839.Google Scholar
513. Austin, C, Smith, TM, Bradman, A, Hinde, K, Joannes-Boyau, R, Bishop, D, et al. Barium distributions in teeth reveal early-life dietary transitions in primates. Nature. 2013;498:216–219.Google Scholar
514. Cuozzo, FP, Ungar, PS, Sauther, ML. Primate dental ecology: how teeth respond to the environment. American Journal of Physical Anthropology. 2012;148:159–162.Google Scholar
515. Smith, TM, Guatelli‐Steinberg, D. Developmental variation of the primate dentition: The 2011 AAPA symposium in honor of Don Reid. Evolutionary Anthropology. 2011;20:161–163.Google Scholar
516. Little, AC, Jones, BC, DeBruine, LM. Facial attractiveness: evolutionary based research. Philosophical Transactions of the Royal Society B: Biological Sciences. 2011;366:1638–1659.Google Scholar
517. Hendrie, CA, Brewer, G, Evans, AR. Evidence to suggest that teeth act as human ornament displays signalling mate quality. PLoS One. 2012;7:e42178.Google Scholar
518. Zumbroich, TJ. The ethnobotany of teeth blackening in Southeast Asia. Ethnobotany Research and Applications. 2009;7:381–398.Google Scholar
519. Martens, M. Tooth transfigurement in Indonesia. Sulang Language Data and Working Papers: Topics in Lexicography, no. 17.
520. Willis, M, Harris, L, Hergenrader, P. On traditional dental extraction: case reports from Dinka and Nuer en route to restoration. British Dental Journal. 2008;204:121–124.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Debbie Guatelli-Steinberg, Ohio State University
  • Book: What Teeth Reveal about Human Evolution
  • Online publication: 05 August 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139979597.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Debbie Guatelli-Steinberg, Ohio State University
  • Book: What Teeth Reveal about Human Evolution
  • Online publication: 05 August 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139979597.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Debbie Guatelli-Steinberg, Ohio State University
  • Book: What Teeth Reveal about Human Evolution
  • Online publication: 05 August 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139979597.012
Available formats
×